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Abstract

We give polynomial-time algorithms for the exact computation of lowest-energy
states, worst margin violators, partition functions, and marginals in certain binary
undirected graphical models. Our approach provides an interesting alternative to
the well-known graph cut paradigm in that it does not impose any submodularity
constraints; instead we require planarity to establish a correspondence with perfect
matchings in an expanded dual graph. Maximum-margin parameter estimation for
a boundary detection task shows our approach to be efficient and effective. A C++
implementation is available from http://nic.schraudolph.org/isinf/.

1 Introduction

Undirected graphical models are a popular tool in machine learning; they represent real-valued
energy functions of the form

E′(y) :=
∑
i∈V

E′i(yi) +
∑

(i,j)∈E

E′ij(yi, yj) , (1)

where the terms in the first sum range over the nodes V = {1, 2, . . . n}, and those in the second sum
over the edges E ⊆ V × V of an undirected graph G(V, E).

The junction tree decomposition provides an efficient framework for exact statistical inference in
graphs that are (or can be turned into) trees of small cliques. The resulting algorithms, however, are
exponential in the clique size, i.e., the treewidth of the original graph. This is prohibitively large
for many graphs of practical interest — for instance, it grows as O(n) for an n × n square lattice.
Many approximate inference techniques have been developed so as to deal with such graphs, such
as pseudo-likelihood, mean field approximation, loopy belief propagation, and tree reweighting.

1.1 The Ising Model

Efficient exact inference is possible in certain graphical models with binary node labels. Here we
focus on Ising models, whose energy functions have the form E : {0, 1}n → R with

E(y) :=
∑

(i,j)∈E

[yi 6= yj ]Eij , (2)

where [·] denotes the indicator function, i.e., the cost Eij is incurred only in those states y where yi

and yj disagree. Compared to the general model (1) for binary nodes, (2) imposes two additional
restrictions: zero node energies, and edge energies in the form of disagreement costs. At first glance
these constraints look severe; for instance, such systems must obey the symmetry E(y) = E(¬y),
where ¬ denotes Boolean negation (ones’ complement). It is well known, however, that adding a
single node makes the Ising model (2) as expressive as the general model (1) for binary variables:

Theorem 1 Every energy function of the form (1) over n binary variables is equivalent to an Ising
energy function of the form (2) over n+ 1 variables, with the additional variable held constant.
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Figure 1: Equivalent Ising model (with disagreement costs) for a given (a) node energy E′i, (b) edge
energy E′ij in a binary graphical model; (c) equivalent submodular model if Eij > 0 and E0i > 0
but E0j < 0; (d) equivalent directed model of Kolmogorov and Zabih [1], Fig. 2d.

Proof by construction: Two energy functions are equivalent if they differ only by a constant. With-
out loss of generality, denote the additional variable y0 and hold it constant at y0 := 0. Given an
energy function of the form (1), construct an Ising model with disagreement costs as follows:

1. For each node energy functionE′i(yi), add a disagreement cost termE0i := E′i(1)−E′i(0);
2. For each edge energy function E′ij(yi, yj), add the three disagreement cost terms

Eij := 1
2 [(E′ij(0, 1) + E′ij(1, 0))− (E′ij(0, 0) + E′ij(1, 1))],

E0i := E′ij(1, 0)− E′ij(0, 0)− Eij , and (3)

E0j := E′ij(0, 1)− E′ij(0, 0)− Eij .

Summing the above terms, the total bias of node i (i.e., its disagreement cost with the bias node) is

E0i = E′i(1)− E′i(0) +
∑

j:(i,j)∈E

[E′ij(1, 0)− E′ij(0, 0)− Eij ] . (4)

This construction defines an Ising model whose energy in every configuration y is shifted, relative
to that of the general model we started with, by the same constant amount, namely E′(0):

∀y ∈ {0, 1}n : E
([

0
y

])
= E′(y) −

∑
i∈V

E′i(0) −
∑

(i,j)∈E

E′ij(0, 0) = E′(y)− E′(0). (5)

The two models’ energy functions are therefore equivalent.

