Appendix: Spectral Clustering with Approximate
Data

1 Appendix

In this Appendix we provide more detailed analyses and jgrtwdt are omited in the main body of
the paper due to space limitation.

Some heuristics on assumption B3 It is difficult to show that assumption B3 is valid under very
general conditions. To gain insight, we here show its validi the case where the original similarity
matrix has the following block-diagonal structure (assugrthere are two clusters with sizesind

q, respectively):
1 0
P, = PXp pPXq ,
0 [ qup 1qxq ]

wherel,,,, 1,x, denote matrices with all elements and0,.,, 0,x, denote matrices with all
elementd). This is the case where points in the same cluster have paiffedty and points from
different clusters have no affinity.

We further assume the perturbed similarity matrix is givgn b

p_ Lpxp U(0,¢€)
€ U0, 1,44 |’

whereU (0, ¢) denotes @ x ¢ matrix with elements generated i.i.d. according to somgildigion

P (e.g., uniform distribution) on intervad, €], with e being a small constant. This model has been
studied recently in [1], which obtains the following residt the unnormalized second eigenvector
vo of the Laplacian matrix of.:

Proposition 5 Assuming all elements ¢;; in matrix P. arei.i.d. uniform over interval [0, €] for

some constant € = o(ﬁ), and g — « for some constant o when p and ¢ grow. Then when p and ¢

grow, the following holds

L= (P55 — Bpfer] + Brpa k=1,..,p—1
- 1= (1+7)(p-— 1)[p.§_17e'p_ - }Epj-le-ll] + Rppq k=p
U2k = €.(k—p € _
o =+ (NPl — B ] + Ripg k=p+1,..p+q—1

v+ 1+ - 1)[qi§.q - Eqiel,l] + Rptqpq k=p+¢q

where 95, denotesthe k" component of eigenvector v, v isaconstant, ¢;, = 23:1 €j,i=1,..,p,
ande; =>"  €;,7=1,....q Ry, sareremainders with maxi<x<p+q | R p.q| = 0p(1).

From Proposition 5, we can easily see that excludingth@nd the(p + ¢)!" components, all other
components invy that belong to the same clusters follow the same distributip to a first order
approximation (in the sense of the general matrix pertishdheory). Moreover, since the second
eigenvectow, of the Laplacian matrix of?, is piecewise constant, it immediately follows that the
individual perturbations are uncorrelated with theirialivalues.
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Figure 1:Notation in the Proof of Proposition 1.
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Figure 2: The optimization problem for mis-clustering rate

Proof of Proposition 1 We use the notation introduced earlier in Section 3.1, atrddace ad-
ditional notation in Fig. 1. Recall that andb denote the sets of elementswi corresponding to
two clusters under consideration, and similarlydoandb’ in v,. Letm denote the total number of
missed clusteringsn = m_ + m., wherem_ denotes the number of cluster flippingswof- ¥/,
andm_ the number of flippings of — a’. As an abuse of notation, we also us#, «’, b’ to denote
the mean of element values in the corresponding setiandv,, respectively. Referring to the
value 62 as the “energy,” we aim to determine the maximum number opifligs m (i.e., missed
clusterings) for any (randomly) given enerdj, this yields an upper bound for

Let A;,...,Ag, andBy,..., By, denote the zero mean fluctuations arounahdb, respectively,
and letUy, ..., Ui, —y_ andVy, ..., Vi, denote the zero mean fluctuations arouh@nd?’,
respectively. Let variableg,, ..., Y,,_ > 0 denote the long-range (random) jumps frano o’ for
elements in sei — ¥, and letZy,...,Z,,, > 0for elements in sei — a’; Apparently, we have
Z; = d + U; — b — B;. We have the optimization problem described in Fig. 2 forrtraximum
number of mis-clusterings:. In the constraints, Egs. (1) and (2) refer to the unit lerafth, and
va, respectively; and Eq. (3) refers to the total energy cairstr

Without loss of generality we consider the case describdeignl witha,a’ > 0,00’ < 0, and
(@' — b)? < (a — b')2. Due to symmetry, the same argument follows when we consigeother
cases. According to assumption B3, we h&l¢ = « — ¥’ andEZ; = o’ — b, for all i andj. By



working with expectations, we have

1
EY? +..+EY?2 > m—(EYl 4+ 4+ EY )2 =m_(a—1)?

m_— —

1
EZ} +..+EZ), > m—(EZl+...+EZmZZ+)2:m+(a’—b)2.
+

Summing and substituting into Eqg. (3), we get

m_ m4
my(a =b)?+m_(a—V)<EY Y?+EY 77 <4’ (4)
i=1 j=1

To maximize the objective functiom = m_ + m_ given (4) and giveria’ — b)? < (a — b')?, we
should setn_ = 0 andm = m... This turns (4) intan(a’ — b)? < 62, under whichm achieves its
maximum wherb = 0.

