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Abstract

Gates are a new notation for representing mixture models and context-sensitive
independence in factor graphs. Factor graphs provide a natural representation for
message-passing algorithms, such as expectation propagation. However, message
passing in mixture models is not well captured by factor graphs unless the en-
tire mixture is represented by one factor, because the message equations have a
containment structure. Gates capture this containment structure graphically, al-
lowing both the independences and the message-passing equations for a model
to be readily visualized. Different variational approximations for mixture models
can be understood as different ways of drawing the gates in a model. We present
general equations for expectation propagation and variational message passing in
the presence of gates.

1 Introduction

Graphical models, such as Bayesian networks and factor graphs [1], are widely used to represent
and visualise fixed dependency relationships between random variables. Graphical models are also
commonly used as data structures for inference algorithms since they allow independencies between
variables to be exploited, leading to significant efficiency gains. However, there is no widely used
notation for representingcontext-specificdependencies, that is, dependencies which are present or
absent conditioned on the state of another variable in the graph [2]. Such a notation would be
necessary not only to represent and communicate context-specific dependencies, but also to be able
to exploit context-specific independence to achieve efficient and accurate inference.

A number of notations have been proposed for representing context-specific dependencies, includ-
ing: case factor diagrams [3], contingent Bayesian networks [4] and labeled graphs [5]. None of
these has been widely adopted, raising the question: what properties would a notation need, to
achieve widespread use? We believe it would need to be:

• simple to understand and use,

• flexible enough to represent context-specific independencies in real world problems,

• usable as a data structure to allow existing inference algorithms to exploit context-specific
independencies for efficiency and accuracy gains,

• usable in conjunction with existing representations, such as factor graphs.

This paper introduces thegate, a graphical notation for representing context-specific dependencies
that we believe achieves these desiderata. Section 2 describes what a gate is and shows how it can
be used to represent context-specific independencies in a number of example models. Section 3
motivates the use of gates for inference and section 4 expands on this by showing how gates can be
used within three standard inference algorithms: Expectation Propagation (EP), Variational Message
Passing (VMP) and Gibbs sampling. Section 5 shows how the placement of gates can tradeoff cost
versus accuracy of inference. Section 6 discusses the use of gates to implement inference algorithms.
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Figure 1: Gate examples (a) The dashed rectangle indicates a gate containing a Gaussian factor,
with selector variablec. (b) Two gates with different key values used to construct a mixture of two
Gaussians. (c) When multiple gates share a selector variable, they can be drawn touching with the
selector variable connected to only one of the gates. (d) A mixture ofN Gaussians constructed using
both a gate and a plate. For clarity, factors corresponding to variable priors have been omitted.

2 The Gate

A gate encloses part of a factor graph and switches it on or off depending on the state of a latent
selector variable. The gate is on when the selector variable has a particular value, called thekey,
and off for all other values. A gate allows context-specific independencies to be made explicit in the
graphical model: the dependencies represented by any factors inside the gate are present only in the
context of the selector variable having the key value. Mathematically, a gate represents raising the
contained factors to the power zero if the gate is off, or one if it is on:(

∏

i fi(x))
δ(c=key) wherec is

the selector variable. In diagrams, a gate is denoted by a dashed box labelled with the value ofkey,
with the selector variable connected to the box boundary. The label may be omitted ifc is boolean
andkey is true. Whilst the examples in this paper refer to factor graphs, gate notation can also be
used in both directed Bayesian networks and undirected graphs.

A simple example of a gate is shown in figure 1a. This example represents the term
N (x;m, p−1)δ(c=true) so that whenc is true the gate is on andx has a Gaussian distribution with
meanm and precisionp. Otherwise, the gate is off andx is uniformly distributed (since it is con-
nected to nothing).

By using several gates with different key values, multiple components of a mixture can be repre-
sented. Figure 1b shows how a mixture of two Gaussians can be represented using two gates with
different key values, true and false. Ifc is true,x will have distributionN (m1, p

−1
1 ), otherwisex

will have distributionN (m2, p
−1
2 ) . When multiple gates have the same selector variable but differ-

ent key values, they can be drawn as in figure 1c, with the gate rectangles touching and the selector
variable connected to only one of the gates. Notice that in this example, an integer selector variable
is used and the key values are the integers 1,2,3.