Note how in the above construction the label symmetry E(y) = E(¬y) of the plain Ising model
(2) is conveniently broken by the introduction of a bias node, through the convention that y0 := 0.

1.2 Energy Minimization via Graph Cuts

Definition 2 The cut C of a binary graphical model G(V, E) induced by state y ∈ {0, 1}n is the set
C(y) := {(i, j) ∈ E : yi 6= yj}; its weight |C(y)| is the sum of the weights of its edges.

Any given state y partitions the nodes of a binary graphical model into two sets: those labeled ‘0’,
and those labeled ‘1’. The corresponding graph cut is the set of edges crossing the partition; since
only they contribute disagreement costs to the Ising model (2), we have ∀y : |C(y)| = E(y). The
lowest-energy state of an Ising model therefore induces its minimum-weight cut.

Minimum-weight cuts can be computed in polynomial time in graphs whose edge weights are all
non-negative. Introducing one more node, with the constraint yn+1 := 1, allows us to construct an
equivalent energy function by replacing each negatively weighted bias edge E0i < 0 by an edge to
the new node n + 1 with the positive weight Ei,n+1 := −E0i > 0 (Figure 1c). This still leaves us
with the requirement that all non-bias edges be non-negative. This submodularity constraint implies
that agreement between nodes must be locally preferable to disagreement — a severe limitation.

Graph cuts have been widely used in machine learning to find lowest-energy configurations, in
particular in image processing. Our construction (Figure 1c) differs from that of Kolmogorov and
Zabih [1] (Figure 1d) in that we do not employ the notion of directed edges. (In directed graphs, the
weight of a cut is the sum of the weights of only those edges crossing the cut in a given direction.)
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Figure 2: (a) a non-plane drawing of a planar graph; (b) a plane drawing of the same graph; (c) a
different plane drawing of same graph, with the same planar embedding as (b); (d) a plane drawing
of the same graph with a different planar embedding.

2 Planarity

Unlike graph cut methods, the inference algorithms we describe below do not depend on submodu-
larity; instead they require that the model graph be planar, and that a planar embedding be provided.

2.1 Embedding Planar Graphs

Definition 3 Let G(V, E) be an undirected, connected graph. For each vertex i ∈ V , let Ei denote
the set of edges in E incident upon i, considered as being oriented away from i, and let πi be a cyclic
permutation of Ei. A rotation system for G is a set of permutations Π = {πi : i ∈ V}.

Rotation systems [2] directly correspond to topological graph embeddings in orientable surfaces:

Theorem 4 (White and Beineke [2], p. 22f) Each rotation system determines an embedding of G
in some orientable surface S such that ∀i ∈ V , any edge (i, j) ∈ Ei is followed by πi(i, j) in (say)
clockwise orientation, and such that the facesF of the embedding, given by the orbits of the mapping
(i, j)→ πj(j, i), are 2-cells (topological disks).

Note that while in graph visualisation “embedding” is often used as a synonym for “drawing”, in
modern topological graph theory it stands for “rotation system”. We adopt the latter usage, which
views embeddings as equivalence classes of graph drawings characterized by identical cyclic order-
ing of the edges incident upon each vertex. For instance, π4(4, 5) = (4, 3) in Figures 2b and 2c
(same embedding) but π4(4, 5) = (4, 1) in Figure 2d (different embedding). A sample face in Fig-
ures 2b–2d is given by the orbit (4, 1)→ π1(1, 4)=(1, 2)→ π2(2, 1)=(2, 4)→ π4(4, 2)=(4, 1).
The genus g of the embedding surface S can be determined from the Euler characteristic

|V| − |E|+ |F| = 2− 2g, (6)

where |F| is found by counting the orbits of the rotation system, as described in Theorem 4. Since
planar graphs are exactly those that can be embedded on a surface of genus g = 0 (a topological
sphere), we arrive at a purely combinatorial definition of planarity:

Definition 5 A graphG(V, E) is planar iff it has a rotation system Π producing exactly 2+ |E|−|V|
orbits. Such a system is called a planar embedding of G, and G(V, E ,Π) is called a plane graph.

