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Abstract

In this paper we introduce the MeanNN approach for estimation of main infor-
mation theoretic measures such as differential entropy, mutual information and
divergence. As opposed to other nonparametric approaches the MeanNN results
in smooth differentiable functions of the data samples with clear geometrical inter-
pretation. Then we apply the proposed estimators to the ICA problem and obtain
a smooth expression for the mutual information that can be analytically optimized
by gradient descent methods. The improved performance of the proposed ICA
algorithm is demonstrated on several test examples in comparison with state-of-
the-art techniques.

1 Introduction

Independent component analysis (ICA) is the problem of recovering latent random vector from
observations of unknown linear functions of that vector. Assume a dataS ∈ Rd is generated viad
independent sources. We observeX = AS whereA is an unknown square matrix called the mixing
matrix. We are given repeated observation dataset{x1, ..., xn} and our goal is to recover the linear
transformationA and the sourcess1, ..., sn that generated our dataxi = Asi.

Given the minimal statement of the problem, it has been shown [6] that one can recover the origi-
nal sources up to a scaling and a permutation provided that at most one of the underlying sources is
Gaussian and the rest are non-Gaussian. Upon pre-whitening the observed data, the problem reduces
to a search over rotation matrices in order to recover the source and mixing matrix in the sense de-
scribed above [10]. We will assume henceforth that such pre-processing has been done. Specifying
distributions for the components ofX, one obtains a parametric model that can be estimated via
maximum likelihood [3, 4]. Working withW = A−1 as the parametrization, one readily obtains
a gradient or fixed-point algorithm that yields an estimateŴ and provides estimates of the latent
components viâS = ŴX [10].

In practical applications the distributions of thed components ofX are unknown. Therefore it is
preferable to consider the ICA model as a semiparametric model in which the distributions of the
components ofX are left unspecified. The problem is then, obviously, to find a suitablecontrast
function, i.e. a target function to be minimized in order to estimate the ICA model. The earliest
ICA algorithms were based on contrast functions defined in terms of expectations of a single fixed
nonlinear function, chosen in ad-hoc manner [5]. More sophisticated algorithms have been obtained
by careful choice of a single fixed nonlinear function, such that the expectations of this function
yield a robust approximation to the mutual information [9].

Maximizing the likelihood in the semiparametric ICA model is essentially equivalent to minimizing
the mutual information between the components of the estimateŜ = ŴX [4]. The usage of the
mutual information as a contrast function to be minimized in estimating the ICA model is well
motivated, quite apart from the link to maximum likelihood [6].
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EstimatingMI from a given finite sample set is difficult. Several modern approaches rely onk-
nearest neighbor estimates of entropy and mutual information [12, 16]. Recently the Vasicek esti-
mator [17] for the differential entropy of 1D random variables, based onk-nearest neighbors statis-
tics, was applied to ICA [8, 13]. In addition ICA was studied by another recently introduced MI
estimator [16]. However, the derivative of the estimators that are based on order statistics can hardly
be computed and therefore the optimization of such numerical criteria can not be based on gradient
techniques. Also the result numerical criteria tend to have a non-smooth dependency on sample
values. The optimization therefore should involve computation of contrast function on a whole grid
of searched parameters.

In addition, such estimators do not utilize optimally the whole amount of data included in the sam-
ples of random vectors. Therefore they require significant artificial enlargement of data sets by a
technique called data augmentation [13] that replaces each data point in sample with R-tuple (R is
usually 30) of points given by an statistical procedure with ad-hoc parameters. An alternative is the
Fourier filtering of the estimated values of the evaluated MI estimators [16].

In the present paper we propose new smooth estimators for the differential entropy, the mutual in-
formation and the divergence. The estimators are obtained by a novel approach averagingk-nearest
neighbor statistics for the all possible values of order statisticsk. The estimators are smooth, their
derivatives may be easily analytically calculated thus enabling fast gradient optimization techniques.
They fully utilize the amount of data comprised into a random variable sample. The estimators pro-
vide a novel geometrical interpretation for the entropy. When applied to ICA problem, the proposed
estimator leads to the most precise results for many distributions known at present.

The rest of the paper is organized as follows: Section 2 reviews thekNN approach for the entropy
and divergence estimation, Section 3 introduces the mean estimator for the differential entropy,
the mutual information and the divergence. Section 4 describes the application of the proposed
estimators to the ICA problem and Section 5 describes conducted numerical experiments.