Let 0% denote the variance df;, which may depend om or n. The following arguments allow us
to assume that’? = b’? + EV? — 0% — EB}. The result$ = 0 andm = m. simplify Eq. (2) into

k1 ka—m m
D@+ U+ D W +V) 4> (Bi+7Z)* =1 ®)
i=1 j=1 j=1

Taking an expectation on both sides and using the assursptiahthe!/; are identically distributed
with zero mean, as are thg, we get

k1a”? + ki EUE + (ko — m)b? + (ko — m)EVZ 4+ m(a? + 0%) =1, (6)
which implies that? < -L. Hence we can assume the} = % for some0 < g < 1. Setting
V2 = a? — EV? + 02 + EB? in Eq. (6) effectively disables this constraint for, and Eq. (6)
becomes:

kia”? + k\EUF + kb + ko EVE = 1.
Substitutingy’? = a’? — EV? + 0% + EB] into this equation, we obtain
kia? + kiEU? 4 ko(a”? — EVZ 4 02) + keEV2 = na'? + kyod + BiEU? =1,
from which we obtain
k
na’? =1 - kEU? — %ﬁ — koEBZ. (7)
Usingb = 0 andm = m_. also simplifies Eq. (3), which becomes:

k1 ko—m m

Z(G+Ai —ad -U)*+ Z (B —b —V;)* + Z(a’ - B; +U;j)* =6
j=1

i=1 j=1
Taking an expectation on both sides yields
ki1((a —a')? + EA?) + kiEU? + koEBE + (ko — m) (b + EV?) +m(a” 4+ EU?) = 62,

implying

k\EU? 4+ k,EB? < 6% — B —ma? (8)
2
(n—m)a? < —(n — mfﬁf —5) . 9)

Substituting (8) into (7) and combining with (9), we get
(n —m)(0* - B)

1—52—4—[3—@6 < (n—m)a? <
m m

Rearranging terms we have
né? —nf + koS < nd?

52 = ||{/2 — V2||2.
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m
m
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n=
n

Whenl||v, — v, ||? is small, and if we further assume that all componentg,of v, are independent,
then||v, — v ||? is highly concentrated around its mean asymptotically érthmber of data points.
In this case we obtain < (1 + o0,(1))E||ve — v2|%.



Proof of Lemma?2 For the perturbation on the Laplacian matrix, we have
dL=1—-(D+A) " (K+dK)-I+D 'K (10)

Because the perturbatiali is small comparing td¢, so isA comparing taD, andAD~! is small.
Using Taylor expansion for functio(X) = (I + X)~! aroundX = 0,,x,, we have

(I+AD™H ' =T—-AD ' +0O((AD™)?).
Substituting it into Eq. (10), we get
dL = —[I-AD'+0(AD)?)]D YK +dK)+ D 'K
= —-D YK +dK)+AD* K +dK)—-O((AD)?)D" K +dK) + D™'K
= (1+0(1))AD?K — D" 'dK.

Proof of Lemma3 LetS;; := ||x; — x; + € — ¢;||>. Fori = j, the result holds trivially. For

i # j and givenX, (S;;/20?) follows a non-central chi-square distribution with paraenéd, \;;),
where);; = (||x; — x;{|?/202). The mean igl + \;;, the variance ig(d + 2);;), and the moment
generating function id/;;(t) = {exp (fjgi)/(l - 2t)d/2} . K,; is an exponential function of the
non-central chi-square random variab; /202), so the first two moments df;; can be computed
using the moment generating functiaf; (¢), which gives the results in Eq.(15) in the main paper.

Proof of Lemma 4 LetS;; := ||x; — xj + ¢ — ¢;]|>. Fori = j, the result holds trivially.
Fori # j, Si; is the sum ofd (the dimension ofX) independent variables, and approximately
follows a Gaussian distribution for large We only need to work out its mean and variance. Let
Nij == ||x; — x;||%. Given input dataX, we have

d

BSy = Elixi—x;+e—glP =Y [(XP = X[")? + 202 = xi; + 240
d d " 9 5
Esizj _ ZZE {Xi(p) _ X](p) 4 6Z(‘p) _ €§p)] ) {Xi(q) B XJ(}I) 4 ez(}1) _ 65}1)
p=1qg=1
= A} 4A(d® = d)o* +d(2u" + 60") + 807N, + 4do® A,
Var(S;;) = ESZ —(ESy)” = 2du® + 2do” + 80273,

So using the moment-generating function, we obtain thevioilg asymptotic results [2]:
A S \\ = (2
B) = e (e () = (-5)
N S.. 1
2 A T R U
e(is) = B(ow(-32)) - ()

which completes the proof.
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