Our inference algorithms require a plane graph as input. In certain domains (e.g., when working with
geographic information) a plane drawing of the graph (from which the corresponding embedding is
readily determined) may be available. Where it is not, we employ the algorithm of Boyer and
Myrvold [3] which, given any connected graph G as input, produces in linear time either a planar
embedding for G or a proof that G is non-planar. Source code for this step is freely available [3, 4].

2.2 The Planarity Constraint

In Section 1.1 we have mapped a general binary graphical model to an Ising model with an additional
bias node; now we require that that Ising model be planar. What does that imply for the original,
general model? If all nodes of the graph are to be connected to the bias node without violating
planarity, the graph has to be outerplanar, i.e., have a planar embedding in which all its nodes lie on
the external face — a very severe restriction.



Figure 3: Possible cuts (bold blue dashes) of a square face of the model graph (dashed) and comple-
mentary perfect matchings (bold red lines) of its expanded dual (solid lines).

The situation improves, however, if only a subset B ⊂ V of nodes have non-zero bias (4): Then the
graph only has to be B-outerplanar, i.e., have a planar embedding in which all nodes in B lie on the
same face. In image processing, for instance, where it is common to operate on a square grid of
pixels, we can permit bias for all nodes on the perimeter of the grid. In general, a planar embedding
which maximizes a weighted sum over the nodes bordering a given face can be found in linear time
[5]; by setting node weights to some measure of bias (such as E 2

0i ) we can efficiently obtain the
planar Ising model closest (in that measure) to any given planar binary graphical model.

In contrast to submodularity, B-outerplanarity is a structural constraint. This has the advantage that
once a model obeying the constraint is selected, inference (e.g., parameter estimation) can proceed
via unconstrained methods (e.g., optimization). Finally, we note that all our algorithms can be
extended to work for non-planar graphs as well. They then take time exponential in the genus of the
embedding though still polynomial in the size of the graph; for graphs of low genus this may well
be preferable to current approximative methods.

3 Computing Optimal States via Maximum-Weight Perfect Matching

The relationship between the states of a planar Ising model and perfect matchings (“dimer coverings”
to physicists) was first discovered by Kasteleyn [6] and Fisher [7]. Globerson and Jaakkola [8]
presented a more direct construction for triangulated graphs, which we generalize here.

3.1 The Expanded Dual Graph

Definition 6 The dual G∗(F , E) of an embedded graph G(V, E ,Π) has a vertex for each face of G,
with edges connecting vertices corresponding to faces that are adjacent (i.e., share an edge) in G.

Each edge of the dual crosses exactly one edge of the original graph; due to this one-to-one rela-
tionship we will consider the dual to have the same set of edges E (with the same energies) as the
original.

We now expand the dual graph by replacing each node with a q-clique, where q is the degree of the
node, as shown in Figure 3 for q = 4. The additional edges internal to each q-clique are given zero
energy so as to leave the model unaffected. For large q the introduction of theseO(q2) internal edges
slows down subsequent computations (solid line in Figure 4, left); this can be avoided by subdividing
the offending q-gonal face with chords (which are also given zero energy) before constructing the
dual. Our implementation performs best when “octangulating” the graph, i.e., splitting octagons off
all faces with q > 13; this is more efficient than a full triangulation (Figure 4, left).

3.2 Complementary Perfect Matchings

Definition 7 A perfect matching of a graph G(V, E) is a subsetM ⊆ E of edges wherein exactly
one edge is incident upon each vertex in V; its weight |M| is the sum of the weights of its edges.

Theorem 8 For every cut C of an embedded graphG(V, E ,Π) there exists at least one (ifG is trian-
gulated: exactly one) perfect matchingM of its expanded dual complementary to C, i.e., E\M = C.

Proof sketch Consider the complement E\C of the cut as a partial matching of the expanded dual.
By definition, C intersects any cycle of G, and therefore also the perimeters of G’s faces F , in an
even number of edges. In each clique of the expanded dual, C’s complement thus leaves an even



number of nodes unmatched;M can therefore be completed using only edges interior to the cliques.
In a 3-clique, there is only one way to do this, soM is unique if G is triangulated.

