
Supplementary Material to:

On Computational Power and the Order-Chaos Phase

Transition in Reservoir Computing

1 Computational Performance for Further Example Tasks

In this section the performance measure pexp defined in eq. (1) in the main text [1] for two
further example tasks is shown. In Fig. 1 pexp(C,RAND5) is plotted, averaged over 20 ran-
domly chosen 5-bit functions RAND5, circuits C, initial conditions and input streams. A uniform
distribution over all 225

functions RAND5 : {−1,+1}5 → {−1, 1} was applied. In Fig. 2 the
quantity pexp(C,AND5) for the 5-bit AND-function is plotted, i.e. the target output at time t is
AND5,τ (u, t) = maxi∈{1,...,5}{u(t− τ − i)} for delay τ . Shown results are averages over 10 circuits
C, initial conditions and input streams. The results shown in Fig. 1 and 2 are qualitatively similar
to the results on the PAR-task reported in [1].

2 Definition and Calculation of p∞

In this section we give a detailed definition of the heuristic performance measure p∞ and outline
an approach to calculate it efficiently.

2.1 Notation

Without loss of generality we may set the readout time t to 0 as the input random process u(.) is
assumed to be stationary. Hence the target task of the n last input bits (delay τ = 0) is a function
fT of u(−1), . . . , u(−n). We introduce the following useful notation for the input:

ui := (ui(−1), ui(−2), . . .) ∈ {−1, 1}N

ui,t := (ui(t − 1), ui(t − 2), . . .) ∈ {−1, 1}N

For a vector x = (x1, . . . , xN) ∈ R
N we use the the p-norm ‖.‖p with p = 1 (the Manhattan norm)

for measuring distances:

‖x‖1 =
N
∑

i=1

|xi|.

2.2 Definition of p∞

In the following we consider two instances N1 and N2 of the same network which solely differ
in the input streams u1(.) and u2(.) they receive. Let d(k) be the normalized expected distance
between the two network states x1(0) and x2(0) of N1 and N2 at time 0 for the case where the
inputs u1(.) and u2(.) only differ at the single time step t = −k. Hence for given u1, the sequence
u2 is determined by:

u2(−i) = u1(−i) ∀i ∈ N ∧ i 6= k

u2(−k) = −u1(−k).

1

∀k ∈ N the inputs u1(−k) ∈ {−1,+1} are iid. with probability p(u1(−k) = 1) =: 0.5. d(k) is then
formally defined as:

d(k) :=
1

N

〈〈

‖x1(0) − x2(0)‖1

〉

W

〉

u
. (1)

The average 〈.〉u is taken over all inputs u1(.), u2(.) from the ensemble defined above and all initial
conditions of the network; 〈.〉W denotes the average over all weight matrices W . If the network
is not in the fading memory regime (or equivalently: if it does not have the echo state property,
for a formal definition see [2] or [3]) d(k) defined in (1) might well depend on the distribution of
initial conditions from which the evolution of x1 and x2 starts; we address this subtle point below.
We define p∞ in the following way:

p∞ = max{ lim
k→∞

(d(2) − d(k)) , 0} = max{d(2) − d(∞), 0}.

2.3 The Annealed Approximation

We want to calculate the distance d(k) defined in (1) for large networks N → ∞ using the annealed
approximation (AA) introduced in [4]. The AA consists of approximating the original dynamics
of the network by assuming that the weight matrix W is drawn iid. at every time step. First we
notice that in the AA and the limit N → ∞ the following holds:

d(k) =

〈〈

1

N

N
∑

b=1

|x1
b(0) − x2

b(0)|

〉

W

〉

u

=
〈〈

|x1
a(0) − x2

a(0)|
〉

W

〉

u
∀a ∈ N

d(k)
N→∞
−−−−→

〈

∣

∣

∣

∣

∣

∣

2m−1
∑

i,j=0

p(x1
a(t) = si, x

2
a(t) = sj |u

1,t, u2,t)(si − sj)

∣

∣

∣

∣

∣

∣

〉

u

∀a ∈ N. (2)

Here p(x1
a(t) = si, x

2
a(t) = sj |u

1,t, u2,t) denotes the joint probability of finding x1
a(t) in the state si

and x2
a(t) in the state sj given the input u1,t, u2,t. Due to the AA this probability is independent

of the node index a. Moreover p(x1
a(t) = si, x

2
a(t) = sj |u

1,t, u2,t) determines the distribution of
the recurrent feedback for the next time step. Hence, in the AA and for N → ∞ the state of the
network is completely described by the joint distribution of a pair of coordinates x1

a(t) and x2
a(t)

in the state space S × S. We therefore define the probability q in the following way:

qij(t, u
1,t, u2,t) := p(x1

a(t) = si, x
2
a(t) = sj |u

1,t, u2,t)

q(t, u1,t, u2,t) :=
(

qij(t, u
1,t, u2,t)

)

i,j∈{0,...,2m−1}
.

