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Abstract

Applications of multi-class classification, such as document categorization, often
appear in cost-sensitive settings. Recent work has significantly improved the state
of the art by moving beyond “flat” classification through incorporation of class
hierarchies [4]. We present a novel algorithm that goes beyond hierarchical clas-
sification and estimates the latent semantic space that underlies the class hierarchy.
In this space, each class is represented by a prototype and classification is done
with the simple nearest neighbor rule. The optimization of the semantic space
incorporates large margin constraints that ensure that for each instance the correct
class prototype is closer than any other. We show that our optimization is convex
and can be solved efficiently for large data sets. Experiments on the OHSUMED
medical journal data base yield state-of-the-art results on topic categorization.

1 Introduction

Multi-class classification is a problem that arises in many applications of machine learning. In many
cases the cost of misclassification varies strongly between classes. For example, in the context of
object recognition it may be significantly worse to misclassify a male pedestrian as a traffic light
than as a female pedestrian. Similarly, in the context of document categorization it seems more
severe to misclassify a medical journal on heart attack as a publication on athlete’s foot than on
Coronary artery disease. Although the scope of the proposed method is by no means limited to
text data and topic hierarchies, for improved clarity we will restrict ourselves to terminology from
document categorization throughout this paper.

The most common approach to document categorization is to reduce the problem to a “flat” classi-
fication problem [13]. However, it is often the case that the topics are not just discrete classes, but
are nodes in a complex taxonomy with rich inter-topic relationships. For example, web pages can be
categorized into the Yahoo! web taxonomy or medical journals can be categorized into the Medical
Subject Headings (MeSH) taxonomy. Moving beyond flat classification to settings that utilize these
hierarchical representations of topics has significantly pushed the state-of-the art [4, 15]. Additional
information about inter-topic relationships can for example be leveraged through cost-sensitive de-
cision boundaries or knowledge sharing between documents from closely related classes.

In reality, however, the topic taxonomy is a crude approximation of topic relations, created by an
editor with knowledge of the true underlying semantic space of topics. In this paper we propose a
method that moves beyond hierarchical presentations and aims to re-discover the continuous latent
semantic space underlying the topic taxonomy. Instead of regarding document categorization as
classification, we will think of it as a regression problem where new documents are mapped into this
latent semantic topic space. Very different from approaches like LSI or LDA [1, 7], our algorithm is
entirely supervised and explicitly embeds the topic taxonomy and the documents into a single latent
semantic space with “semantically meaningful” Euclidean distances.
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Figure 1: A schematic layout of our taxem method (for Taxonomy Embedding). The classes are
embedded as prototypes inside the semantic space. The input documents are mapped into the same
space, placed closest to their topic prototypes.

In this paper we derive a method to embed the taxonomy of topics into a latent semantic space in
form of topic prototypes. A new document can be classified by first mapping it into this space and
then assigning the label of the closest prototype. A key contribution of our paper is the derivation
of a convex problem that learns the regressor for the documents and the placement of the prototypes
in a single optimization. In particular, it places the topic prototypes such that for each document
the prototype of the correct topic is much closer than any other prototype by a large margin. We
show that this optimization is a special instance of semi-definite programs [2], that can be solved
efficiently [16] for large data sets.

Our paper is structured as follows: In section 2 we introduce necessary notation and a first version
of the algorithm based on a two-step approach of first embedding the hierarchical taxonomy into a
semantic space and then regressing the input documents close to their respective topic prototypes.
In section 3 we extend our model to a single optimization that learns both steps in one convex op-
timization with large margin constraints. We evaluate our method in section 4 and demonstrate
state-of-the-art results on eight different document categorization tasks from the OHSUMED med-
ical journal data set. Finally, we relate our method to previous work in section 5 and conclude in
section 6.

2 Method

We assume that our input consists of documents, represented as a set of high dimensional sparse
vectors !x1, . . . , !xn ∈ X of dimensionality d. Typically, these could be binary bag of words
indicators or tfidf scores. In addition, the documents are accompanied by single topic labels
y1, . . . , yn ∈ {1, . . . , c} that lie in some taxonomy T with c total topics. This taxonomy T gives
rise to some cost matrix C ∈ Rc×c, where Cαβ ≥ 0 defines the cost of misclassifying an element
of topic α as β and Cαα = 0. Technically, we only require knowledge of the cost matrix C, which
could also be obtained from side-information independent of a topic taxonomy. In this paper we will
not focus on how C is obtained. However, we would like to point out that a common way to infer a
cost matrix from a taxonomy is to set Cαβ to the length of the shortest path between node α and β,
but other approaches have also been studied [3].