In other words, there exists a surjection from perfect matchings in the expanded dual of G to cuts in
G. Furthermore, since we have given edges interior to the cliques of the expanded dual zero energy,
every perfect matchingM complementary to a cut C of our Ising model (2) obeys the relation

|M|+ |C| =
∑

(i,j)∈E

Eij = const. (7)

This means that instead of a minimum-weight cut in a graph we can look for a maximum-weight
perfect matching in its expanded dual. But will that matching always be complementary to a cut?

Theorem 9 Every perfect matchingM of the expanded dual of a plane graph G(V, E ,Π) is com-
plementary to a cut C of G, i.e., E\M = C.

Proof sketch In each clique of the expanded dual, an even number of nodes is matched by edges
interior to the clique. The complement E\M of the matching in G thus contains an even number of
edges around the perimeter of each face of the embedding. By induction over faces, this holds for
every contractible (on the embedding surface) cycle of G. Because a plane is simply connected, all
cycles in a plane graph are contractible; thus E\M is a cut.

This is where planarity matters: Surfaces of non-zero genus are not simply connected, and thus
non-plane graphs may contain non-contractible cycles; our construction does not guarantee that the
complement E\M of a perfect matching of the expanded dual contains an even number of edges
along such cycles. For planar graphs, however, the above theorems allow us to leverage known
polynomial-time algorithms for perfect matchings into inference methods for Ising models.

3.3 The Lowest-Energy (MAP or Ground) State

The blossom-shrinking algorithm [9, 10] is a sophisticated method to efficiently compute the
maximum-weight perfect matching of a graph. It can be implemented to run in as little as
O(|E| |V| log |V|) time. Although the Blossom IV code we are using [11] is asymptotically less
efficient —O(|E| |V|2) — we have found it to be very fast in practice (Figure 4, left).

We can now efficiently compute the lowest-energy state of a planar Ising model as follows: Find a
planar embedding of the model graph (Section 2.1), construct its expanded dual (Section 3.1), and
run the blossom-shrinking algorithm on that to compute its maximum-weight perfect matching. Its
complement in the original model is the minimum-weight graph cut (Section 3.2). We can identify
the state which induces this cut via a depth-first graph traversal that labels nodes as it encounters
them, starting by labeling the bias node y0 := 0; this is shown below as Algorithm 1.

Algorithm 1 Find State from Corresponding Graph Cut

Input: Ising model graph G(V, E) procedure dfs state(i ∈ {0, 1, 2, . . . n}, s ∈ {0, 1})
graph cut C(y) ⊆ E if yi = unknown then

1. ∀ i ∈ {0, 1, 2, . . . n} : yi := s; ∀(i, j) ∈ Ei :
yi := unknown; if (i, j) ∈ C then dfs state(j,¬s);

2. dfs state(0, 0); else dfs state(j, s);
Output: state vector y else assert yi = s;

3.4 The Worst Margin Violator

Maximum-margin parameter estimation in graphical models involves determining the worst margin
violator — the state that minimizes, relative to a given target state y∗, the margin energy

M(y|y∗) := E(y)− d(y|y∗), (8)
where d(·|·) is a measure of divergence in state space. If d(·|·) is the weighted Hamming distance

d(y|y∗) :=
∑

(i,j)∈E

[[yi 6= yj ] 6= [y∗i 6= y∗j ]] vij , (9)
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Figure 4: Cost of inference on a ring graph, plotted against ring size. Left & center: CPU time on
Apple MacBook with 2.2 GHz Intel Core2 Duo processor; right: storage size. Left: MAP state via
Blossom IV [11] on original, triangulated, and octangulated ring; center & right: marginal probabili-
ties, full matrixK (double precision, no prefactoring) vs. prefactored half-Kasteleyn bitmatrixH .

where the vij ≥ 0 are constant weighting factors (in the simplest case: all ones) on the edges of our
Ising model, then it is easily verified that the margin energy (8) is implemented (up to a shift that
depends only on y∗) by an isomorphic Ising model with disagreement costs

Eij + (2 [y∗i 6= y∗j ]− 1) vij . (10)

We can thus use our algorithm of Section 3.3 to efficiently find the worst margin violator,
argminy M(y|y∗), for maximum-margin parameter estimation.