For large homogeneous mixtures, gates can be used in conjunction with plates [6]. For example,
figure 1d shows how a mixture ofN Gaussians can be represented by placing the gate, Gaussian
factor and mean/precision variables inside a plate, so that they are replicatedN times.

Gates may be nested inside each other, implying a conjunction of their conditions. To avoid ambi-
guities, gates cannot partially overlap, nor can a gate contain its own selector variable.
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Figure 2:Examples of models which use gates (a) A line process where neighboring pixel intensi-
ties are independent if an edge exists between them. (b) Testing for dependence between a genetic
variantgn and an observed quantitative traitxn. The selector variablec encodes whether the linear
dependency represented by the structure inside the gate is present or absent.

Gates can also contain variables, as well as factors. Such variables have the behaviour that, when
the gate is off, they revert to having a default value of false or zero, depending on the variable type.
Mathematically, a variable inside a gate represents a Dirac delta when the gate is off:δ(x)1−δ(c=key)

whereδ(x) is one only whenx has its default value. Figure 2b shows an example where variables
are contained in gates – this example is described in the following section.

2.1 Examples of models with gates

Figure 2a shows aline processfrom [7]. The use of gates makes clear the assumption that two neigh-
boring image pixelsxi andxj have a dependency between their intensity values, unless there is an
edgeeij between them. An opaque three-way factor would hide this context-specific independence.

Gates can also be used to test for independence. In this case the selector variable is connected only
to the gate, as shown in the example of figure 2b. This is a model used in functional genomics [8]
where the aim is to detect associations between a genetic variantgn and some quantitative traitxn

(such as height, weight, intelligence etc.) given data from a set ofN individuals. The binary selector
variablec switches on or off a linear model of the genetic variant’s contributionyn to the traitxn,
across all individuals. When the gate is off,yn reverts to the default value of0 and so the trait is
explained only by a Gaussian-distributed background modelzn. Inferring the posterior distribution
of c allows associations between the genetic variation and the trait to be detected.

3 How gates arise from message-passing on mixture models

Factor graph notation arises naturally when describing message passing algorithms, such as the
sum-product algorithm. Similarly, the gate notation arises naturally when considering the behavior
of message passing algorithms on mixture models.

As a motivating example, consider the mixture model of figure 1b when the precisionsp1 andp2 are
constant. Using 1 and 2 as keys instead oftrueandfalse, the joint distribution is:p(x, c,m1,m2) =
p(c)p(m1)p(m2)f(x|m1)

δ(c−1)f(x|m2)
δ(c−2) wheref is the Gaussian distribution. If we apply

mean-field approximation to this model, we obtain the following fixed-point system:

q(c = k) ∝ p(c = k) exp

(

∑

x

q(x)
∑

mk

q(mk) log f(x|mk)

)

(1)

q(mk) ∝ p(mk) exp

(

∑

x

q(x) log f(x|mk)

)q(c=k)

(2)

q(x) ∝
∏

k

exp

(

∑

mk

q(mk) log f(x|mk)

)q(c=k)

(3)
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These updates can be interpreted as message-passing combined with “blurring” (raising to a power
between 0 and 1). For example, the update forq(mk) can be interpreted as (message from
prior)×(blurred message fromf ). The update forq(x) can be interpreted as (blurred message from
m1)×(blurred message fromm2). Blurring occurs whenever a message is sent from a factor hav-
ing a random exponent to a factor without that exponent. Thus the exponent acts like a container,
affecting all messages that pass out of it. Hence, we use a graphical notation where a gate is a con-
tainer, holding all the factors switched by the gate. Graphically, the blurring operation then happens
whenever a message leaves a gate. Messages passed into a gate and within a gate are unchanged.

This graphical property holds true for other algorithms as well. For example, EP on this model will
blur the message fromf to mk and fromf to x, where “blurring” means a linear combination with
the1 function followed by KL-projection.