2 kNN Estimators for the Differential Entropy

We review the nearest neighbor technique for the Shannon entropy estimation. The differential
entropy ofX is defined as:

H(X) = −
∫

f(x) log f(x)dx (1)

We describe the derivation of the Shannon differential entropy estimate of [11, 18]. Our aim is
to estimateH(X) from a random sample (x1, ..., xn) of n random realizations of ad-dimensional
random variableX with unknown density functionf(x). The entropy is the average of− log f(x).
If one had unbiased estimators forlog f(xi), one would arrive to an unbiased estimator for the
entropy. We will estimatelog f(xi) by considering the probability density functionPik(ε) for the
distance betweenxi and itsk-th nearest neighbor (the probability is computed over the positions
of all othern − 1 points, withxi kept fixed). The probabilityPik(ε)dε is equal to the chance that
there is one point within distancer ∈ [ε, ε + dε] from xi, that there arek−1 other points at smaller
distances, and that the remainingn−k−1 points have larger distances fromxi. Denote the mass of
the ε-ball centered atxi by pi(ε), i.e. pi(ε) =

∫
‖x−xi‖<ε

f(x)dx. Applying the trinomial formula
we obtain:

Pik(ε) =
(n−1)!

1!(k−1)!(n−k−1)!
dpi(ε)

dε
pk−1

i (1− pi)n−k−1 (2)

It can be easily verified that indeed
∫

Pik(ε)dε = 1. Hence, the expected value of the function
log pi(ε) according to the distributionPik(ε) is:

EPik(ε)(log pi(ε)) =
∫ ∞

0

Pik(ε) log pi(ε)dε = k

(
n−1

k

) ∫ 1

0

pk−1(1− p)n−k−1 log p dp (3)

= ψ(k)− ψ(n)
whereψ(x) is the digamma function (the logarithmic derivative of the gamma function). To verify
the last equality, differentiate the identity

∫ 1

0
xa−1(1−x)b−1 = Γ(a)Γ(b)/Γ(a + b) with respect to
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theparametera and recall thatΓ′(x) = ψ(x)Γ(x). The expectation is taken over the positions of
all othern− 1 points, withxi kept fixed. Assuming thatf(x) is almost constant in the entireε-ball
aroundxi, we obtain:

pi(ε) ≈ cdε
df(xi). (4)

whered is the dimension ofx andcd is the volume of thed-dimensional unit ball (cd = πd/2/Γ(1+
d/2) for Euclidean norm). Substituting Eq. (4) into Eq. (3), we obtain:

− log f(xi) ≈ ψ(n)− ψ(k) + log(cd) + dE(log(ε)) (5)

which finally leads to the unbiasedkNN estimator for the differential entropy [11]:

Hk(X) = ψ(n)− ψ(k) + log(cd) +
d

n

n∑

i=1

log εi (6)

whereεi is the distance fromxi to its k-th nearest neighbor. An alternative proof of the asymptotic
unbiasedness and consistency of thekNN estimator is found at [15].

A similar approach can be used to obtain akNN estimator for the Kullback-Leibler divergence [19].
The estimator works as follows. Let{x1, ..., xn} and{y1, ..., ym} be i.i.d. d-dimensional samples
drawn independently from the densitiesp andq respectively. By definition the divergence is given
by:

D(p‖q) =
∫

p(x) log
p(x)
q(x)

(7)

Thedistance ofxi to its nearest neighbor in{xj}j 6=i is defined as

ρn(i) = min
j 6=i

d(xi, xj) (8)

We also define the distance ofxi to its nearest neighbor in{yj}
νn(i) = min

j=1,...,m
d(xi, yj) (9)

Then the estimator of [19] is given by

D̂n,m =
d

n

n∑

i=1

log
νm(i)
ρn(i)

+ log
m

n− 1
(10)

Theauthors established asymptotic unbiasedness and mean-square consistency of the estimator (10).
The same proofs could be applied to obtaink-nearest neighbor version of the estimator:

D̂k
n,m =

d

n

n∑

i=1

log
vk

m(i)
ρk

n(i)
+ log

m

n− 1
(11)

Beingnon-parametric, thekNN estimators (6, 11) rely on the order statistics. This makes the ana-
lytical calculation of the gradient hardly possible. Also it leads to a certain lack of smoothness of the
estimator value as a function of the sample coordinates. One also should mention that finding the
k-nearest neighbor is a computationally intensive problem. It becomes necessarily to use involved
approximate nearest neighbor techniques for large data sets.

