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Abstract

This paper presents the first Rademacher complexity-based error bounds for non-
i.i.d. settings, a generalization of similar existing bounds derived for the i.i.d. case.
Our bounds hold in the scenario of dependent samples generated by a stationary
β-mixing process, which is commonly adopted in many previous studies of non-
i.i.d. settings. They benefit from the crucial advantages of Rademacher complexity
over other measures of the complexity of hypothesis classes. In particular, they are
data-dependent and measure the complexity of a class of hypotheses based on the
training sample. The empirical Rademacher complexity can be estimated from
such finite samples and lead to tighter generalization bounds. We also present
the first margin bounds for kernel-based classification in this non-i.i.d. setting and
briefly study their convergence.

1 Introduction

Most learning theory models such as the standard PAC learning framework [13] are based on the as-
sumption that sample points are independently and identically distributed (i.i.d.). The design of most
learning algorithms also relies on this key assumption. In practice, however, the i.i.d. assumption
often does not hold. Sample points have some temporal dependence that can affect the learning pro-
cess. This dependence may appear more clearly in times series prediction or when the samples are
drawn from a Markov chain, but various degrees of time-dependence can also affect other learning
problems.

A natural scenario for the analysis of non-i.i.d. processes in machine learning is that of observations
drawn from a stationary mixing sequence, a standard assumption adopted in most previous studies,
which implies a dependence between observations that diminishes with time [7,9,10,14,15]. The pi-
oneering work of Yu [15] led to VC-dimension bounds for stationaryβ-mixing sequences. Similarly,
Meir [9] gave bounds based on covering numbers for time series prediction [9]. Vidyasagar [14]
studied the extension of PAC learning algorithms to these non-i.i.d. scenarios and proved that under
some sub-additivity conditions, a PAC learning algorithm continues to be PAC for these settings.
Lozano et al. studied the convergence and consistency of regularized boosting under the same as-
sumptions [7]. Generalization bounds have also been derived for stable algorithms with weakly
dependent observations [10]. The consistency of learning under the more general scenario ofα-
mixing with non-stationary sequences has also been studied by Irle [3] and Steinwart et al. [12].

This paper gives data-dependent generalization bounds for stationaryβ-mixing sequences. Our
bounds are based on the notion of Rademacher complexity. They extend to the non-i.i.d. case the
Rademacher complexity bounds derived in the i.i.d. setting [2, 4, 5]. To the best of our knowledge,
these are the first Rademacher complexity bounds derived for non-i.i.d. processes. Our proofs make
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use of the so-calledindependent block techniquedue to Yu [15] and Bernstein and extend the appli-
cability of the notion of Rademacher complexity to non-i.i.d. cases.

Our generalization bounds benefit from all the advantageous properties of Rademacher complexity
as in the i.i.d. case. In particular, since the Rademacher complexity can be bounded in terms of
other complexity measures such as covering numbers and VC-dimension [1], it allows us to derive
generalization bounds in terms of these other complexity measures, and in fact improve on existing
bounds in terms of these other measures, e.g., VC-dimension. But, perhaps the most crucial advan-
tage of bounds based on the empirical Rademacher complexity is that they are data-dependent: they
measure the complexity of a class of hypotheses based on the training sample and thus better capture
the properties of the distribution that has generated the data. The empirical Rademacher complex-
ity can be estimated from finite samples and lead to tighter bounds. Furthermore, the Rademacher
complexity of large hypothesis sets such as kernel-based hypotheses, decision trees, convex neu-
ral networks, can sometimes be bounded in some specific ways [2]. For example, the Rademacher
complexity of kernel-based hypotheses can be bounded in terms of the trace of the kernel matrix.

In Section 2, we present the essential notion of a mixing process for the discussion of learning in
non-i.i.d. cases and define the learning scenario. Section 3 introduces the idea of independent blocks
and proves a bound on the expected deviation of the error from its empirical estimate. In Section 4,
we present our main Rademacher generalization bounds and discuss their properties.

2 Preliminaries

This section introduces the concepts needed to define the non-i.i.d. scenario we will consider, which
coincides with the assumptions made in previous studies [7,9,10,14,15].

2.1 Non-I.I.D. Distributions

The non-i.i.d. scenario we will consider is based onstationaryβ-mixing processes.

Definition 1 (Stationarity). A sequence of random variablesZ = {Zt}∞t=−∞ is said to besta-
tionary if for any t and non-negative integersm and k, the random vectors(Zt, . . . , Zt+m) and
(Zt+k, . . . , Zt+m+k) have the same distribution.