Thus q(t, u1,t, u2,t) is the 2m × 2m matrix whose entry qi,j is the joint probability of finding x1
a(t)

in the state si and x2
a(t) in sj after applying the input u1,t and u2,t respectively. Using q we can

rewrite (2) as:

d(k) =

〈

∣

∣

∣

∣

∣

∣

2m−1
∑

i,j=0

qij(0, u
1, u2)(si − sj)

∣

∣

∣

∣

∣

∣

〉

u

=

〈

∣

∣

∣

∣

∣

∣

21−m
2m−1
∑

i,j=0

qij(0, u
1, u2)(i − j)

∣

∣

∣

∣

∣

∣

〉

u

.

We need to calculate qij(t, u
1,t, u2,t) at time t = 0 in order to determine d(k). This can be achieved

iteratively via the mapping S representing the transition from time step t to t+1 by applying the
input pair u1(t) and u2(t):

q(t + 1, u1,t+1, u2,t+1) = S
(

q(t, u1,t, u2,t), u1(t), u2(t)
)

.

2

The k-fold composition of S with the inputs u1 and u2 is denoted by S
(k)
u1,u2 :

q(t, u1,t, u2,t) = S
(k)
u1,u2

(

q(t − k, u1,t−k, u2,t−k)
)

q(t, u1,t, u2,t) = lim
k→∞

(

S
(k)
u1,u2

(

q(t − k, u1,t−k, u2,t−k)
)

)

.

For the sake of fast numerical evaluation, we calculate q(0, u1, u2) by starting at t = −n with the
initial condition q∗:

q(0, u1, u2) = S
(n)
u1,u2 (q∗) .

The initial condition q∗ := 2−mid2m×2m (where idn×m is the n × m identity matrix) was chosen
because of the following relation:

q∗ =
〈

q(t, u1, u1)
〉

u1
.

2.4 Separation approximation

Unfortunately the complexity to calculate q scales like O(22m) (capital O notation) with the
number of bits m. This basically renders the approach described above useless for m > 5. However,
this can be circumvented by generalizing the AA in the following way. Since the state xi

a(t) of
neuron a is quantized with m bits, we can write it in the following way:

xi
a(t) =

m−1
∑

l=0

2−l(bi
l(t) − 1/2), bi

l(t) ∈ {0, 1} (3)

Bl(x
i
a(t)) := bi

l(t).

According to (3) there is a unique binary representation of xi
a(t) given by (bi

0(t), . . . , b
i
m−1(t)); the

mapping Bl(.) maps a state to its lth bit. Equation (3) can be interpreted as effectively replacing
unit a with m binary units of states bi

l(t) whose outputs are reduced by 1/2 and multiplied
by 2−l and finally summed up; this is still exact. Now we assume that each of these m units
receives input drawn independently from the input distribution and has different weights drawn
independently from N(0, σ2) every time step; hence this approach generalizes the AA. Therefore,
for given presynaptic input the bi

l(t) are independent for different i and l under this approximation.
Thus:

qij(t, u
1,t, u2,t) ≈

m−1
∏

l=0

ql
Bl(si),Bl(sj)

(t, u1,t, u2,t)

ql(t, u1,t, u2,t) = (ql
b1

l
,b2

l
(t, u1,t, u2,t))b1

l
,b2

l
∈{0,1}.

ql(t, u1,t, u2,t) is the 2× 2 matrix, whose entry ql
b1

l
,b2

l

(t, u1,t, u2,t) is the joint probability of finding

the bit number l of unit x1
a(t) in state b1

l ∈ {0, 1} and of unit x2
a(t) in state b2

l ∈ {0, 1}. Under
this approximation we only have to calculate 4m matrix entries instead of the 22m entries, which
is a considerable reduction of complexity.
We denote the update mapping for ql by Sl:

ql(t + 1, u1,t+1, u2,t+1) = Sl(q(t, u1,t, u2,t), u1(t), u2(t)).