3 The MeanNN Entropy Estimator

We propose a novel approach for the entropy estimation as a function of sample coordinates. It is
based on the fact that thekNN estimator (6) is valid for everyk. Therefore the differential entropy
can be also extracted from a mean of several estimators corresponding to different values ofk. Next
we consider all the possible values of order statisticsk from 1 to n− 1:

Hmean =
1

n− 1

n−1∑

k=1

Hk = log(cd) + ψ(n) +
1

n− 1

n−1∑

k=1

(−ψ(k) +
d

n

n∑

i=1

log εi,k) (12)

whereεi,k is thek-th nearest neighbor ofxi. Consider the double-summation last term in Eq. (12).
Exchanging the order of summation, the last sum adds for each sample pointxi the sum of log of
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its distances to all its nearest neighbors in the sample. It is of course equivalent to the sum of log of
its distances to all other points in the sample set. Hence the mean estimator (12) for the differential
entropy can be written as:

Hmean = const+
d

n(n− 1)

∑

i 6=j

log ‖xi − xj‖ (13)

wherethe constant depends just on the sample size and dimensionality. We dub this estimator, the
MeanNNestimator for differential entropy. It follows that the differential entropy (approximation)
has a clear geometric meaning. It is proportional to log of the products of distances between each
two points in a random i.i.d. sample. It is an intuitive observation since a higher entropy would
lead to a larger scattering of the samples thus pairwise distances would grow resulting in a larger
product of all distances. Moreover, the MeanNN estimator (13) is a smooth function of the sample
coordinates. Its gradient can be easily found. The asymptotic unbiasedness and consistency of the
estimator follow from the same properties of thekNN estimator (6). Obviously, the same method
gives the mean estimator for the mutual information by usage of well known equality connecting the
mutual information and marginal and joint entropies:

Imean(X; Y ) = Hmean(X) + Hmean(Y )−Hmean(X,Y ) (14)

We demonstrate the MeanNN estimator for the entropy in the case exponential distributed random
variablef(x, µ) = 1

µe−
x
µ , x > 0, µ > 0. In this case case the entropy may be analytically calculated

asH = log µ+1. We compared the performance of the MeanNN estimator withk-nearest neighbor
estimator (6) for various values ofk. Results are given in Table 1. One may see that the mean
square error of the MeanNN estimator is the same or worse for the traditionalkNN estimators. But
the standard deviation of the estimator values is best for the MeanNN estimator. Further we will
apply MeanNN for optimization of a certain criterion based on the entropy. In such cases the most
important characteristics of an estimator is its monotonic dependency on the estimated value and
the prediction of the exact value of the entropy is less important. Therefore one may conclude that
MeanNN is better applicable for optimization of entropy based numerical criteria.

1NN 4NN 10NN MeanNN
Meansquare error of entropy estimation0.0290 0.0136 0.0117 0.0248

STD of estimator values 0.1698 0.1166 0.1079 0.1029

Table 1: Performance of MeanNN entropy estimator in comparison withkNN entropy estimators.
100 samples of random variable, 10 various values ofµ parameter, 100 repetitions.

To obtain the estimator for the divergence we apply the same mean approach to estimator (11) setting
m = n− 1:

D̂mean
n,n−1 =

d

n(n− 1)

n−1∑

k=1

n∑

i=1

log
vk

m(i)
ρk

n(i)
=

d

n(n− 1)


∑

i,j

log d(xi, yj)−
∑

i 6=j

log d(xi, xj)




(15)
The mean estimator for the divergence has a clear geometric interpretation. If the product of all
distances inside one sample is small in comparison with the product of pairwise distances between
the samples then one concludes that divergence is large and vice versa.

4 The MeanNN ICA Algorithm

As many approaches do, we will use a contrast function

J(Y ) =
∫

q(y1, ..., yd) log
q(y1, .., yd)∏d

i=1 q(yi)
dµ = D(q(y1, .., yd)‖

d∏

i=1

q(yi)) =
d∑

i=1

H(Yi)−H(Y1, ..., Yd)

(16)

ConsideringY as linear function ofX, Y = WX, it is easily verified [3, 7, 10] that
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J(Y ) =
d∑

t=1

H(Yt)−H(X1, ..., Xd)− log(|W |) (17)

In particular, the change in the entropy of the joint distribution under linear transformation is simply
the logarithm of the Jacobian of the transformation. As we will assume theX ’s to be pre-whitened,
W will be restricted to rotation matrices, thereforelog(|W |) = 0 and the minimization ofJ(Y )
reduces to finding