Thus, the indext or time, does not affect the distribution of a variableZt in a stationary sequence
(note that this does not imply independence).

Definition 2 (β-mixing). Let Z = {Zt}∞t=−∞ be a stationary sequence of random variables. For

any i, j ∈ Z ∪ {−∞, +∞}, let σj
i denote theσ-algebra generated by the random variablesZk,

i ≤ k ≤ j. Then, for any positive integerk, theβ-mixing coefficient of the stochastic processZ is
defined as

β(k) = sup
n

E
B∈σn

−∞

[
sup

A∈σ∞

n+k

∣∣∣Pr[A | B] − Pr[A]
∣∣∣
]
. (1)

Z is said to beβ-mixing if β(k) → 0. It is said to bealgebraicallyβ-mixing if there exist real
numbersβ0 > 0 andr > 0 such thatβ(k) ≤ β0/kr for all k, andexponentially mixingif there
exist real numbersβ0 andβ1 such thatβ(k) ≤ β0 exp(−β1k

r) for all k.

Thus, a sequence of random variables is mixing when the dependence of an event on those occurring
k units of time in the past weakens as a function ofk.

2.2 Rademacher Complexity

Our generalization bounds will be based on the following measure of the complexity of a class of
functions.

Definition 3 (Rademacher Complexity). Given a sampleS ∈ Xm, the empirical Rademacher
complexity of a set of real-valued functionsH defined over a setX is defined as follows:

R̂S(H) =
2

m
E
σ

[
sup
h∈H

∣∣∣
m∑

i=1

σih(xi)
∣∣∣
∣∣∣∣S = (x1, . . . , xm)

]
. (2)
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The expectation is taken overσ = (σ1, . . . , σn) whereσis are independent uniform random vari-
ables taking values in{−1, +1} called Rademacher random variables. The Rademacher complexity
of a hypothesis setH is defined as the expectation ofR̂S(H) over all samples of sizem:

Rm(H) = E
S

[
R̂S(H)

∣∣|S| = m
]
. (3)

The definition of the Rademacher complexity depends on the distribution according to which sam-
plesS of sizem are drawn, which in general is a dependentβ-mixing distributionD. In the rare
instances where a different distributioñD is considered, typically for an i.i.d. setting, we explicitly
indicate that distribution as a superscript:R

eD
m(H).

The Rademacher complexity measures the ability of a class of functions to fit noise. The empirical
Rademacher complexity has the added advantage that it is data-dependent and can be measured from
finite samples. This can lead to tighter bounds than those based on other measures of complexity
such as the VC-dimension [2,4,5].

We will denote byR̂S(h) the empirical average of a hypothesish : X → R and byR(h) its expec-
tation over a sampleS drawn according to a stationaryβ-mixing distribution:

R̂S(h) =
1

m

m∑

i=1

h(zi) R(h) = E
S
[R̂S(h)]. (4)

The following proposition shows that this expectation is independent of the size of the sampleS, as
in the i.i.d. case.

Proposition 1. For any sampleS of sizem drawn from a stationary distributionD, the following
holds:ES∼Dm [R̂S(h)] = Ez∼D[h(z)].

Proof. Let S = (x1, . . . , xm). By stationarity,Ezi∼D[h(zi)] = Ezj∼D[h(zj)] for all 1 ≤ i, j ≤ m,
thus, we can write:

E
S
[R̂S(h)] =

1

m

m∑

i=1

E
S
[h(zi)] =

1

m

m∑

i=1

E
zi

[h(zi)] = E
z
[h(z)].

3 Proof Components

Our proof makes use of McDiarmid’s inequality [8] to show that the empirical average closely
estimates its expectation. To derive a Rademacher generalization bound, we apply McDiarmid’s
inequality to the following random variable, which is the quantity we wish to bound:

Φ(S) = sup
h∈H

R(h) − R̂S(h). (5)

McDiarmid’s inequality bounds the deviation ofΦ from its mean, thus, we must also bound the
expectationE[Φ]. However, we immediately face two obstacles: both McDiarmid’s inequality and
the standard bound onE[Φ] hold only for samples drawn in an i.i.d. fashion. The main idea behind
our proof is to analyze the non-i.i.d. setting and transfer it to a close independent setting. The
following sections will describe in detail our solution to these problems.