Throughout this paper we denote document indices as i, j ∈ {1, . . . , n} and topic indices as
α, β ∈ {1, . . . , c}. Matrices are written in bold (e.g. C) and vectors have top arrows (e.g. !xi).

Figure 1 illustrates our setup schematically. We would like to create a low dimensional semantic
feature space F in which we represent each topic α as a topic prototype !pα ∈ F and each document
!xi ∈ X as a low dimensional vector !zi ∈ F . Our goal is to discover a representation of the
data where distances reflect true underlying dissimilarities and proximity to prototypes indicates
topic membership. In other words, documents on the same or related topics should be close to the
respective topic prototypes, documents on highly different topics should be well separated.
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Throughout this paper we will assume that F = Rc, however our method can easily be adapted to
even lower dimensional settings F = Rr where r < c. As an essential part of our method is to
embed the classes that are typically found in a taxonomy, we refer to our algorithm as taxem (short
for “taxonomy embedding”).

Embedding topic prototypes
The first step of our algorithm is to embed the document taxonomy into a Euclidean vector
space. More formally, we derive topic prototypes !p1, . . . , !pc ∈ F based on the cost matrix C,
where !pα is the prototype that represents topic α. To simplify notation, we define the matrix
P = [!p1, . . . , !pc] ∈ Rc×c whose columns consist of the topic prototypes.

There are many ways to derive the prototypes from the cost matrix C. By far the simplest method
is to ignore the cost matrix C entirely and let PI = I, where I ∈ Rc×c denotes the identity matrix.
This results in a c dimensional feature space, where the class-prototypes are all in distance

√
2 from

each other at the corner of a c-dimensional simplex. We will refer to PI as the simplex prototypes.

Better results can be expected when the prototypes of similar topics are closer than those of dissim-
ilar topics. We use the cost matrix C as an estimate of dissimilarity and aim to place the prototypes
such that the distance ‖!pα − !pβ‖22 reflects the cost specified in C2

αβ . More formally, we set

Pmds = argminP

c∑

α,β=1

(‖!pα − !pβ‖22 − (Cαβ)2)2. (1)

If the cost matrix C defines Euclidean distances (e.g. when the cost is obtained through the shortest
path between nodes), we can solve eq. (1) with metric multi-dimensional scaling [5]. Let us denote
C̄ = − 1

2HCH, where the centering matrix H is defined as H = I− 1
c11", and let its eigenvector

decomposition be C̄ = VΛV". We obtain the solution by setting Pmds =
√

ΛV. We will refer to
Pmds as the mds prototypes.1

Both prototypes embeddings PI and Pmds are still independent of the input data {!xi}. Before we
can derive a more sophisticated method to place the prototypes with large margin constraints on the
document vectors, we will briefly describe the mapping W : X → F of the input documents into
the low dimensional feature space F .

Document regression
Assume for now that we have found a suitable embedding P of the class-prototypes. We need to
find an appropriate mapping W : X → F , that maps each input !xi with label yi as close as possible
to its topic prototype !pyi . We can find such a linear transformation !zi = W!xi by setting

W = argminW

∑

i

‖!pyi −W!xi‖2 + λ‖W‖2F . (2)

Here, λ is the weight of the regularization of W, which is necessary to prevent potential overfitting
due to the high number of parameters in W. The minimization in eq. (2) is an instance of linear
ridge regression and has the closed form solution

W = PJX"(XX" + λI)−1, (3)

where X = [!x1, . . . !xn] and J ∈ {0, 1}c×n, with Jαi = 1 if and only if yi = α. Please note that
eq. (3) can be solved very accurately without the need to ever compute the d × d matrix inverse
(XX" + λI)−1 explicitly, by solving with linear conjugate gradient for each row of W indepen-
dently.

Inference
Given an input vector !xt we first map it into F and estimate its label as the topic with the closest
prototype !pα

ŷt = argminα‖!pα −W!xt‖2. (4)
1If C̄ does not contain Euclidean distances one can use the common approximation of forcing negative

eigenvalues in Λ to zero and thereby fall back onto the projection of C onto the cone of positive semi-definite
matrices.
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Figure 2: The schematic layout of the large-margin embedding of the taxonomy and the documents.
As a first step, we represent topic α as the vector !eα and document !xi as !x′i = A!xi. We then learn the
matrix P whose columns are the prototypes !pα = P!eα and which defines the final transformation
of the documents !zi = P!x′i. This final transformation is learned such that the correct prototype !pyi

is closer to !zi than any other prototype !pα by a large margin.

