
Appendix: Spectral Clustering with Approximate
Data

1 Appendix

In this Appendix we provide more detailed analyses and proofs that are omited in the main body of
the paper due to space limitation.

Some heuristics on assumption B3 It is difficult to show that assumption B3 is valid under very
general conditions. To gain insight, we here show its validity in the case where the original similarity
matrix has the following block-diagonal structure (assuming there are two clusters with sizesp and
q, respectively):

P0 =

[

1p×p 0p×q

0q×p 1q×q

]

,

where1p×p, 1q×q denote matrices with all elements1, and0p×q, 0q×p denote matrices with all
elements0. This is the case where points in the same cluster have perfect affinity and points from
different clusters have no affinity.

We further assume the perturbed similarity matrix is given by

Pǫ =

[

1p×p U(0̃, ǫ)
U(0̃, ǫ)T 1q×q

]

,

whereU(0̃, ǫ) denotes ap × q matrix with elements generated i.i.d. according to some distribution
P (e.g., uniform distribution) on interval[0, ǫ], with ǫ being a small constant. This model has been
studied recently in [1], which obtains the following resultfor the unnormalized second eigenvector
ṽ2 of the Laplacian matrix ofPǫ:

Proposition 5 Assuming all elements ǫij in matrix Pǫ are i.i.d. uniform over interval [0, ǫ] for
some constant ǫ = o( 1

p+q ), and p
q → α for some constant α when p and q grow. Then when p and q

grow, the following holds

ṽ2k =



















1 − (1 + γ)p2[ ǫk.

p+ǫk.
− E

ǫ1.

p+ǫ1.
] + Rk,p,q k = 1, ..., p − 1

1 − (1 + γ)(p − 1)[
ǫp.

p+ǫp.
− E

ǫ1.

p+ǫ1.
] + Rp,p,q k = p

−γ + (1 + γ)q2[
ǫ.(k−p)

q+ǫ.(k−p)
− E

ǫ.1

q+ǫ.1
] + Rk,p,q k = p + 1, ..., p + q − 1

−γ + (1 + γ)(q − 1)[
ǫ.q

q+ǫ.q
− E

ǫ.1

q+ǫ.1
] + Rp+q,p,q k = p + q

where ṽ2k denotes the kth component of eigenvector ṽ2, γ is a constant, ǫi. =
∑q

j=1 ǫij , i = 1, ..., p,
and ǫ.j =

∑p
i=1 ǫij , j = 1, ..., q, Rk,p,q’s are remainders with max1≤k≤p+q |Rk,p,q| = op(1).

From Proposition 5, we can easily see that excluding thepth and the(p+ q)th components, all other
components iñv2 that belong to the same clusters follow the same distribution, up to a first order
approximation (in the sense of the general matrix perturbation theory). Moreover, since the second
eigenvectorv2 of the Laplacian matrix ofP0 is piecewise constant, it immediately follows that the
individual perturbations are uncorrelated with their initial values.
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Figure 1:Notation in the Proof of Proposition 1.

maximize m = m+ + m−

subject to:
k1
∑

i=1

(a + Ai)
2 +

k1
∑

j=1

(b + Bj)
2 = 1 (1)

k1−m
−

∑

i=1

(a′ + Ui)
2 +

k2−m+
∑

j=1

(b′ + Vj)
2 +

m
−

∑

i=1

(a + Ai − Yi)
2 +

m+
∑

j=1

(b + Bj + Zj)
2 = 1 (2)

k1−m
−

∑

i=1

(a + Ai − a′ − Ui)
2 +

k2−m+
∑

j=1

(b + Bj − b′ − Vj)
2 +

m
−

∑

i=1

Y 2
i +

m+
∑

j=1

Z2
j = δ2 (3)

Figure 2: The optimization problem for mis-clustering rate.

Proof of Proposition 1 We use the notation introduced earlier in Section 3.1, and introduce ad-
ditional notation in Fig. 1. Recall thata andb denote the sets of elements inv2 corresponding to
two clusters under consideration, and similarly fora′ andb′ in ṽ2. Letm denote the total number of
missed clusterings:m = m− + m+, wherem− denotes the number of cluster flippings ofa → b′,
andm+ the number of flippings ofb → a′. As an abuse of notation, we also usea, b, a′, b′ to denote
the mean of element values in the corresponding set inv2 and ṽ2, respectively. Referring to the
valueδ2 as the “energy,” we aim to determine the maximum number of flippingsm (i.e., missed
clusterings) for any (randomly) given energyδ2; this yields an upper bound forη.