3.1 Why gates are not equivalent to ‘pick’ factors

It is possible to rewrite this model so that thef factors do not have exponents, and therefore
would not be in gates. However, this will necessarily change the approximation. This is be-
cause the blurring effect caused by exponents operates in one direction only, while the blur-
ring effect caused by intermediate factors is always bidirectional. For example, suppose we
try to write the model using a factorpick(x|c, h1, h2) = δ(x − h1)

δ(c−1)δ(x − h2)
δ(c−2).

We can introduce latent variables(h1, h2) so that the model becomesp(x, c,m1,m2, h1, h2) =
p(c)p(m1)p(m2)f(h1|m1)f(h2|m2)pick(x|c, h1, h2). The pick factor will correctly blur the
downward messages from(m1,m2) to x. However, thepick factor will also blur the message
upward fromx before it reaches the factorf , which is incorrect.

Another approach is to pick from(m1,m2) before reaching the factorf , so that the model becomes
p(x, c,m1,m2,m) = p(c)p(m1)p(m2)f(x|m)pick(m|c,m1,m2). In this case, the message from
x to f is not blurred, and the upward messages to(m1,m2) are blurred, which is correct. However,
the downward messages from(m1,m2) to f are blurred before reachingf , which is incorrect.

3.2 Variables inside gates

Now consider an example where it is natural to consider a variable to be inside a gate. The model
is: p(x, c,m1,m2, y) = p(c)p(m1)p(m2)

∏

k (f1(x|y)f2(y|mk))
δ(c−k). If we use a structured

variational approximation wherey is conditioned onc, then the fixed-point equations are [9]:

q(c = k) ∝ p(c = k) exp

(

∑

x

q(x)
∑

y

q(y|c = k) log f1(x|y)

)

exp

(

∑

y

q(y|c = k)
∑

mk

q(mk) log f2(y|mk)

)

exp

(

−
∑

y

q(y|c = k) log q(y|c = k)

)

(4)

q(y|c = k) ∝ exp

(

∑

x

q(x) log f1(x|y)

)

exp

(

∑

mk

q(mk) log f2(y|mk)

)

(5)

q(mk) ∝ p(mk) exp

(

∑

y

q(y|c = k) log f2(y|mk)

)q(c=k)

(6)

q(x) ∝
∏

k

exp

(

∑

y

q(y|c = k) log f1(x|y)

)q(c=k)

(7)

Notice that only the messages tox andmk are blurred; the messages to and fromy are not blurred.
Thus we can think ofy as sitting inside the gate. The message from the gate toc can be interpreted
as the evidence for the submodel containingf1, f2, andy.
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4 Inference with gates

In the previous section, we explained why the gate notation arises when performing message passing
in some example mixture models. In this section, we describe how gate notation can be generally
incorporated into Variational Message Passing [10], Expectation Propagation [11] and Gibbs Sam-
pling [7] to allow each of these algorithms to support context-specific independence.

For reference, Table 1 shows the messages needed to apply standard EP or VMP using a fully factor-
ized approximationq(x) =

∏

i q(xi). Notice that VMP uses different messages to and from deter-
ministic factors, that is, factors which have the formfa(xi,xa\i) = δ(xi − h(xa\i)) wherexi is the
derived child variable. Different VMP messages are also used to and from such deterministic derived
variables. For both algorithms the marginal distributions are obtained asq(xi) =

∏

a ma→i(xi), ex-
cept for derived child variables in VMP whereq(xi) = mpar→i(xi). The (approximate) model
evidence is obtained by a product of contributions, one from each variable and each factor. Table 1
shows these contributions for each algorithm, with the exception that deterministic factors and their
derived variables contribute1 under VMP.

When performing inference on models with gates, it is useful to employ anormalised formof gate
model. In this form, variables inside a gate have no links to factors outside the gate, and a variable
outside a gate links to at most one factor inside the gate. Both of these requirements can be achieved
by splitting a variable into a copy inside and a copy outside the gate, connected by an equality factor
inside the gate. A factor inside a gate should not connect to the selector of the gate; it should be
given the key value instead. In addition, gates should bebalancedby ensuring that if a variable links

Alg. Type Variable to factor Factor to variable

mi→a(xi) ma→i(xi)

