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Theorem 3 Any algorithm suffers a regret larger thancn
β

1+β for some small enough constantc
depending onc2 andβ.

Proof of Theorem 3. An elementary event of the probability space is characterized by the infinite
sequenceI1, I2, . . . of arms and by the infinite sequences of rewards corresponding to each of the
arm: XI1,1,XI1,2, . . . ,XI2,1,XI2,1, . . . , and so on. ArmI1 is the first arm drawn,I2 6= I1 is the
second one, and so on. Let0 < δ < δ′ < µ∗. Let K∗ denote the smallest` such thatµI`

> µ∗ − δ.
Let K̄ be the number of arms in{I1, . . . , IK∗−1} with expected reward smaller than or equal to
µ∗ − δ′. An algorithm will request a number of armsK, which is a random variable (possibly
depending on the obtained rewards). Letµ̂ be the expected reward of the best arm in{I1, . . . , IK}.
Let κ > 0 a parameter to be chosen. We have

Rn = Rn1µ̂≤µ∗−δ + Rn1µ̂>µ∗−δ

≥ nδ1µ̂≤µ∗−δ + K̄δ′1µ̂>µ∗−δ

≥ nδ1µ̂≤µ∗−δ + κδ′1µ̂>µ∗−δ;K̄≥κ,

where the first inequality uses thatµ̂ > µ∗ − δ implies that the armsI1, . . . , IK∗ have been at least
tried once. By taking expectations on both sides and takingκ = nδ/δ′, we get

ERn ≥ nδP(µ̂ ≤ µ∗ − δ) + κδ′
(

P(µ̂ > µ∗ − δ) − P(K̄ < κ)
)

= δ′κP(K̄ ≥ κ).

Now the random variablēK follows a geometric distribution with parameterp = P(µ>µ∗−δ)
P(µ/∈(µ∗−δ′,µ∗−δ]) .

So we haveERn ≥ δ′κ(1 − p)κ. Taking δ = δ′n−1/(β+1) andδ′ a constant value in(0, µ∗) (for

instance(2c2)
−1/β to ensurep ≤ 2c2δ

β), we haveκ = n
β

1+β andp is of order1/κ and obtain the
desired result.

Theorem 4 For any horizon timen ≥ 2, the expected regret of the UCB-AIR algorithm satisfies

ERn ≤
{

C(log n)2
√

n if β < 1 andµ∗ < 1

C(log n)2n
β

1+β otherwise, i.e. ifµ∗ = 1 or β ≥ 1
(1)

with C a constant depending only onc1, c2 andβ.
∗The major part of this work was completed during the research internshipat Certis and INRIA SequeL.
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Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We recallthat Kn

denote the number of arms played up to timen. Let I1, . . . ,IKn
denote the selected arms:I1 is the

first arm drawn,I2 the second, and so on. LetSk denote the time armk being played for the first
time. 1 = SI1

< SI2
< · · · < SIKn

. Since armsI1, . . . , IKn
progressively enter in competition,

Lemma 1 no longer holds but an easy adaptation of its proof shows that fork ∈ {I1, . . . , IKn
},

E(Tk(n)|I1, . . . , IKn
) ≤ u +

∑n
t=u+1

∑t
s=u P

(

Bk,s,t > τ
)

+ Ωk (2)

with

Ωk =

n
∑

t=u+1

∏

k′ 6=k ,Sk′≤t

P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ
)

.

As in the proof of Theorem 1, since the exploration sequence satisfiesEt ≥ 2 log(10 log t), we have
P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ

)

≤ 1/2 for armsk′ such thatµk′ ≥ τ . Consequently, lettingNτ,k,t

denote the cardinal of the set{k′ : k′ 6= k, µk′ ≥ τ, Sk′ ≤ t}, we have

Ωk ≤ ∑n
t=1 2−Nτ,k,t .

Let us first consider the caseµ∗ = 1 or β ≥ 1. In the case of UCB-AIR,SIj
is the smallest integer

strictly larger than(j − 1)(β+1)/β . To shorten notation, let us writeSj for SIj
. According to the

arm-increasing rule (try a new arm ifKt−1 < tβ/(β+1)), [Sj , Sj+1) is the time interval in which the
competing arms areI1, I2, . . . , Ij .

As in the proof of Theorem 1, we considerτ = µ∗ − ∆k/2. We have

E(ΩI`
|I` = k) ≤ ∑Kn

j=1

∑Sj+1−1
t=Sj

E

(

2−Nτ,k,Sj |I` = k
)

=
∑Kn

j=1(Sj+1 − Sj)E
(

2−Nτ,k,Sj |I` = k
)

≤ ∑Kn

j=1(Sj+1 − Sj)E
(

2−Nτ,∞,Sj−1

)

.

(3)

SinceNτ,∞,Sj−1
follows a binomial distribution with parameterj − 1 andP(µ ≥ τ), we have

E

(

2−Nτ,∞,Sj−1

)

= (1 − P(µ ≥ τ)/2)j−1,

and
∑Kn

j=1(Sj+1 − Sj)E
(

2−Nτ,∞,Sj−1

)

=
∑Kn

j=1

(

Sj+1 − Sj

)

(1 − P(µ ≥ τ)/2)j−1

≤ ∑Kn

j=1(1 + β+1
β j

1
β )(1 − c̃[2(µ∗ − τ)]β)j−1,

(4)

wherec̃ = c12
−1−β . Plugging (4) into (3), we obtain

E(∆I`
ΩI`

) ≤ 2β+1
β

∑Kn

j=1 j
1
β E

(

∆I`

[

1 − c̃∆β
I`

]j−1)
.

Now this last expectation can be bounded by the same computations as forEχ(∆1) in the proof of
Theorem 1. We have, for appropriate positive constantsC1 andC2 depending onc1 andβ,

E(∆I`
ΩI`

) ≤ C1

∑Kn

j=1 j
1
β j−

1
β

log j
j ≤ C2(log Kn)2 . (5)

Using (2) andERn =
∑Kn

`=1 E(∆I`
ΩI`

), we obtain

ERn ≤ KnE

{

[

50
(

V (∆1)
∆1

+ 1
)

log n
]

∧ (n∆1) + C2(log Kn)2
}

, (6)

from which Theorem 4 follows for the caseµ∗ = 1 or β ≥ 1. For the caseβ < 1 andµ∗ < 1,
replacing β

β+1 by β
2 leads to a similar version of (5) as

E(∆I`
ΩI`

) ≤ C1

∑Kn

j=1 j
2
β
−1j−

1
β

log j
j ≤ C2(log Kn)K

1−β
β

n ,

which gives the desired convergence rate sinceKn is of ordernβ/2.
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