3.1 Independent Blocks

We derive Rademacher generalization bounds for the case where training and test points are drawn
from a stationaryβ-mixing sequence. As in previous non-i.i.d. analyses [7, 9, 10, 15], we use a
technique transferring the original problem based on dependent points to one based on a sequence
of independent blocks. The method consists of first splitting a sequenceS into two subsequencesS0

andS1, each made ofµ blocks ofa consecutive points. Given a sequenceS = (z1, . . . , zm) with
m = 2aµ, S0 andS1 are defined as follows:

S0 = (Z1, Z2, . . . , Zµ), whereZi = (z(2i−1)+1, . . . , z(2i−1)+a), (6)

S1 = (Z
(1)
1 , Z

(1)
2 , . . . , Z(1)

µ ), whereZ
(1)
i = (z2i+1, . . . , z2i+a). (7)
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Instead of the original sequence of odd blocksS0, we will be working with a sequencẽS0 of
independentblocks of equal sizea to which standard i.i.d. techniques can be applied:S̃0 =

(Z̃1, Z̃2, . . . , Z̃µ) with mutually independent̃Zks, but, the points within each block̃Zk follow the
same distribution as inZk. As stated by the following result of Yu [15][Corollary 2.7], for a suffi-
ciently large spacinga between blocks and a sufficiently fast mixing distribution, the expectation of
a bounded measurable functionh is essentially unchanged if we work with̃S0 instead ofS0.
Corollary 1 ([15]). Leth be a measurable function bounded byM ≥ 0 defined over the blocksZk,
then the following holds:

| E
S0

[h] − E
eS0

[h]| ≤ (µ − 1)Mβ(a), (8)

whereES0
denotes the expectation with respect toS0, EeS0

the expectation with respect to thẽS0.

We denote byD̃ the distribution corresponding to the independent blocksZ̃k. Also, to work with
block sequences, we extend some of our definitions: we define the extensionha : Za → R of any
hypothesish∈H to a block-hypothesis byha(B)= 1

a

∑a
i=1 h(Zi) for any blockB=(z1, . . . , za)∈

Za, and defineHa as the set of all block-based hypothesesha generated fromh∈H .

It will also be useful to define the subsequenceSµ, which consists ofµ singleton points separated
by a gap of2a − 1 points. This can be thought of as the sequence constructed fromS0, or S1, by
selecting only thejth point from each block, for any fixedj ∈ {1, . . . , a}.

3.2 Concentration Inequality

McDiarmid’s inequality requires the sample to be i.i.d. Thus, we first show thatPr[Φ(S)] can be
bounded in terms of independent blocks and then apply McDiarmid’s inequality to the independent
blocks.
Lemma 1. Let H be a set of hypotheses bounded byM . LetS denote a sample, of sizem, drawn
according to a stationaryβ-mixing distribution and let̃S0 denote a sequence of independent blocks.
Then, for alla, µ, ǫ > 0 with 2µa = m andǫ > EeS0

[Φ(S̃0)], the following bound holds:

Pr
S

[Φ(S) > ǫ] ≤ 2 Pr
eS0

[Φ(S̃0) − E
eS0

[Φ(S̃0)] > ǫ′] + 2(µ − 1)β(a),

whereǫ′ = ǫ − EeS0
[Φ(S̃0)].

Proof. We first rewrite the left-hand side probability in terms of even and odd blocks and then apply
Corollary 1 as follows:

Pr
S

[Φ(S) > ǫ] = Pr
S

[sup
h

(R(h) − R̂S(h)) > ǫ]

= Pr
S

[
sup

h

(
R(h)− bRS0

(h)

2 +
R(h)− bRS1

(h)

2

)
> ǫ

]
(def. ofR̂S(h))

≤ Pr
S

[1

2

(
sup

h

(R(h) − R̂S0
(h)) + sup

h

(R(h) − R̂S1
(h))

)
> ǫ

]
(convexity ofsup)

= Pr
S

[Φ(S0) + Φ(S1) > 2ǫ] (def. ofΦ)

≤ Pr
S0

[Φ(S0) > ǫ] + Pr
S1

[Φ(S1) > ǫ] (union bound)

= 2 Pr
S0

[Φ(S0) > ǫ] (stationarity)

= 2 Pr
S0

[Φ(S0) − E
eS0

[Φ(S̃0)] > ǫ′]. (def. ofǫ′)

The second inequality holds by the union bound and the fact thatΦ(S0) or Φ(S1) must surpassǫ
for their sum to surpass2ǫ. To complete the proof, we apply Corollary 1 to the expectation of the
indicator variable of the event{Φ(S0) − EeS0

[Φ(S̃0)] > ǫ′}, which yields

2 Pr
S0

[Φ(S0) − E
eS0

[Φ(S̃0)] > ǫ′] ≤ 2 Pr
eS0

[Φ(S̃0) − E
eS0

[Φ(S̃0)] > ǫ′] + 2(µ − 1)β(a).

