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Abstract

We address the challenge of assessing conservation of gene expression in com-
plex, non-homogeneous datasets. Recent studies have demonstrated the success
of probabilistic models in studying the evolution of gene expression in simple
eukaryotic organisms such as yeast, for which measurements are typically scalar
and independent. Models capable of studying expression evolution in much more
complex organisms such as vertebrates are particularly important given the medi-
cal and scientific interest in species such as human and mouse. We present Brow-
nian Factor Phylogenetic Analysis, a statistical model that makes a number of
significant extensions to previous models to enable characterization of changes
in expression among highly complex organisms. We demonstrate the efficacy of
our method on a microarray dataset profiling diverse tissues from multiple verte-
brate species. We anticipate that the model will be invaluable in the study of gene
expression patterns in other diverse organisms as well, such as worms and insects.

1 Introduction

High-throughput functional data is emerging as an indispensible resource for generating a complete
picture of genome-wide gene and protein function. Currently, gene function is often inferred through
sequence comparisons with genes of known function in other species, though sequence similarity
is no guarantee of shared biological function. Gene duplication, one of the primary forces of ge-
nomic evolution, often gives rise to genes with high sequence similarity but distinct biological roles
[1]. Differences in temporal and spatial gene expression patterns have also been posited to explain
phenotypic differences among animals despite a surprisingly large degree of gene sequence simi-
larity [2]. This observation and the increasingly wide availability of genome-wide gene expression
profiles from related organisms has motivated us to develop statistical models to study the evolu-
tion of gene expression along phylogenies, in order to identify lineages where gene expression and
therefore gene function is likely to be conserved or diverged.

Comparing gene expression patterns between distantly related multi-cellular organisms is challeng-
ing because it is difficult to collect a wide range of functionally matching tissue samples. In some
cases, matching samples simply may not exist because some organismal functions have been redis-
tributed among otherwise homologous organs. For example, processes such as B-cell development
are performed by both distinct and overlapping sets of tissues: primarily bone marrow in mammals;
Bursa of Fabricus and bone marrow in birds; and likely kidney, spleen, and/or thymus in teleost fish
(who lack bone marrow) [3]. Matching samples can also be hard to collect because anatomical ar-
rangements of some of the queried organisms make isolation of specific tissues virtually impossible.
For example, in frog, the kidneys are immediately adjacent to the ovaries and are typically covered in
oocytes. By allowing tissue samples to be mixed and heterogeneous, though functionally related, it
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becomes possible to compare expression patterns describing a much larger range of functions across
a much larger range of organisms.

Current detailed statistical models of expression data assume measurements from matched samples
in each organism. As such, comparative studies of gene expression to date have either resorted to
simple, non-phylogenetic measures to compare expression patterns [4], or restricted their compar-
isons to single-cellular organisms [5] or clearly homologous tissues in mammals [6].

Here, we present Brownian Factor Phylogenetic Analysis (BFPA), a new model of gene expres-
sion evolution that removes the earlier limitations of matched samples, therefore allowing detailed
comparisons of expression patterns from the widely diverged multi-cellular organisms. Our model
takes as input expression profiles of orthologous genes in multiple present-day organisms and a phy-
logenetic tree connecting those organisms, and simultaneously reconstructs the expression profiles
for the ancestral nodes in the phylogenetic tree while detecting links in the phylogeny where rapid
change of the expression profile has occurred.

We model the expression data from related organisms using a mixture of Gaussians model related
to a mixture of constrained factor analyzers [7]. In our model, each mixture component represents a
different pattern of conservation and divergence of gene expression along each link of the phyloge-
netic tree. We assume a constrained linear mapping between the heterogeneous samples in different
organisms and fit this mapping using maximum likelihood. We show that by expanding the amount
of expression data that can be compared between species, our model generates more useful infor-
mation for predicting gene function and is also better able to reconstruct the evolutionary history of
gene expression as evidenced by its increased accuracy in reconstructing gene expression levels.