For a given set of labeled documents (!x1, y1), . . . , (!xn, yn) we measure the quality of our semantic
space with the averaged cost-sensitive misclassification loss,

E =
1
n

n∑

i=1

Cyiŷi . (5)

3 Large Margin Prototypes

So far we have introduced a two step approach: First, we find the prototypes P based on the cost
matrix C, then we learn the mapping !x → W!x that maps each input closest to the prototype of its
class. However, learning the prototypes independent of the data {!xi} is far from optimal in order
to reduce the loss in (5). In this section we will create a joint optimization problem that places the
prototypes P and learns the mapping W while minimizing an upper bound on (5).

Combined learning
In our attempt to learn both mappings jointly, we are faced with a “chicken and egg” problem. We
want to map the input documents closest to their prototypes and at the same time place the prototypes
where the documents of the respective topic are mapped to. Therefore our first task is to de-tangle
this mutual dependency of W and P. Let us define A as the following matrix product:

A = JX"(XX" + λI)−1. (6)

It follows immediately form eqs. (3) and (6) that W = PA. Note that eq. (6) is entirely independent
of P and can be pre-computed before the prototypes have been positioned. With this relation we
have reduced the problem of determining W and P to the single problem of determining P.

Let !x′i = A!xi and let !eα = [0, . . . , 1, . . . , 0]" be the vector with all zeros and a single 1 in the αth

position. We can then rewrite both, the topic prototypes !pα and the low dimensional documents !zi,
as vectors within the range of P : Rc → Rc:

!pα = P!eα, and !zi = P!x′i. (7)

Optimization
Ideally we would like to learn P to minimize (5) directly. However, this function is non-continuous
and non-differentiable. For this reason we will derive a surrogate loss function that strictly
bounds (5) from above.

4



The loss for a specific document !xi is zero if its corresponding vector !zi is closer to the correct
prototype !pyi than to any other prototype !pα. For better generalization it would be preferable if
prototype !pyi was in fact much closer by a large margin. We can go even further and demand that
prototypes that would incur a larger misclassification loss should be further separated than those
with a small cost. More explicitly, we will try to enforce a margin of Cyiα. We can express this
condition as a set of “soft” inequality constraints, in terms of squared-distances,

∀i, α )=yi ‖P(!eyi − !x′i)‖22 + Cyiα ≤ ‖P(!eα − !x′i)‖22 + ξiα, (8)

where the slack-variable ξiα≥0 absorbs the amount of violation of prototype !pα into the margin of
!x′i. Given this formulation, we create an upper bound on the loss function (5):

Lemma 1 Given a prototype matrix P, the training error (5) is bounded above by 1
n

∑
iα ξiα.

Proof: First, note that we can rewrite the assignment of the closest prototype (4) as ŷi =
argminα‖P(!eα − !x′i)‖2. It follows that ‖P(!eyi − !x′i)‖22 − ‖P(!eŷi − !x′i)‖22 ≥ 0 for all i (with
equality when ŷi = yi). We therefore obtain:

ξiŷi = ‖P(!eyi − !x′i)‖22 + Cyiŷi − ‖P(!eŷi − !x′i)‖22 ≥ Cyiŷi . (9)

The result follows immediately from (9) and that ξiα ≥ 0:
∑

i,α

ξiα ≥
∑

i

ξiŷi ≥
∑

i,ŷi

Cyiŷi . (10)

Lemma 1, together with the constraints in eq. (8), allows us to create an optimization problem that
minimizes an upper bound on the average loss in eq. (5) with maximum-margin constraints:

Minimize
∑

i,α

ξiα subject to:
P

(1) ‖P(!eyi − !x′i)‖22 + Cyiα ≤ ‖P(!eα − !x′i)‖22 + ξiα

(2) ξiα ≥ 0

(11)

Note that if we have a very large number of classes, it might be beneficial to choose P ∈ Rr×c with
r < c. However, the convex formulation described in the next paragraph requires P to be square.