4 Computing the Partition Function and Marginal Probabilities1

A Markov random field (MRF) over our Ising model (2) models the distribution

P(y) = 1

Z
e−E(y), where Z :=

∑
y

e−E(y) (11)

is the MRF’s partition function. As it involves a summation over exponentially many states y,
calculating the partition function is generally intractable. For planar graphs, however, the generating
function for perfect matchings can be calculated in polynomial time via the determinant of a skew-
symmetric matrix [6, 7]. Due to the close relationship with graph cuts (Section 3.2) we can calculate
Z in (11) likewise. Elaborating on work of Globerson and Jaakkola [8], we first convert the Ising
model graph into a Boolean “half-Kasteleyn” matrixH:

1. plane triangulate the embedded graph so as to make the relationship between cuts and
complementary perfect matchings a bijection (cf. Section 3.2);

2. orient the edges of the graph such that the in-degree of every node is odd;
3. construct the Boolean half-Kasteleyn matrixH from the oriented graph;
4. prefactor the triangulation edges (added in Step 1) out ofH .

Our Step 2 simplifies equivalent operations in previous constructions [6–8], Step 3 differs in that it
only sets unit (i.e., +1) entries in a Boolean matrix, and Step 4 can dramatically reduce the size ofH
for compact storage (as a bit matrix) and faster subsequent computations (Figure 4, center & right).

For a given set of disagreement edge costsEk, k = {1, 2, , . . . |E|} on that graph, we then build from
H and the Ek the skew-symmetric, real-valued Kasteleyn matrixK:

1. K := H;
2. ∀k ∈ {1, 2, , . . . |E|} : K2k−1,2k := K2k−1,2k + eEk ;
3. K := K −K>.

The partition function for perfect matchings is
√
|K| [6–8], so we factorK and use (7) to compute

the log partition function for (11) as lnZ = 1
2 ln |K| −

∑
k∈E Ek. Its derivative yields the marginal

probability of disagreement on the kth edge, and is computed via the inverse ofK:

P(k ∈ C) := −∂ lnZ
∂Ek

= 1− 1
2|K|

∂|K|
∂Ek

= 1− 1
2 tr
(
K−1 ∂K

∂Ek

)
= 1 +K−1

2k−1,2kK2k−1,2k.

(12)1 We only have space for a high-level overview here; see [12] for full details.



Figure 5: Boundary detection by maximum-margin training of planar Ising grids; from left to right:
Ising model (100× 100 grid), original image, noisy mask, and MAP segmentation of the Ising grid.

5 Maximum Likelihood vs. Maximum Margin CRF Parameter Estimation

Our algorithms can be applied to regularized parameter estimation in conditional random fields
(CRFs). In a linear planar Ising CRF, the disagreement costs Eij in (2) are computed as inner prod-
ucts between features (sufficient statistics) x of the modeled data and corresponding parameters θ
of the model, and (11) is used to model the conditional distribution P(y|x,θ). Maximum likelihood
(ML) parameter estimation then seeks to minimize wrt. θ the L2-regularized negative log likelihood

LML(θ) := 1
2 λ‖θ‖

2 − ln P(y∗|x,θ) = 1
2 λ‖θ‖

2 + E(y∗|x,θ) + lnZ(θ|x) (13)

of a given target labeling y∗,2 with regularization parameter λ. This is a smooth, convex objective
that can be optimized via batch or online implementations of gradient methods such as LBFGS [13];
the gradient of the log partition function in (13) is obtained by computing the marginals (12). For
maximum margin (MM) parameter estimation [14] we instead minimize

LMM(θ) := 1
2 λ‖θ‖

2 + E(y∗|x,θ)−min
y
M(y|y∗,x,θ) (14)

= 1
2 λ‖θ‖

2 + E(y∗|x,θ)− E(ŷ|x,θ) + d(ŷ|y∗),
where ŷ := argminy M(y|y∗,x,θ) is the worst margin violator, i.e., the state that minimizes the
margin energy (8). LMM(θ) is convex but non-smooth; we can minimize it via bundle methods such
as the BT bundle trust algorithm [15], making use of the convenient lower bound ∀θ : LMM(θ) ≥ 0.