2 Previous work

Recent evolutionary models of gene expression treat it as a quantitative (i.e. real-valued) trait and
model evolutionary change in expression levels as a Brownian motion process [8, 9]. Assuming
Brownian motion, a given gene’s expression levelxs in a child speciess after a divergence timets
from an ancestral speciesπ(s) is predicted to be Gaussian distributed with a meanxπ(s) equal to the
gene’s expression level in the ancestor and varianceσ2ts:

xs ∼ N(xπ(s), σ
2ts) (1)

whereσ2 represents the expected rate of change per unit time. The ancestor-child relationships are
specified using a phylogeny, such as that shown in Figure 1a for the vertebrates. The leaves of the
phylogeny are associated with present-day species and the internal branch points with shared ances-
tors. The exact position of the root of the phylogeny (not shown in the figure, but somewhere along
branch ”T”) cannot be established without additional information, and the outgroup species ”T” is
often used in place of the root of the tree. Nonetheless, the rooted phylogeny can be interpreted as a
directed Gaussian graphical model, e.g. Figure 1b, whose nodes are variables representing expres-
sion levels in the corresponding species and whose directed edges point from immediate ancestors
to their children species. The conditional probability distribution (CPD) at each node is given by
Equation 1.

Typical uses of these evolutionary models are to compare different hypotheses about divergence
times [8] or the structure of the phylogeny [9] by calculating the likelihood of the present-day ex-
pression levels under various hypotheses. To avoid assigning this prior over the root node and
thus introducing bias [10], Felsenstein developed a method called restricted maximum likelihood
(REML) [11], which specifies a distribution over the observed differences between present-day ex-
pression levels rather than the expression levels themselves.

3 Brownian Factor Phylogenetic Analysis: A model of expression evolution

In the following section, we propose changes to the Brownian motion model that not only allow
for unmatched tissue samples, but also leverage the change observed in expression levels across
multiple genes in order to classify genes into different patterns of expression evolution. We usexi

s
to indicate the hidden expression profile of thei-th gene (out ofN ortholog groups) in speciess.
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Figure 1:Our statistical model and associated species phylogenies.(a) The phylogeny of the species
measured in our dataset of human (H), mouse (M), chicken (C), frog (F), and tetraodon (T), as well
as an example phylogeny of three hypothetical speciesx1, x2, andx3 used to illustrate our model.
(b) Our statistical model showing how the outgroup speciesx3 and its corresponding observed ex-
pression levelŝx3 is used as a gene expression prior. Edge weights on the graph depict scaling
factors applied to the variance termsΣ, which are specified by each conservation patternc. 1 de-
notes no scaling on that branch, whereasρ > 1 depicts a longer, and thus unconserved, branch. This
particular conservation pattern represents a phylogeny where all species have conserved expression.
The scale on the bottom shows hypothetical values forx1, x2, andx3, as well as the inferred value
for x12. (c) The same model except applied to a conservation pattern where speciesx3 is determined
to exhibit significantly different expression levels (rapid change).

The input to our model are vectors of tissue-specific expression levels{x̂i
s}N

i=1 for N genes over
present-day speciess ∈ {P ∪ o}; we distinguish the chosen outgroup specieso from the rest of
the present-day speciesP . x̂i

s ∈ IRds , whereds is the number of tissues in speciess. The goal of
our model is to infer each gene’s corresponding pattern of gene expression evolution (conservation
pattern){ci}N

i=1 and latent expression levels{xi
s}N

i=1 for all speciess ∈ {P ∪ o ∪ A}, whereA
represents the internal ancestral species in the phylogenetic tree (Figure 1). The likelihood function
L = P

(
{x̂i

P , xi
P∪o∪A, ci}N

i=1|{x̂i
o}N

i=1, θ
)

is shown below, whereπ(s) refers to the parent species
of s, θ = (Λ,Σ, β, ρ, γ) are the model parameters, andN(x;µ,Σ) is the density ofx under a
multivariate normal distribution with meanµ and covarianceΣ:

