A Fenchel duality

Consider the optimization problem

Jnf, (f(W)Jr;gt(W)) :

An equivalent problem is

T
inf (f(wo) + th(wt)> st. wg €S and Vt € [T], wy = wq . (18)

W0,W1,...,WT Pt
Introducing 7" vectors A1, ..., Ap, each A; € R"™ is a vector of Lagrange multipliers for the equality

constraint w; = wg, we obtain the following Lagrangian

T T
L(Wo, w1, ..., wr, A1, Ar) = f(wo) + Y gi(we) + D (A, wo — wy)
=1

t=1

The dual problem is the task of maximizing the following dual objective value,

D()\17~~~7)\T) = inf [,(W(),Wl,...,WT7A1,...,)\T)
WoES,W1,..., wr
T T
= — sup <<W07 - Z}\t> - f(WO)) - ZSUP (Wi, Ae) = ge(we))
WoeS t=1 t=1 Wt
T T
- (o)X
t=1 t=1
where f*, g7, ..., g7 are the Fenchel conjugate functions of f, g1, ..., gr. Therefore, the general-

ized Fenchel dual problem is

T T
sup  — f* ( ZM) =Y g - (19)
t=1 t=1
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Note that when T' = 1 the above duality is the so-called Fenchel duality [Borwein and Lewis, 2006].

The weak duality theorem tells us that the primal objective upper bounds the dual objective:

AL, AT

T T T
sup _f*(_Z)‘t) _Zg*()\t) < infsf(w)—i—th(w) .
t=1 t=1 we t=1
A sufficient condition for equality to hold (i.e. strong duality) is that f is a strongly convex function,

g1, - .., gr are convex functions, and the intersection of the domains of g1, ..., gr is polyhedral.

Assume that strong duality holds, let (Aq, ..., Ar) be a maximizer of the dual objective function,
and let (w§, ..., wZ) be a maximizer of the problem given in Eq. (18). Then, optimality conditions
imply that

(Wg,y ..., wp) = argmin L(Wo,..., W, A1,..., A7) .

See for example Boyd and Vandenberghe [2004] Section 5.5.2. In particular, the above implies that
T
wy = argmax <w0, - At> — f(wo) = V*(=Aur)
wo€ES =1

where in the last equality we used Lemma 1. Since wyj is also a minimizer of our original problem,
we obtain the primal-dual link function

W = Vf*(*)\lzT).



B Proof of Thm. 2

We first use the following properties of the Fenchel conjugate of strongly convex functions. The
proof of this lemma follows from Lemma 18 in Shalev-Shwartz [2007].

Lemma 3 Let | be a o-strongly convex function over S with respect to a norm || - ||. Let f* be the
Fenchel conjugate of f. Then, f* is differentiable and for all 81,05 € R™, we have

F(01+62) = [1(81) < (VF(81),02) + 501

We also need the following technical lemma.
Lemma 4 Assume f strongly convex, let a,b > 0, and let w, = V [*(0/b). Then,
af*(0/a) —bf*(0/b) = (b—a)f(w)
Proof Since f is strongly convex we know that f* is differentiable. Using Lemma 1 we have

f7(0/b) = (W, 0/b) — f(ws)

The definition of f* now implies that
f7(8/a) = max(w,8/a) — f(w) = (Wy,0/a) — f(ws)

Therefore,
af*(6/a) —bf*(0/b) > —(a—0b)f(ws)

which concludes our proof. |

Next, we show that the gradient descend update rule yields a sufficient increase of the dual objective.

Lemma5 Let (A1,...,A\t—1) be an arbitrary sequence of vectors. Denote w =
Vf* (—L)\lz(t_l)) and let X € Ogi(w). Then,

T1:t

All?
Dty At A) = DAty e At) > o) — LA

2O_l:t

Proof Denote A; = Dy 1 (A1,..., Ai—1,A) — Di(A1, ..., As_1). Since f is strongly convex we
can apply Lemma 3 to get that

A = —of* (—M) +oe-nf* (—M) —gr(N)

T1:¢ T1:(t—1)

A1t — 2 A1t —
> oy (f* (— 1;;;]’) — Ry 2(“;':';)2) +on—n S (—#) —9/(\)

O1:(t—1)

* ALt * ALt—1 * A 3
= alz(tfl)f (_ 01:5,73) - Ulztf (_ 1(7(1,t )) + <W7 A> — 0 (A) - !UJL .
(¢ : R , .

A B

Since A € 0g;(w) we get from Lemma 1 that B = g,(w). Next, we use Lemma 4 and the definition
of wto get that A > (014 — 01.4—1)) f(W) = 0 f(W). Thus, A+ B > o f (W) + g¢(W) = £(w)
and this concludes our proof. |

The proof of Thm. 2 now easily follows.

Proof [of Thm. 2] Denote A; = Dy (A A — DAL, ... AL_}) and note that

Eq. (10) still holds. The definition of the update in Fig. 3 and Lemma 5 implies that there exists
2

vi € Og¢(w:) such that A, > fy(wy) — lvelly Summing over ¢ and combining with Eq. (10) we

201:¢
conclude our proof. |
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