Let A1, . . . , Ak1
andB1, . . . , Bk2

denote the zero mean fluctuations arounda andb, respectively,
and letU1, . . . , Uk1−m

−

andV1, . . . , Vk2−m+
denote the zero mean fluctuations arounda′ andb′,

respectively. Let variablesY1, . . . , Ym
−

≥ 0 denote the long-range (random) jumps froma to b′ for
elements in seta → b′, and letZ1, . . . , Zm+

≥ 0 for elements in setb → a′; Apparently, we have
Zj = a′ + Uj − b − Bj . We have the optimization problem described in Fig. 2 for themaximum
number of mis-clusteringsm. In the constraints, Eqs. (1) and (2) refer to the unit lengthof v2 and
ṽ2, respectively; and Eq. (3) refers to the total energy constraint.

Without loss of generality we consider the case described inFig. 1 with a, a′ > 0, b, b′ ≤ 0, and
(a′ − b)2 < (a − b′)2. Due to symmetry, the same argument follows when we considerthe other
cases. According to assumption B3, we haveEYi = a − b′ andEZj = a′ − b, for all i andj. By
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working with expectations, we have

EY 2
1 + ... + EY 2

m
−

≥
1

m−

(EY1 + ... + EYm
−

)2 = m−(a − b′)2

EZ2
1 + ... + EZ2

m+
≥

1

m+
(EZ1 + ... + EZmZZ+)2 = m+(a′ − b)2.

Summing and substituting into Eq. (3), we get

m+(a′ − b)2 + m−(a − b′)2 ≤ E

m
−

∑

i=1

Y 2
i + E

m+
∑

j=1

Z2
j ≤ δ2 (4)

To maximize the objective functionm = m− + m− given (4) and given(a′ − b)2 < (a − b′)2, we
should setm− = 0 andm = m+. This turns (4) intom(a′ − b)2 ≤ δ2, under whichm achieves its
maximum whenb = 0.

Let σ2
Z denote the variance ofZi, which may depend onm or n. The following arguments allow us

to assume thata′2 = b′2 + EV 2
1 − σ2

Z −EB2
1 . The resultsb = 0 andm = m+ simplify Eq. (2) into

k1
∑

i=1

(a′ + Ui)
2 +

k2−m
∑

j=1

(b′ + Vj)
2 +

m
∑

j=1

(Bj + Zj)
2 = 1. (5)

Taking an expectation on both sides and using the assumptions that theUi are identically distributed
with zero mean, as are theVj , we get

k1a
′2 + k1EU2

1 + (k2 − m)b′2 + (k2 − m)EV 2
1 + m(a′2 + σ2

Z) = 1, (6)

which implies thatσ2
Z ≤ 1

m . Hence we can assume thatσ2
Z = β

m for some0 ≤ β ≤ 1. Setting
b′2 = a′2 − EV 2

1 + σ2
Z + EB2

1 in Eq. (6) effectively disables this constraint form, and Eq. (6)
becomes:

k1a
′2 + k1EU2

1 + k2b
′2 + k2EV 2

1 = 1.

Substitutingb′2 = a′2 − EV 2
1 + σ2

Z + EB2
1 into this equation, we obtain

k1a
′2 + k1EU2

1 + k2(a
′2 − EV 2

1 + σ2
Z) + k2EV 2

1 = na′2 + k2σ
2
Z + k1EU2

1 = 1,

from which we obtain

na′2 = 1 − k1EU2
1 −

k2β

m
− k2EB2

1 . (7)

Usingb = 0 andm = m+ also simplifies Eq. (3), which becomes:
k1
∑

i=1

(a + Ai − a′ − Ui)
2 +

k2−m
∑

j=1

(Bj − b′ − Vj)
2 +

m
∑

j=1

(a′ − Bj + Uj)
2 = δ2.