L =
∏

i

[(∏
s∈P∪A P (xi

s|xi
π(s), c

i, θ)
)
×

(∏
s∈P P (x̂i

s|xi
s, β)

)]
P (xi

o|x̂i
o, β)P (ci|γ)

P (xi
s|xi

π(s), c
i = Kj , θ) = N(xi

s; Λsx
i
π(s), ρ

Kj,s
s Σs) (2)

P (x̂i
s|xi

s, β) = N(x̂i
s;x

i
s, βs) (3)

P (ci = Kj |γ) = γj (4)

Modeling branch lengths.Equation 2 reflects the central assumption of Brownian motion models [8,
9, 10] described in Equation 1, extended in two ways. BFPA extends this concept in two directions.
First, we constrain all variancesΣs to be diagonal in order to estimate tissue-specific drift rates,
as tissues are known to vary widely in expression divergence rates [12]. Secondly, we note that in
studying a diverse lineage such as vertebrates, we expect to see large changes in expression for genes
that have diverged in function, as compared to genes of conserved function. We therefore model the
drift of a gene’s expression levels along each branch of the tree as following one of two rates: a
slow rate, reflecting a functional constraint, and a fast rate, reflecting neutral or selected change.
Correspondingly, for each branch of the phylogenetic tree above the speciess, we define two rate
parameters,ρ2

s or ρ1
s, termed a short and long branch respectively (ρ2

s < ρ1
s). We fix ρ2

s = 1.0
and initializeρ1

s to a much larger value to maintain this relationship during learning, thus modeling
fast-moving genes as outliers. Our method of modelling constrained and unconstrained change as
scalar multiples of a common variance is similar to the discrete gamma method [13].
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Linear relationship between ancestral and child tissues.We model tissues of child species as linear
combinations of ancestral tissues. The matrix of coefficientsΛs that relate expression levels in
the child species’ tissues to that of its parent species is heavily constrained to leverage our prior
understanding of the relationships of specific tissues [14]. To constructΛs, pairs of tissues that were
clearly homologous (i.e. the heart) had their corresponding entry inΛs fixed at 1, and all other
entries in the same row set to zero. For the remaining tissues, literature searches were conducted
to determine which groups of tissues had broadly related function (i.e. immune tissues), and those
entries were allowed to vary from zero. All other entries were constrained to be zero.

Distinguishing intra- and inter-species variation.Equation 3 relates the observed expression levels
of present-day species to the noiseless, inferred expression levels of the corresponding hidden nodes
of each observed species. The variance factorβs is an estimate of the variation expected due to
noise in the array measurements, and are estimated via maximum likelihood using multiple identical
probes present on each microarray.

Conservation pattern estimation.Our goal is to identify different types of expression evolution,
including punctuated evolution, fully conserved expression, or rapid change along all branches of
the phylogeny. We model the problem as a mixture model ofconservation patterns, in which each
conservation pattern specifies either constrained or fast change along each branch of the tree. Each
conservation patternKj ∈ {1, 2}|P∪A| specifies a configuration ofρ1

s or ρ2
s for each speciess

(Kj,s ∈ {1, 2} specifiesρKj,s
s ). However, not all2|P∪A| possible patterns of short and long branches

can be uniquely considered. In particular, a tree containing at least one ancestor incident to two long
branches and one short are ambiguous because this tree cannot be distinguished from the same tree
with that ancestor incident to three long branches. As a post-processing step, we consider short
branches in those cases to be long, and sum over such ambiguous trees, leaving a total ofJ possible
conservation patterns. Each patternKj is assigned a prior probabilityP (Kj) = γj that is learned,
as reflected in Equation 4.