To demonstrate the scalability of planar Ising models, we designed a simple boundary detection
task based on images from the GrabCut Ground Truth image segmentation database [16]. We took
100 × 100 pixel subregions of images that depicted a segmentation boundary, and corrupted the
segmentation mask with pink noise, produced by convolving a white noise image (all pixels i.i.d.
uniformly random) with a Gaussian density with one pixel standard deviation. We then employed
a planar Ising model to recover the original boundary — namely, a 100 × 100 square grid with
one additional edge pegged to a high energy, encoding prior knowledge that two opposing corners
of the grid depict different regions (Figure 5, left). The energy of the other edges was Eij :=
〈[1, |xi − xj |],θ〉, where xi is the pixel intensity at node i. We did not employ a bias node for this
task, and simply set λ = 1.

Note that this is a huge model: 10 000 nodes and 19 801 edges. Computing the partition function or
marginals would require inverting a Kasteleyn matrix with over 1.5 · 109 entries; minimizing (13) is
therefore computationally infeasible for us. Computing a ground state via the algorithm described
in Section 3, by contrast, takes only 0.3 seconds on an Apple MacBook with 2.2 GHz Intel Core2
Duo processor. We can therefore efficiently minimize (14) to obtain the MM parameter vector θ∗,
then compute the CRF’s MAP (i.e., ground) state for rapid prediction.

Figure 5 (right) shows how even for a signal-to-noise (S/N) ratio of 1:8, our approach is capable
of recovering the original segmentation boundary quite well, with only 0.67% of nodes mislabeled
here. For S/N ratios of 1:9 and lower the system was unable to locate the boundary; for S/N ratios
of 1:7 and higher we obtained perfect reconstruction. Further experiments are reported in [12].
On smaller grids, ML parameter estimation and marginals for prediction become computationally
feasible, if slower than the MM/MAP approach. This will allow direct comparison of ML vs. MM for
parameter estimation, and MAP vs. marginals for prediction, to our knowledge for the first time on
graphs intractable for the junction tree appproach, such as the grids often used in image processing.

2 For notational clarity we suppress here the fact that we are usually modeling a collection of data items.



6 Discussion

We have proposed an alternative algorithmic framework for efficient exact inference in binary graph-
ical models, which replaces the submodularity constraint of graph cut methods with a planarity con-
straint. Besides proving efficient and effective in first experiments, our approach opens up a number
of interesting research directions to be explored:

Our algorithms can all be extended to nonplanar graphs, at a cost exponential in the genus of the
embedding. We are currently developing these extensions, which may prove of great practical value
for graphs that are “almost” planar; examples include road networks (where edge crossings arise
from overpasses without on-ramps) and graphs describing the tertiary structure of proteins [17].
These algorithms also provide a foundation for the future development of efficient approximate
inference methods for nonplanar Ising models.

Our method for calculating the ground state (Section 3) actually works for nonplanar graphs whose
ground state does not contain frustrated non-contractible cycles. The QPBO graph cut method [18]
finds ground states that do not contain any frustrated cycles, and otherwise yields a partial labeling.
Can we likewise obtain a partial labeling of ground states with frustrated non-contractible cycles?

The existence of two distinct tractable frameworks for inference in binary graphical models implies
a yet more powerful hybrid: Consider a graph each of whose biconnected components is either
planar or submodular. As a whole, this graph may be neither planar nor submodular, yet efficient
exact inference in it is clearly possible by applying the appropriate framework to each component.
Can this hybrid approach be extended to cover less obvious situations?
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