We can now apply McDiarmid’s inequality to the independent blocks of Lemma 1.
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Proposition 2. For the same assumptions as in Lemma 1, the following bound holds for allǫ >

EeS0
[Φ(S̃0)]:

Pr
S

[Φ(S) > ǫ] ≤ 2 exp

(−2µǫ′2

M2

)
+ 2(µ − 1)β(a),

whereǫ′ = ǫ − EeS0
[Φ(S̃0)].

Proof. To apply McDiarmid’s inequality, we view each block as an i.i.d.point with respect toha.
Φ(S̃0) can be written in terms ofha as:Φ(S̃0) = R(ha) − R̂eS0

(ha) = R(ha) − 1
µ

∑µ
k=1 ha(Z̃k).

Thus, changing a block̃Zk of the samplẽS0 can changeΦ(S̃0) by at most1
µ
|h(Z̃k)| ≤ M/µ. By

McDiarmid’s inequality, the following holds for anyǫ > 2(µ − 1)Mβ(a):

Pr
eS0

[Φ(S̃0) − E
eS0

[Φ(S̃0)] > ǫ′] ≤ exp

( −2ǫ′2∑µ
i=1(M/µ)2

)
= exp

(−2µǫ′2

M2

)
.

Plugging in the right-hand side in the statement of Lemma 1 proves the proposition.

3.3 Bound on the Expectation

Here, we give a bound onEeS0
[Φ(S0)] based on the Rademacher complexity, as in the i.i.d. case [2].

But, unlike the standard case, the proof requires an analysis in terms of independent blocks.

Lemma 2. The following inequality holds for the expectationEeS0
[Φ(S̃0)] defined in terms of an

independent block sequence:EeS0
[Φ(S̃0)] ≤ R

eD
µ (H).

Proof. By the convexity of the supremum function and Jensen’s inequality,EeS0
[Φ(S̃0)] can be

bounded in terms of empirical averages over two samples:

E
eS0

[Φ(S̃0)] = E
eS0

[ sup
h∈H

E
eS′

0

[R̂eS′

0

(h)] − R̂eS0
(h)] ≤ E

eS0, eS′

0

[ sup
h∈H

R̂eS′

0

(h) − R̂eS0
(h)].

We now proceed with a standard symmetrization argument with the independent blocks thought of
as i.i.d.points:

E
eS0

[Φ(S̃0)] ≤ E
eS0, eS′

0

[ sup
h∈H

R̂eS′

0

(h) − R̂eS0
(h)]

= E
eS0, eS′

0

[
sup

ha∈Ha

1

µ

µ∑

i=1

ha(Zi) − ha(Z ′
i)

]
(def. ofR̂)

= E
eS0, eS′

0
,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σi(ha(Zi) − ha(Z ′
i))

]
(Rad. var.’s)

≤ E
eS0, eS′

0
,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Zi)

]
+ E

eS0, eS′

0
,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Z ′
i)

]
(sub-add. ofsup)

=2 E
eS0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Zi)

]
.

In the second equality, we introduced the Rademacher random variablesσis. With probability1/2,
σi = 1 and the differenceha(Zi) − ha(Z ′

i) is left unchanged; and, with probability1/2, σi = −1
andZi andZ ′

i are permuted. Since the blocksZi, orZ ′
i are independent, taking the expectation over

σ leaves the expectation unchanged. The inequality follows from the sub-additivity of the supremum
function and the linearity of expectation. The final equality holds becauseS̃0 andS̃′

0 are identically
distributed due to the assumption of stationarity.