EP Any
∏

b6=a

mb→i(xi)
proj

[

∑

xa\xi

(

∏

j∈a mj→a(xj)
)

fa(xa)
]

mi→a(xi)

VMP Stochastic
∏

a∋i

ma→i(xi) exp





∑

xa\xi





∏

j 6=i

mj→a(xj)



 log fa(xa)





Det. to parent
∏

b6=a

mb→i(xi)
exp





∑

xa\(i,ch)





∏

k 6=(i,ch)

mk→a(xk)



 log f̂a(xa)





wheref̂a(xa) =
∑

xch
mch→a(xch)fa(xa)

Det. to child mpar→i(xi) proj





∑

xa\xi





∏

j 6=i

mj→a(xj)



 fa(xa)





Alg. Evidence for variable xi Evidence for factor fa

EP si =
∑

xi

∏

a ma→i(xi) sa =
∑

xa
(
∏

j∈a
mj→a(xj))fa(xa)

∑

xa

∏

j∈a
mj→a(xj)ma→j(xj)

VMP si = exp(−
∑

xi
q(xi) log q(xi)) sa = exp

(

∑

xa

(

∏

j∈a mj→a(xj)
)

log fa(xa)
)

Table 1:Messages and evidence computations for EP and VMP The top part of the table shows
messages between a variablexi and a factorfa. The notationj ∈ a refers to all neighbors of
the factor,j 6= i is all neighbors excepti, par is the parent factor of a derived variable, andch
is the child variable of a deterministic factor. Theproj[p] operator returns an exponential-family
distribution whose sufficient statistics matchp. The bottom part of the table shows the evidence
contributions for variables and factors in each algorithm.

5



to a factor in a gate with selector variablec, the variable also links to factors in gates keyed on all
other values of the selector variablec. This can be achieved by connecting the variable to uniform
factors in gates for any missing values ofc. After balancing, each gate is part of agate block– a set
of gates activated by different values of the same condition variable. See [12] for details.

4.1 Variational Message Passing with gates

VMP can be augmented to run on a gate model in normalised form, by changing only the messages
out of the gate and by introducing messages from the gate to the selector variable. Messages sent
between nodes inside the gate and messages into the gate are unchanged from standard VMP. The
variational distributions for variables inside gates are implicitly conditioned on the gate selector, as
at the end of section 3. In the following, an individual gate is denotedg, its selector variablec and
its keykg. See [12] for the derivations.

The messages out of a gate are modified as follows:

• The message from a factorfa inside a gateg with selectorc to a variable outsideg is the
usual VMP message, raised to the powermc→g(c = kg), except in the following case.

• Where a variablexi is the child of a number of deterministic factors inside a gate blockG
with selector variablec, the variable is treated as derived and the message is a moment-
matched average of the individual VMP messages. Then the message toxi is

mG→i(xi) = proj





∑

g∈G

mc→g(c = kg)mg→i(xi)



 (8)

wheremg→i(xi) is the usual VMP message from the unique parent factor ing and proj is
a moment-matching projection onto the exponential family.

The message from a gateg to its selector variablec is a product of evidence messages from the
contained nodes:

mg→c(c = kg) =
∏

a∈g

sa

∏

i∈g

si, mg→c(c 6= kg) = 1 (9)

wheresa andsi are the VMP evidence messages from a factor and variable, respectively (Table 1).
The set of contained factors includes any contained gates, which are treated as single factors by the
containing gate. Deterministic variables and factors send evidence messages of1, except where a
deterministic factorfa parents a variablexi outsideg. Instead of sendingsa = 1, the factor sends:

sa = exp

(

∑

xi

ma→i(xi) log mi→a(xi)

)

(10)

The child variablexi outside the gate also has a different evidence message:

si = exp

(

−
∑

xi

mG→i(xi) log mi→a(xi)

)

(11)

wheremG→i is the message from the parents (8) andmi→a is the message fromxi to any parent.
To allow for nested gates, we must also define an evidence message for a gate:

sg =





∏

a∈g

sa

∏

i∈g

si





q(c=kg)

(12)

4.2 Expectation Propagation with gates

As with VMP, EP can support gate models in normalised form by making small modifications to the
message-passing rules. Once again, messages between nodes inside a gate are unchanged. Recall
that, following gate balancing, all gates are part of gate blocks. In the following, an individual gate
is denotedg, its selector variablec and its keykg. See [12] for the derivations.
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The messages into a gate are as follows:

• The message from a selector variable to each gate in a gate blockG is the same. It is the
product of all messages into the variable excluding messages from gates inG.