Ŵ = arg min
W

H(Y1) + ... + H(Yd) (18)

Denoting the rows of the matrixW by W = (w1, ..., wd)
>

, we can explicitly write the minimization
expression as a function ofW :

Ŵ = arg min
W

d∑
t=1

H(w
>
t X) (19)

Then we can plug the MeanNN entropy estimator into Eq. (19) to obtain (after omitting irrelevant
constants) an explicit contrast function to minimize:

Ŵ = arg min
W

S(W ) = arg min
W

d∑
t=1

n∑

i 6=j

log((w
>
t (xi − xj))2) (20)

The gradient of the contrast functionS(W ) with respect to a rotation matrixW may be found with
the assistance of the so-called Givens rotations (see e.g. [14]). In this parametrization a rotation
matrixW ∈ Rd×d is represented by a product ofd(d− 1)/2 plane rotations:

W =
d−1∏
s=1

d∏
t=s+1

Gst (21)

whereGst is a rotation matrix corresponding to a rotation in thest plane by an angleλst. It is
the identity matrix except that its elements(s, s),(s, t),(t, s),(t, t) form a two-dimensional (2-D)
rotation matrix by [

Gst(s, s) Gst(s, t)
Gst(t, s) Gst(t, t)

]
=

[
cos(λst) sin(λst)
− sin(λst) cos(λst)

]
(22)

The gradient of a single rotation matrixGst with respect toλst is a zero matrix except for elements
(s, s),(s, t),(t, s),(t, t) for which

∂

∂λst

[
Gst(s, s) Gst(s, t)
Gst(t, s) Gst(t, t)

]
=

[ − sin(λst) cos(λst)
− cos(λst) − sin(λst)

]
(23)

It can easily verified that the gradient of the contrast function (20) is given by

∂

∂λst
S =

d∑
q,r=1

∂S

∂wqr

∂wqr

∂λst
= 2

d∑
q,r=1

n∑

i6=j

(xir − xjr)
|w>

q (xi − xj)|

[
d−1∏
u=1

d∏
v=u+1

G̃uv

]

qr

(24)

whereG̃uv = ∂
∂λuv

Guv if both u = s andv = t, andG̃uv = Guv otherwise.

The contrast functionS(W ) and its gradient ∂
∂λst

S may in theory suffer from discontinuities if a
row wt is perpendicular to a vectorxi − xj . To overcome this numerical difficulty we utilize a
smoothed version of the contrast functionS(W, ε) and give the expression for its gradient:

S(W, ε) =
d∑

t=1

n∑

i 6=j

log((w
>
t (xi − xj))2 + ε) (25)

∂

∂λst
S =

d∑
q,r=1

∂S

∂wqr

∂wqr

∂λst
=

d∑
q,r=1

n∑

i6=j

(xir − xjr)
(w>

q (xi − xj))2 + ε

[
d−1∏
u=1

d∏
v=u+1

G̃uv

]

qr

(26)

For the optimization of the contrast function we apply the conjugate gradient method. The algorithm
is summarized in Figure 1.
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Input: Data vectorsx1, x2, ..., xn ∈ Rd, assumed whitened

Output : Mixing matrix W
Method:

• Initialize d(d− 1)/2 rotation anglesλst

• Apply the conjugate gradient optimization to the contrast functionS(W (λ)) (25) to
find the optimal angles

• Reconstruct the rotation matrixW from the found angles by Givens rotations (21)

Figure1: The MeanNN ICA algorithm

5 Experiments

First we study the set of 9 problems proposed by [2]. Each problem corresponds to a 1D probability
distributionq(x). One thousand pairs of random numbersx andy are mixed asx′ = x cos φ +
y sin φ, y′ = −x sin φ + y cos φ with random angleφ common to all pairs (i.e.A is a pure rotation).
We applied the conjugate gradient methods for the optimization of the contrast function (25) with
ε = 1/n = 0.001 in order to recover this rotation matrix. This was repeated 100 times with different
anglesφ and with different random sets of pairs(x, y). To assess the quality of the estimatorÂ

(or, equivalently, of the back transformation̂W = Â−1), we use the Amari performance indexPerr

from [1].