Convex formulation
The optimization in eq. (11) is not convex. The constraints of type (8) are quadratic with respect to
P. Intuitively, any solution P gives rise to infinitely many solutions as any rotation of P results in
the same objective value and also satisfies all constraints. We can make (11) invariant to rotation by
defining Q = P"P, and rewriting all distances in terms of Q,

‖P(!eα − !x′i)‖22 = (!eα − !x′i)
"Q(!eα − !x′i) = ‖!eα − !x′i‖2Q. (12)

Note that the distance formulation in eq. (12) is linear with respect to Q. As long as the matrix Q
is positive semi-definite, we can re-decompose it into Q = P"P. Hence, we enforce positive semi-
definiteness of Q by adding the constraint Q + 0. We can now solve (11) in terms of Q instead of
P with the large-margin constraints

∀i, α )=yi ‖!eyi − !x′i‖2Q + Cyiα ≤ ‖!eα − !x′i‖2Q + ξiα. (13)

Regularization
If the size of the training data n is small compared to the number of parameters c2, we might run
into problems of overfitting to the training data set. To counter those effects, we add a regularization
term to the objective function.

Even if the training data might differ from the test data, we know that the taxonomy does not change.
It is straight-forward to verify that if the mapping A was perfect, i.e. for all i we have !x′i = !eyi , Pmds

satisfies all constraints (8) as equalities with zero slack. This gives us confidence that the optimal
solution P for the test data should not deviate too much from Pmds. We will therefore penalize

5



Top category A B C D E F G H
# samples n 7544 4772 4858 2701 7300 1961 8694 8155
# topics c 424 160 453 339 457 151 425 150
# nodes 519 312 610 608 559 218 533 170

Table 1: Statistics of the different OHSUMED problems. Note that not all nodes are populated and
that we pruned all strictly un-populated subtrees.

‖Q − C̄‖2F , where C̄ = P"
mdsPmds (as defined in section 2). The final convex optimization of

taxem with regularized objective becomes:

Minimize (1− µ)
∑

i,α

ξiα + µ‖Q− C̄‖2F subject to:
Q

(1) ‖!eyi − !x′i‖2Q + Cyiα ≤ ‖!eα − !x′i‖2Q + ξiα

(2) ξiα ≥ 0
(3) Q + 0

(14)

The constant µ ∈ [0, 1] regulates the impact of the regularization term. The optimization in (14) is
an instance of a semidefinite program (SDP) [2]. Although SDPs can often be expensive to solve,
the optimization (14) falls into a special category2 and can be solved very efficiently with special
purpose sub-gradient solvers even with millions of constraints [16]. Once the optimal solution Q∗

is found, one can obtain the position of the prototypes with a simple svd or cholesky decomposition
Q∗=P"P and consequently also obtains the mapping W from W = PA.

4 Results

We evaluated our algorithm taxem on several classification problems derived from categorizing pub-
lications in the public OHSUMED medical journal data base into the Medical Subject Headings
(MeSH) taxonomy.

Setup and data set description
We used the OHSUMED 87 corpus [9], which consists of abstracts and titles of medical publica-
tions. Each of these entries has been assigned one or more categories in the MeSH taxonomy3. We
used the 2001 version of these MeSH headings resulting in about 20k categories organized in a tax-
onomy. To preprocess the data we proceeded as follows: First, we discarded all database entries with
empty abstracts, which left us with 36890 documents. We tokenized (after stop word removal and
stemming) each abstract, and represented the corresponding bag of words as its d = 60727 dimen-
sional tfidf scores (normalized to unit length). We removed all topic categories that did not appear
in the MeSH taxonomy (due to out-dated topic names). We further removed all subtrees of nodes
that were populated with one or less documents. The top categories in the OHSUMED data base are
“orthogonal” — for instance the B top level category is about organism while C is about diseases.
We thus created 8 independent classification problems out of the top categories A,B,C,D,E,F,G,H.
For each problem, we kept only the abstracts that were assigned exactly one category in that tree,
making each problem single-label. The statistics of the different problems are summrized in Ta-
ble 1. For each problem, we created a 70%/30% random split in training and test samples, ensuring
however that each topic had at least one document in the training corpus.

Document Categorization
The classification results on the OHSUMED data set are summarized in Table 2. We set the regular-
ization constants to be λ = 1 for the regression and µ = 0.1 for the SDP. Preliminary experiments
on data set B showed that regularization was important but the exact settings of the µ and λ had no

2The solver described in [16] utilizes that many constraints are inactive and that the sub-gradient can be
efficiently derived from previous gradient steps.