We now relate the Rademacher block sequence to a sequence over independent points. The right-
hand side of the inequality just presented can be rewritten as

2 E
eS0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Zi)

]
= E

eS0,σ

[
sup
h∈H

2

µ

µ∑

i=1

σi

1

a

a∑

j=1

h(z
(i)
j )

]
,
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wherez
(i)
j denotes thejth point of theith block. Forj ∈ [1, a], let S̃j

0 denote the i.i.d. sample
constructed from thejth point of each independent blockZi, i ∈ [1, µ]. By reversing the order of
summations and using the convexity of the supremum function, we obtain the following:

E
eS0

[Φ(S̃0)] ≤ E
eS0,σ

[
sup
h∈H

1

a

a∑

j=1

2

µ

µ∑

i=1

σih(z
(i)
j )

]
(reversing order of sums)

≤1

a

a∑

j=1

E
eS0,σ

[
sup
h∈H

2

µ

µ∑

i=1

σih(z
(i)
j )

]
(convexity ofsup)

=
1

a

a∑

j=1

E
eS

j
0
,σ

[
sup
h∈H

2

µ

µ∑

i=1

σih(z
(i)
j )

]
(marginalization)

= E
eSµ,σ

[
sup
h∈H

2

µ

µ∑

i=1
zi∈eSµ

σih(zi)

]
≤ R

eD
µ (H).

The first equality in this derivation is obtained by marginalizing over the variables that do not appear
within the inner sum. Then, the second equality holds since, by stationarity, the choice ofj does
not change the value of the expectation. The remaining quantity, modulo absolute values, is the
Rademacher complexity overµ independent points.

4 Non-i.i.d. Rademacher Generalization Bounds

4.1 General Bounds

This section presents and analyzes our main Rademacher complexity generalization bounds for sta-
tionaryβ-mixing sequences.

Theorem 1 (Rademacher complexity bound). Let H be a set of hypotheses bounded byM ≥ 0.
Then, for any sampleS of sizem drawn from a stationaryβ-mixing distribution, and for anyµ, a >
0 with 2µa = m andδ > 2(µ − 1)β(a), with probability at least1 − δ, the following inequality
holds for all hypothesesh ∈ H :

R(h) ≤ R̂S(h) + R
eD
µ (H) + M

√
log 2

δ′

2µ
,

whereδ′ = δ − 2(µ − 1)β(a).

Proof. Setting the right-hand side of Proposition 2 toδ and using Lemma 2 to boundEeS0
[Φ(S̃0)]

with the Rademacher complexityR eD
µ (H) shows the result.

As pointed out earlier, a key advantage of the Rademacher complexity is that it can be measured
from data, assuming that the computation of the minimal empirical error can be done effectively and
efficiently. In particular we can closely estimateR̂Sµ

(H), whereSµ is a subsample of the sampleS
drawn from aβ-mixing distribution, by considering random samples ofσ. The following theorem
gives a bound precisely with respect to the empirical Rademacher complexityR̂Sµ

.

Theorem 2 (Empirical Rademacher complexity bound). Under the same assumptions as in Theo-
rem 1, for anyµ, a > 0 with 2µa = m andδ > 4(µ − 1)β(a), with probability at least1 − δ, the
following inequality holds for all hypothesesh ∈ H :

R(h) ≤ R̂S(h) + R̂Sµ
(H) + 3M

√
log 4

δ′

2µ
,

whereδ′ = δ − 4(µ − 1)β(a).

6



Proof. To derive this result from Theorem 1, it suffices to boundR
eD
µ (H) in terms ofR̂Sµ

(H). The

application of Corollary 1 to the indicator variable of the event{R eD
µ (H) − R̂Sµ

(H) > ǫ} yields

Pr
(
R

eD
µ (H) − R̂Sµ

(H) > ǫ
)
≤ Pr

(
R

eD
µ (H) − R̂eSµ

(H) > ǫ
)

+ (µ − 1)β(2a − 1). (9)

Now, we can apply McDiarmid’s inequality toR eD
µ (H) − R̂eSµ

(H) which is defined over points

drawn in an i.i.d. fashion. Changing a point ofSµ can affectR̂eSµ
by at most(2M/µ), thus, McDi-

armid’s inequality gives

Pr
(
R

eD
µ (H) − R̂Sµ

(H) > ǫ
)
≤ exp

(−µǫ2

2M2

)
+ (µ − 1)β(2a − 1). (10)

Noteβ is a decreasing function, which impliesβ(2a − 1) ≤ β(a). Thus, with probability at least

1 − δ/2, Rµ(H) ≤ R̂Sµ
(H) + M

√
2 log 1

δ′

µ
, with δ′ = δ/2 − (µ − 1)β(a), a fortiori with δ′ =

δ/4 − (µ − 1)β(a). The result follows this inequality combined with the statement of Theorem 1
for a confidence parameterδ/2.

This theorem can be used to derive generalization bounds for avariety of hypothesis sets and learning
settings. In the next section, we present margin bounds for kernel-based classification.