4 Inference

Because our graphical model contains no cycles, we can apply belief propagation to perform exact
inference and obtain the posterior distributionsP (ci = Kj |x̂i, θ), ∀i, j:

δij = P (ci = Kj |x̂i, θ) ∝
∫

P (xi
P∪o∪A, x̂i

P , ci = Kj |x̂i
o, θ)∂xi

P∪o∪A (5)

We can also estimate the distributions over expression levels of a speciess′ as

P (xi
s′ |x̂i, θ) ∝

∑
j

∫
P (xi

P∪o∪A, x̂i
P , ci = Kj |x̂i

o, θ)∂xi
P∪o∪A\s′ (6)

5 Learning

Applying the expectation maximization (EM) algorithm yields the following maximum likeli-
hood estimates of the model parameters, whereEs,s|Kj

= E[xi
sx

iT

s |x̂i
s, c

i = Kj ], Es,π(s)|Kj
=

E[xi
sx

iT

π(s)|x̂
i
s, c

i = Kj ], andEπ(s),π(s)|Kj
= E[xi

π(s)x
iT

π(s)|x̂
i
s, c

i = Kj ]:

Λ̂s =

 N∑
i=1

J∑
j=1

δij

ρ
Kj,s
s

Es,π(s)|Kj

  N∑
i=1

J∑
j=1

δij

ρ
Kj,s
s

Eπ(s),π(s)|Kj

−1

(7)

Σ̂s = 1
N diag

{∑N
i=1

∑J
j=1

δij

ρ
Kj,s
s

(
Es,s|Kj

− 2ΛsET
s,π(s)|Kj

+ ΛsEπ(s),π(s)|Kj
ΛT

s

)}

ρ̂k
s =

(∑
i

∑
j [Kj,s = k]δijdim(xi

s)
)−1 (∑

i

∑
j [Kj,s = k]δij×(

tr[Es,s|Kj
Σ−1

s ] + tr
[
ΛT

s Σ−1
s (−2Es,π(s)|Kj

+ ΛsEπ(s),π(s)|Kj
)
]))
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γ̂j =
∑N

i=1 δij

N
(8)

Although we have rooted the phylogeny using a present-day species rather than place a hypothetical
root as has been done in previous Brownian motion models, these two models are related because
they are equivalent under the condition that all samples are matched. First, note that in traditional
Brownian motion models, the location of the root is arbitrary if one assumes a constant, improper
prior over the root expression levels, since any choice of root would give rise to the same probability
distribution over the expression levels. By using a present-day species with observed expression
levels as the root node, we avoid integrating over this improper prior. Because the root node prior
is constant, the likelihood of the other present-day species conditioned on this present-day root
expression level is a constant times the likelihood of all present-day species expression levels. Our
conditional model therefore assigns identical likelihoods and marginals as REML.

6 Results

We present the results of applying our model to a novel dataset consisting of gene expression mea-
surements of 4770 genes with unique, unambiguous orthology, i.e., each of the 4770 genes is present
in only a single copy, across the following five present-day organisms: human, mouse, chicken, frog,
and tetraodon. The phylogeny related these species is shown in Figure 1 with nodes labelled by the
first letter of the species name. We set Tetradon as the root, soo = T andP = {H,M,C, F}
and we label the internal ancestors by concatenating the labels of their present-day descendants, so
A = {HM,HMC,HMCF}.
Replicate microarray probe intensity measurements were taken for the 4770 genes across a total of
161 tissues (i.e., 322 microarrays in total) in the five organisms: 46 tissues from human, 55 from
mouse, and 20 from each of the other three organisms. We applied a standard pre-processing pipeline
to the array set to remove experimental artifacts and to transform the probe intensity measurements
on each array to a common, variance-stabilized scale. Each array was first spatially detrended as
described in [15]. Within a species, all arrays share the same probe set, so we applied VSN [16]
to the arrays from each species to estimate an array-specific affine transform to transform the probe
intensities to species-specific units. We next applied an arcsinh transform to the probe intensities
to make the variance of the noise independent of the intensity measurement. For the final two pre-
processing steps, we placed the transformed intensity measurements into a matrix for each species.
The rows of this matrix correspond to genes and the columns are the measured tissues. First, to re-
move probe bias in the transformed intensities, we subtracted the row median from each element and
then to attempt to transform measurements from different species to a common scale, we subtracted
the column means from each element and divided by the column length.