Perr =
1
2d

d∑

i,j=1

(
|pij |

maxk |pik| +
|pij |

maxk |pkj | )− 1 (27)

wherepij = (Â−1A)ij . We compared our method with three state-of-the-art approaches: MILCA
[16], RADICAL [13] and KernelICA [2]. We used the official code proposed by authors1. For the
first two techniques that utilize different information theoretic measures assessed by order statistics
it is highly recommended to use dataset augmentation. This is a computationally intensive technique
for the dataset enlargement by replacing each data set point with a fixed number (usually 30) new
data points randomly generated in the small neighborhood of the original point. The proposed
method gives smooth results without any additional augmentation due to its smooth nature (see Eq.
(13)).

pdfs MILCA MILCA Aug RADICAL RADICAL Aug KernelICA MeanNN ICA
a 3.3 2.5 3.6 2.8 3.3 2.4
b 3.4 3.0 3.6 3.3 3.0 2.6
c 7.5 4.4 7.6 5.4 4.9 4.2
d 1.8 1.7 1.4 1.6 1.4 1.4
e 1.7 1.6 1.5 1.7 1.5 1.4
f 1.4 1.3 1.6 1.4 1.4 1.4
g 1.4 1.3 1.6 1.4 1.4 1.4
h 1.7 2.0 1.6 1.7 1.4 1.5
i 1.9 2.1 1.8 1.8 1.5 1.8

Table 2: Amari performance (multiplied by 100) for two-component ICA. The distributions are: (a)
Student with 3 degrees of freedom; (b) double exponential; (c) Student with 5 degrees of freedom;
(d) exponential; (e) mixture of two double exponentials; (f) symmetric mixtures of two Gaussians;
(g) nonsymmetric mixtures of two Gaussians; (h) symmetric mixtures of four Gaussians; (i) non-
symmetric mixtures of four Gaussians.

In the explored cases the proposed method achieves the level of a state-of-the-art performance. This
is well explained by the inherent smoothness of MeanNN estimator, see Figure 2. Here we presented

1http://www.klab.caltech.edu/∼kraskov/MILCA/, https://www.cs.umass.edu/∼elm/ICA/,
http://www.di.ens.fr/∼fbach/kernel-ica/index.htm
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thecomparison of different contrast functions based on different order statistics estimators for a grid
of possible rotations angles for the mixture of two exponentially distributed random variables (case
e). The contrast function corresponding to the order statisticsk = 10 generally coincides with the
MILCA approach. Also the contrast function corresponding to the order statisticsk = 30 ' √

n
generallycoincides with the RADICAL method. One may see that MeanNN ICA contrast function
leads to much more robust prediction of the rotation angle. One should mention that the gradient
based optimization enables to obtain the global optimum with high precision as opposed to MILCA
and RADICAL schemes which utilize subspace grid optimization.

Application of the gradient based optimization schemes also leads to a computational advantage.
The number of needed function evaluations was limited by 20 as opposed to 150 evaluations for grid
optimization schemes MILCA and RADICAL.
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Figure2: Convergence analysis for a mixture of two exponentially distributed random variables.
Contrast function dependence on a rotation angle for different entropy estimators. 1000 samples,
0.01 radian grid.

We also studied the application of MeanNN ICA to multidimensional problems. For that purpose
we chose at randomD (generally) different distributions, then we mixed them by a random rotation
and ran the compared ICA algorithms to recover the rotation matrix. The results are presented at
Table 3. MeanNN ICA achieved the best performance.

dims MILCA MILCA Aug RADICAL RADICAL Aug KernelICA MeanNN ICA
2 3.0 3.3 3.1 3.0 2.9 2.5
4 2.7 2.7 2.8 2.3 2.6 2.2

Table 3: Amari index (multiplied by 100) for multidimensional ICA. 1000 samples, 10 repetitions

6 Conclusion

We proposed a novel approach for estimation of main information theoretic measures such as dif-
ferential entropy, mutual information and divergence. The estimators represent smooth differential
functions with clear geometrical meaning. Next this novel estimation technique was applied to the
ICA problem. Compared to state-of-the-art ICA methods the proposed method demonstrated supe-
rior results in the conducted tests.

Studied state-of-the-art approaches can be divided in two groups. The first group is based on exact
entropy estimation, that usually leads to high performance as demonstrated by MILCA and RADI-
CAL. The drawback of such estimators is the lack of the gradient and therefore numerical difficulties
in optimization. The second group apply different from entropy criteria, that benefit easy calcula-
tion of gradient (KernelICA). However such methods may suffer from deteriorated performance.
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MeanNNICA comprises the advantages of these two kinds of estimators. It represents a contrast
function based on an accurate entropy estimation and its gradient is given analytically therefore it
may be readily optimized.

Finally we mention that the proposed estimation method may further be applied to various problems
in the field of machine learning and beyond.
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