An explicit form for Sl can be derived in the following way. First we condition the probability
ql(t + 1, u1,t+1, u2,t+1) on the presynaptic input h1 = (h1

1, . . . , h
1
K) for network N1 and h2 =

(h2
1, . . . , h

2
K) for network N2 and on the weight matrix W for this time step (which is the same for

N1 and N2). The pairs (h1
i , h

2
i), i ∈ 1, . . . ,K are iid. according to q(t, u1,t, u2,t). This yields:

ql(t + 1, u1,t+1, u2,t+1) =
〈〈

ql(t + 1, u1,t+1, u2,t+1|h1, h2, w)
〉

W

〉

h1,h2

=
∑

h1,h2

p(h1, h2)

∫

dW p(W)ql(t + 1, u1,t+1, u2,t+1|h1, h2,W). (4)

3

We used the following abbreviations :
〈

X(h1, h2)
〉

h1,h2
:=

∑

h1,h2

p(h1, h2)X(h1, h2)

=
∑

h1

1
,h2

1

· · ·
∑

h1

K
,h2

K

(

K
∏

i=1

qh1

i
,h2

i
(t, u1,t, u2,t)

)

X(h1, h2) (5)

〈X(W)〉W :=

∫

dW p(W)X(W) =

∫

R

· · ·

∫

R

X(W)p(w1, . . . , wK) dw1 · · · dwK .

Here w1, . . . , wK denote the K presynaptic weights. Conditioned on the input and the weights,
the network realizations N1 and N2 are independent:

ql
ij(t + 1, u1,t+1, u2,t+1|h1, h2, w) = p(b1

l (t + 1) = i|h1, w)p(b2
l (t + 1) = j|h2, w)

= δ(Bl(fm(wT h1 + u1(t))), i)δ(Bl(fm(wT h2 + u2(t))), j)

wT hi :=

K
∑

α=1

wαhi
α.

δ(., .) denotes the Kronecker-Delta of its two arguments. The K-fold integral over the weights
appearing in (4) can be reduced to a single integral:

∫

dW p(W)ql
ij(t + 1, u1,t+1, u2,t+1|h1, h2,W) = F l

ij(h
1, h2, u1(t), u2(t))

F l
ij(h

1, h2, u1(t), u2(t)) =
1

(8π det(C)Σ22)1/2

2l−1
∑

α=0

∫

Iα,i−u1(t)

dv exp

(

−
v2

2

(

Σ11 −
Σ2

12

Σ22

))

×

2l−1
∑

β=0

[

erf

(

(I+
β,j − u2(t))Σ22 + Σ21v

(2Σ22)1/2

)

− erf

(

(I−β,j − u2(t))Σ22 + Σ21v

(2Σ22)1/2

)]

Here we use the following definitions:

C = σ2

(

(h1)T h1 (h1)T h2

(h2)T h1 (h2)T h2

)

Σij =
(

C−1
)

ij

2l−1
⋃

α=0

Iα,i = supp(δ(Bl(fm(.)), i))

Iα,i = [I−α,i, I
+
α,i]

I−α,i := tanh−1
(

2−l+1α − 1
)

I+
α,i := tanh−1

(

2−l+1(α + 1) − 1
)

.

The support of the function δ(Bl(fm(.)), i) is the union of 2l disjoint intervals Iα,i with lower
bound I−α,i and upper bound I+

α,i.

Using the expression F l
ij the update can finally be written as:

ql
ij(t + 1, u1,t+1, u2,t+1) =

〈

F l
ij(h

1, h2, u1(t), u2(t))
〉

h1,h2
.

For the sake of computational tractability for larger m and K, we do not evaluate the 2K sums
explicitly involved in the average over the presynaptic input 〈.〉h1,h2 . Instead we determine this
expectation value by a finite number a samples from the joint distribution p(h1, h2); this sampling
is easily realizable since p(h1, h2) is of the product form given in (5); sample size for all experiments
was chosen to be 150.

4

References

[1] Anonymous Author(s). On Computational Power and the Order-Chaos Phase Transition in
Reservoir Computing, 2008. submitted for publication.

[2] H. Jaeger. The “echo state” approach to analyzing and training recurrent neural networks.
GMD Report 148, German National Research Center for Information Technology, 2001.

[3] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Computation, 14(11):2531–
2560, 2002.

[4] B. Derrida and Pomeau Y. Random networks of automata: A simple annealed approximation.
Europhysics Letters, 1(2):45–49, 1986.

5

A m = 1 B m = 3 C m = 6

Figure 1: The performance pexp(C,RAND5) for three different quantization levels m = 1, 3, 6,
averaged over 20 randomly drawn functions of 5 bits, circuits C, initial conditions and input
streams. pexp(C,RAND5) is plotted as a function of the network in-degree K and the weight
STD σ. The networks size is N = 150. The input time series have length 10000. The solid line
represents the numerically found critical line.

A m = 1 B m = 3 C m = 6

Figure 2: Same figure as Fig. 1 showing the performance pexp(C,AND5) for the 5-bit AND-task
averaged over 10 circuits C, initial conditions and input streams.

6