First, we investigate the stability of our conservation pattern estimates by using parameters trained on
different random subsamples of our genes. We then evaluate the predictive value of our algorithm
BFPA using two tasks: a) predicting gene expression profiles in a new species given expression
profiles in other species, and b) predicting Gene Ontology annotation using the conservation pattern
inferred by our model.

To perform the stability experiments, we first randomly split the dataset into five subsets, and used
each subset individually to train the model using 100 iterations of EM. We then estimatedP (ci|x̂i

s, θ)
for the four other subsets of genes, and classified each gene into its most likely conservation pattern.
Hence, each gene is classified four times by non-overlapping training sets. Figure 2 shows that
the classifications are quite stable and that most genes are classified into few conservation patterns.
Most genes that were uniquely classified into a single conservation pattern either were classified as
fully (all) conserved or completely unconserved, resulting in relatively few high-confidence lineage-
specific genes.

6.1 Functional associations of co-transcriptionally evolving genes

Pairs of genes exhibiting correlated expression also tend to perform similar function. This guilt-
by-association principle is often used to initially assign putative functions to genes. For example,
a popular method for analyzing gene expression datasets is to cluster genes based on the pairwise
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Figure 2:Stability of conservation pattern assignments to genes. (left) Each gene was placed into
one of four bins, denoting the number of unique patterns it was classified into. Most genes were
consistently classified into one conservation pattern for all four of its independent classifications.
(right) For all genes uniquely classified into a single conservation pattern, the number of present-
day species adjacent to conserved links was computed. Most genes were either classified as fully
(all) conserved or completely unconserved.

Pearson correlation coefficient (PCC), then measure the enrichment of these clusters in Gene On-
tology (GO) function and process annotations [17]. In this section, we introduce the evolutionary
correlation coefficient (ECC), a simple modification of PCC to integrate model predictions, and ex-
amine whether genes with the same annotated function are more similar in rank according the ECC
or PCC measures. ECC scales the positively-transformed PCC by the marginal probability of the
genes following the same expression evolution, assuming independent evolution.

ECC(x̂i, x̂k) =
(
1 + PCC(x̂i, x̂k)

) ∑
j

P (ci = j|x̂i, θ)P (ck = j|x̂k, θ)

ECC can be applied using the output of either BFPA or the Brownian model. For the Brownian
model, we trained and made predictions using only those matched samples in all five species. Those
ten samples are the central nervous system (CNS), intestine, heart, kidney, liver, eye, muscle, spleen,
stomach, and testis. We also introduce ECC-sequence, designed to measure the value of evolutionary
information derived from sequence. First, the protein sequences of each gene were aligned using
default parameters of MUSCLE [18]. These alignments were then inputted into PAML [19] together
with the species tree shown in Figure 1 to estimate branch lengths. The PCC measure for each pair
of genes was then scaled by the Pearson correlation coefficient of the branch lengths estimated by
PAML to produce ECC-sequence.

For all models, we first used the ECC/PCC similarity metric for each gene to rank all other genes
in order of expression similarity. We then apply the Wilcoxon Rank Sum test to evaluate whether
genes with the same GO annotations, as annotated for the mouse ortholog, are significantly higher in
rank than all other genes. For this analysis, we only considered GO Process categories which have
at least one of the 4770 genes annotated in that category. We also removed all genes which were not
annotated in any category, resulting in a total of 3319 genes and 4246 categories.