• The message from a variable to each neighboring factor inside a gate blockG is the same.
It is product of all messages into the variable excluding messages from any factor inG.

Let nbrs(g) be the set of variables outside ofg connected to some factor ing. Each gate computes
an intermediate evidence-like quantitysg defined as:

sg =
∏

a∈g

sa

∏

i∈g

si

∏

i∈nbrs(g)

sig wheresig =
∑

xi

mi→g(xi)mg→i(xi) (13)

wheremg→i is the usual EP message toxi from its (unique) neighboring factor ing. The third term
is used to cancel the denominators ofsa (see definition in Table 1). Given this quantity, the messages
out of a gate may now be specified:

• The combined message from all factors in a gate blockG with selector variablec to a
variablexi is the weighted average of the messages sent by each factor:

mG→i(xi) =
proj

[

∑

g∈G mc→g(c = kg)sgs
−1
ig mg→i(xi)mi→g(xi)

]

mi→g(xi)
(14)

(Notemi→g(xi) is the same for each gateg.)

• The message from a gate blockG to its selector variablec is:

mG→c(c = kg) =
sg

∑

g∈G sg

(15)

Finally, the evidence contribution of a gate block with selectorc is:

sc =

∑

g∈G sg
∏

i∈nbrs(g)

∑

xi
mi→g(xi)mG→i(xi)

(16)

4.3 Gibbs sampling with gates

Gibbs sampling can easily extend to gates which contain only factors. Gates containing variables
require a facility for computing the evidence of a submodel, which Gibbs sampling does not provide.
Note also that Gibbs sampling does not support deterministic factors. Thus the graph should only
be normalised up to these constraints. The algorithm starts by setting the variables to initial values
and sending these values to their neighboring factors. Then for each variablexi in turn:

1. Query each neighboring factor for a conditional distribution forxi. If the factor is in a gate
that is currently off, replace with a uniform distribution. For a gateg with selectorxi, the
conditional distribution is proportional tos for the key value and1 otherwise, wheres is
the product of all factors ing.

2. Multiply the distributions from neighboring factors together to get the variable’s conditional
distribution. Sample a new value for the variable from its conditional distribution.

5 Enlarging gates to increase approximation accuracy

Gates induce a structured approximation as in [9], so by moving nodes inside or outside of gates,
you can trade off inference accuracy versus cost. Because one gate of a gate block is always on, any
node (variable or factor) outside a gate blockG can be equivalently placed inside each gate ofG.
This increases accuracy since a separate set of messages will be maintained for each case, but it may
increase the cost.

For example, Archambeau and Verleysen [14] suggested a structured approximation for Student-t
mixture models, instead of the factorised approximation of [13]. Their modification can be viewed
as a gate enlargement (figure 3). By enlarging the gate block to includeunm, the blurring between
the multiplication factor andunm is removed, increasing accuracy. This comes at no additional cost
sinceunm is only used by one gate and therefore only one message is needed pern andm.
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Figure 3:Student-t mixture model using gates (a) Model from [13] (b) Structured approximation
suggested by [14], which can be interpreted as enlarging the gate.

6 Discussion and conclusions

Gates have proven very useful to us when implementing a library for inference in graphical mod-
els. By using gates, the library allows mixtures of arbitrary sub-models, such as mixtures of fac-
tor analysers. Gates are also used for computing the evidence for a model, by placing the entire
model in a gate with binary selector variableb. The log evidence is then the log-odds ofb, that is,
log P (b = true) − log P (b = false). Similarly, gates are used for model comparison by placing
each model in a different gate of a gate block. The marginal over the selector gives the posterior
distribution over models.

Graphical models not only provide a visual way to represent a probabilistic model, but they can
also be used as a data structure for performing inference on that model. We have shown that gates
are similarly effective both as a graphical modelling notation and as a construct within an inference
algorithm.
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