4.2 Classification

Let X denote the input space,Y ={−1, +1} the target values in classification, andZ =X ×Y . For
any hypothesish and marginρ>0, let R̂ρ

S(h) denote the average amount by whichyh(x) deviates
from ρ over a sampleS: R̂ρ

S(h) = 1
m

∑m
i=1(ρ − yih(xi))+. Given a positive definite symmetric

kernelK : X×X → R, let K denote its Gram matrix for the sampleS andHK the kernel-based
hypothesis set{x 7→ ∑m

i=1 αiK(xi, x) : αKαT ≤ 1}, whereα ∈ R
m×1 denotes the column-vector

with componentsαi, i = 1, . . . , m.

Theorem 3(Margin bound). Letρ>0 andK be a positive definite symmetric kernel. Then, for any
µ, a>0 with 2µa = m andδ>4(µ− 1)β(a), with probability at least1 − δ over samplesS of size
m drawn from a stationaryβ-mixing distribution, the following inequality holds for all hypotheses
h∈HK :

Pr[yh(x) ≤ 0] ≤ 1

ρ
R̂ρ

S(h) +
4

µρ

√
Tr[K] + 3

√
log 4

δ′

2µ
,

whereδ′ = δ − 4(µ − 1)β(a).

Proof. For anyh∈H , let h denote the corresponding hypothesis defined overZ by: ∀z∈Z, h(z)=
−yh(x); andHK the hypothesis set{z ∈ Z 7→ h(z) : h ∈ HK}. Let L denote the loss function
associated to the margin losŝRρ

S(h). Then,Pr[yh(x) ≤ 0] ≤ Pr[(L ◦ h)(z) ≤ 0] = R(L ◦ h).
SinceL − 1 is 1/ρ-Lipschitz and(L − 1)(0)=0, by Talagrand’s lemma [6],̂RS((L − 1) ◦ HK)≤
2R̂S(HK)/ρ. The result is then obtained by applying Theorem 2 toR((L− 1) ◦h) = R(L ◦h)− 1

with R̂((L − 1) ◦ h) = R̂(L ◦ h) − 1, and using the known bound for the empirical Rademacher
complexity of kernel-based classifiers [2,11]:R̂S(HK)≤ 2

|S|

√
Tr[K].

In order to show that this bound converges, we must appropriately choose the parameterµ, or equiv-
alentlya, which will depend on the mixing parameterβ. In the case of algebraic mixing and using
the straightforward boundTr[K] ≤ mR2 for the kernel trace, whereR is the radius of the ball that
contains the data, the following corollary holds.

Corollary 2. With the same assumptions as in Theorem 3, ifβ is further algebraicallyβ-mixing,
β(a) = β0a

−r, then, with probability at least1 − δ, the following bound holds for all hypotheses
h∈HK :

Pr[yh(x) ≤ 0] ≤ 1

ρ
R̂ρ

S(h) +
8Rmγ1

ρ
+ 3mγ2

√
log

4

δ′
,

whereγ1 = 1
2

(
3

r+2 − 1
)
, γ2 = 1

2

(
3

2r+4 − 1
)

andδ′ = δ − 2β0m
γ1 .
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This bound is obtained by choosingµ = 1
2m

2r+1

2r+4 , which, modulo a multiplicative constant, is the
minimizer of (

√
m/µ + µβ(a)). Note that forr > 1 we haveγ1, γ2 < 0 and thus, it is clear that

the bound converges, while the actual rate will depend on the distribution parameterr. A tighter
estimate of the trace of the kernel matrix, possibly derived from data, would provide a better bound,
as would stronger mixing assumptions, e.g., exponential mixing. Finally, we note that asr → ∞
andβ0 → 0, that is as the dependence between points vanishes, the right-hand side of the bound
approachesO(R̂ρ

S +1/
√

m), which coincides with the asymptotic behavior in the i.i.d. case [2,4,5].

5 Conclusion

We presented the first Rademacher complexity error bounds for dependent samples generated by a
stationaryβ-mixing process, a generalization of similar existing bounds derived for the i.i.d. case.
We also gave the first margin bounds for kernel-based classification in this non-i.i.d. setting, includ-
ing explicit bounds for algebraicβ-mixing processes. Similar margin bounds can be obtained for
the regression setting by using Theorem 2 and the properties of the empirical Rademacher com-
plexity, as in the i.i.d. case. Many non-i.i.d. bounds based on other complexity measures such as
the VC-dimension or covering numbers can be retrieved from our framework. Our framework and
the bounds presented could serve as the basis for the design of regularization-based algorithms for
dependent samples generated by a stationaryβ-mixing process.
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