Figure 3 illustrates the distribution of smallestp-values achieved by each gene over all of their anno-
tated functions. PCC is used as a baseline performance measure as it does not consider evolutionary
information. We see that all evolutionary-based models outperform PCC in ranking genes with sim-
ilar function much closer on average. ECC-sequence performs worse than PCC, suggesting that
expression-based evolutionary metrics may provide additional information compared to those based
on sequence. The relative performance of BFPA versus Brownian reflects an overall significant per-
formance gap between our models and the existing ones. A control measure ECC-random is shown,
which is computed by randomizing the gene labels of the data in each of the five organisms before
learning. Finally, Brown+prior measures the performance of the Brownian model when the conser-
vation pattern priors are allowed to be estimated, and performs better than the Brownian model but
worse than BFPA, as expected. All differences between the distributions are statistically significant,
as all pairwisep-values computed by the Kolmogorov-Smirnov test are less than10−6.
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Figure 3: Model performance.(left) A reverse cumulative distribution plot ofp-values obtained
from applying the Wilcoxon Rank Sum test using either a PCC or ECC-based similarity metric. The
smallestp-value achieved for each gene across all its annotated functions is used in the distribution.
Position(x, y) indicates that fory genes, theirp-value was less than10−x. Higher lines on the graph
translate into stronger associations between expression levels and gene function, which we interpret
as better performance. (right) This graph shows the difference in the total number of expression
values for which a particular method achieves the lowest error, sorted by species.

6.2 Reconstruction of gene expression levels

Here we report the performance of our model in predicting the expression level of a gene in each
of human, mouse, chicken, and frog, given its expression levels in the other species. Tetraodon is
not predicted because it acts as an outgroup in our model. The model was trained using 100 EM
iterations on half of the dataset, which was then used to predict the expression levels for each gene
in each species in the other half of the dataset, and vice versa. To create a baseline performance
measure, we computed the error when using an average of the four other species to predict the
expression level of a gene in the fifth species. We only compute predictions for the ten matched
samples across all species so that we can compare errors made by our model against those of Brow-
nian and the baseline, which require matched samples. Figure 3 shows that with the exception of
the comparison against Brownian in chicken, BFPA achieves lower error than both Brownian and
baseline in predicting expression measurements.

7 Discussion

We have presented a new model for the simultaneous evolution of gene expression levels across mul-
tiple tissues and organs. Given expression data from present-day species, our model can be used to
simultaneously infer the ancestral expression levels of orthologous genes as well as determine where
in the phylogeny the gene expression levels underwent substantial change. BFPA extends previous
Brownian models [8, 9] by introducing a constrained factor analysis framework to account for com-
plex tissue relationships between different species and by adapting the discrete gamma method [13]
to model quantitative gene expression data. Our model performs better than other Brownian models
in functional association and expression prediction experiments, demonstrating that the evolution-
ary history we infer better recovers the function of the gene. We have shown that this is in large
part due to our ability to consider species-specific tissue measurements, a feature not implemented
in any existing model to the best of our knowledge. We also showed that gene expression-based
phylogenetic data may provide information not contained in sequence-based phylogenetic data in
terms of helping predict the functional association of genes.

Our model has a number of other applications outside of using it to study the evolutionary history of
gene expression. Our ability to identify genes with conserved expression across multiple species will
help in the inference of gene function from annotated to non-annotated species because unconserved
expression patterns indicate a likely change in the biological function of a gene. We also expect
that by identifying species that share a conserved expression pattern, our model will aid in the

7



identification of transcriptionalcis-regulatory elements by focusing the search forcis-elements to
those species identified as conserved in expression.

While we have taken different profiled samples as representing different tissues, our methodology
can be easily expanded to study evolutionary change in gene expression in response to different
growth conditions or environmental stresses, as with those studied in [5]. Our methodology is
also easily extendible to other model organisms for which there are genomes and expression data
for multiple closely related species (e.g. yeast, worm, fly, plants). We anticipate that the results
obtained will be invaluable in the study of genome evolution and identification ofcis-regulatory
elements, whose phylogeny should reflect that of the gene expression patterns.

All data used in this publication can be obtained by a request to the authors.
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