Taking an expectation on both sides yields

k1((a − a′)2 + EA2
1) + k1EU2

1 + k2EB2
1 + (k2 − m)(b′2 + EV 2

1 ) + m(a′2 + EU2
1 ) = δ2,

implying

k1EU2
1 + k2EB2

1 ≤ δ2 − β − ma′2 (8)

(n − m)a′2 ≤
(n − m)(δ2 − β)

m
. (9)

Substituting (8) into (7) and combining with (9), we get

1 − δ2 + β −
k2

m
β ≤ (n − m)a′2 ≤

(n − m)(δ2 − β)

m
Rearranging terms we have

m ≤ nδ2 − nβ + k2β ≤ nδ2

η =
m

n
≤ δ2 = ‖ṽ2 − v2‖

2.

When‖ṽ2−v2‖
2 is small, and if we further assume that all components ofṽ2−v2 are independent,

then‖ṽ2−v2‖
2 is highly concentrated around its mean asymptotically in the number of data points.

In this case we obtainη ≤ (1 + op(1))E‖ṽ2 − v2‖
2.
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Proof of Lemma 2 For the perturbation on the Laplacian matrix, we have

dL = I − (D + ∆)−1(K + dK) − I + D−1K (10)

Because the perturbationdK is small comparing toK, so is∆ comparing toD, and∆D−1 is small.
Using Taylor expansion for functionG(X) = (I + X)−1 aroundX = 0̃n×n, we have

(I + ∆D−1)−1 = I − ∆D−1 + O((∆D−1)2).

Substituting it into Eq. (10), we get

dL = −[I − ∆D−1 + O((∆D)−2)]D−1(K + dK) + D−1K

= −D−1(K + dK) + ∆D−2(K + dK) − O((∆D)−2)D−1(K + dK) + D−1K

= (1 + o(1)) ∆D−2K − D−1dK.

Proof of Lemma 3 Let Sij := ||xi − xj + ǫi − ǫj ||
2. For i = j, the result holds trivially. For

i 6= j and givenX,
(

Sij/2σ2
)

follows a non-central chi-square distribution with parameter (d, λij),
whereλij =

(

||xi − xj ||
2/2σ2

)

. The mean isd + λij , the variance is2(d + 2λij), and the moment

generating function isMij(t) =
[

exp
(

λijt
1−2t

)

/(1 − 2t)
d/2

]

. K̃ij is an exponential function of the

non-central chi-square random variable
(

Sij/2σ2
)

, so the first two moments of̃Kij can be computed
using the moment generating functionMij(t), which gives the results in Eq.(15) in the main paper.

Proof of Lemma 4 Let Sij := ||xi − xj + ǫi − ǫj ||
2. For i = j, the result holds trivially.

For i 6= j, Sij is the sum ofd (the dimension ofX) independent variables, and approximately
follows a Gaussian distribution for larged. We only need to work out its mean and variance. Let
λij := ||xi − xj ||

2. Given input dataX, we have

ESij = E||xi − xj + ǫi − ǫj ||
2 =

d
∑

p=1

[

(X
(p)
i − X

(p)
j )2 + 2σ2

]

= λij + 2dσ2

ES2
ij =

d
∑

p=1

d
∑

q=1

E
[

X
(p)
i − X

(p)
j + ǫ

(p)
i − ǫ

(p)
j

]2

·
[

X
(q)
i − X

(q)
j + ǫ

(q)
i − ǫ

(q)
j

]2

= λ4
ij + 4(d2 − d)σ4 + d(2µ4 + 6σ4) + 8σ2λ2

ij + 4dσ2λ2
ij

Var(Sij) = ES2
ij − (ESij)

2
= 2dµ4 + 2dσ4 + 8σ2λ2

ij .

So using the moment-generating function, we obtain the following asymptotic results [2]:

E
(

K̃ij

)

= E

(

exp

(

−
Sij

2σ2
k

))

= Mij

(

−
1

2σ2
k

)

E
(

K̃2
ij

)

= E

(

exp

(

−
Sij

σ2
k

))

= Mij

(

−
1

σ2
k

)

,

which completes the proof.

References

[1] D. Yan, “Some issues with dimensionality in statistical inference,” Ph.D. dissertation, University of Cali-
fornia, Berkeley, 2008.

[2] J. A. Rice,Mathematical Statistics and Data Analysis. Duxbury Press, 1995.

4