3see http://en.wikipedia.org/wiki/Medical_Subject_Headings
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data SVM 1/all MCSVM SVM cost SVM tax PI -taxem Pmds-taxem LM-taxem
A 2.17 2.13 2.11 1.96 2.11 2.33 1.95
B 1.50 1.38 1.64 1.52 1.57 1.99 1.39
C 2.41 2.32 2.25 2.25 2.30 2.61 2.16
D 3.10 2.76 2.92 2.82 2.82 3.05 2.66
E 3.44 3.42 3.26 3.25 3.45 3.05 3.05
F 2.59 2.65 2.66 2.69 2.63 2.77 2.51
G 3.98 4.12 3.89 3.82 4.10 3.63 3.59
H 2.42 2.48 2.40 2.32 2.45 2.24 2.17
all 2.78 2.77 2.77 2.65 2.79 2.73 2.50

Table 2: The cost-sensitive test error results on various ohsumed classification data sets. The algo-
rithms are from left to right: one vs. all SVM, MCSVM [6], cost-sensitive MCSVM, Hierarchical
SVM [4], simplex regression, mds regression, large-margin taxem. The best results (up to statistical
significance) are highlighted in bold. The taxem algorithm obtains the lowest overall loss and the
lowest individual loss on each data set except B.

crucial impact. We compared taxem against four commonly used algorithms for document catego-
rization: 1. A linear support vector machine (SVM) trained in one vs. all mode (SVM 1/all) [12],
2. the Crammer and Singer multi-class SVM formulation (MCSVM) [6], 3. the Cai and Hoffmann
SVM classifer with cost-sensitive loss function (SVM cost) [4], 4. the Cai and Hoffmann SVM
formulation with a cost sensitive hierarchical loss function (SVM tax) [4]. All SVM classifiers were
trained with regularization constant C = 1 (which worked best on problem B; this value is also
commonly used in text classification when the documents have unit length). Further, we also eval-
uated the difference between our large margin formulation (taxem) and the results with the simplex
(PI -taxem) and mds (Pmds-taxem) prototypes. To check the significance of our results we applied
a standard t-test with a 5% confidence interval. The best results up to statistical significance are
highlighted in bold font. The final entry in Table 2 shows the average error over all test points in
all data sets. Up to statistical significance, taxem obtains the lowest loss on all data sets and the
lowest overall loss. Ignoring statistical significance, taxem has the lowest loss on all data sets ex-
cept B. All algorithms had comparable speed during test-time. The computation time required for
solving eq. (6) and the optimization (14) was on the order of several minutes with our MATLABTM

implementation on a standard IntelTM 1.8GHz core 2 duo processor (without parallelization efforts).

5 Related Work

In recent years, several algorithms for document categorization have been proposed. Several authors
proposed adaptations of support vector machines that incorporate the topic taxonomy through cost-
sensitive loss re-weighting and classification at multiple nodes in the hierarhchy [4, 8, 11]. Our
algorithm is based on a very different intuition. It differs from all these methods in that it learns
a low dimensional semantic representation of the documents and classifies by finding the nearest
prototype.

Most related to our work is probably the work by Karypis and Han [10]. Although their algorithm
also reduces the dimensionality with a linear projection, their low dimensional space is obtained
through supervised clustering on the document data. In contrast, the semantic space obtained with
taxem is obtained through a convex optimization with maximum margin constraints. Further, the
low dimensional representation of our method is explicitly constructed to give rise to meaningful
Euclidean distances.

The optimization with large-margin constraints was partially inspired by recent work on large margin
distance metric learning for nearest neighbor classification [16]. However our formulation is a much
more light-weight optimization problem with O(cn) constraints instead of O(n2) as in [16]. The
optimization problem in section 3 is also related to recent work on automated speech recognition
through discriminative training of Gaussian mixture models [14].
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6 Conclusion

In this paper, we have presented a novel framework for classification with inter-class relationships
based on taxonomy embedding and supervised dimensionality reduction. We derived a single convex
optimization problem that learns an embedding of the topic taxonomy as well as a linear mapping
from the document space to the resulting low dimensional semantic space.

As future work we are planning to extend our algorithm to the more general setting of document
categorization with multiple topic memberships and multi-modal topic distributions. Further, we
are keen to explore the implications of our proposed conversion of discrete topic taxonomies into
continuous semantic spaces. This framework opens new interesting directions of research that go
beyond mere classification. A natural step is to consider the document matching problem (e.g.
of web pages and advertisements) in the semantic space: a fast nearest neighbor search can be
performed in a joint low dimensional space without having to resort to classification all together.

Although this paper is presented in the context of document categorization, it is important to empha-
size that our method is by no means limited to text data or class hierarchies. In fact, the proposed
algorithm can be applied in almost all multi-class settings with cost-sensitive loss functions (e.g.
object recognition in computer vision).
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