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Abstract

The inverse dynamics problem for a robotic manipulator is to compute the torques
needed at the joints to drive it along a given trajectory; it is beneficial to be able
to learn this function for adaptive control. A robotic manipulator will often need
to be controlled while holding different loads in its end effector, giving rise to a
multi-task learning problem. By placing independent Gaussian process priors over
the latent functions of the inverse dynamics, we obtain a multi-task Gaussian pro-
cess prior for handling multiple loads, where the inter-task similarity depends on
the underlying inertial parameters. Experiments demonstrate that this multi-task
formulation is effective in sharing information among the various loads, and gen-
erally improves performance over either learning only on single tasks or pooling
the data over all tasks.

1 Introduction

The inverse dynamics problem for a robotic manipulator is to compute the torquesτ needed at the
joints to drive it along a given trajectory, i.e. the motion specified by the joint anglesq(t), velocities
q̇(t) and accelerations̈q(t), through timet. Analytical models for the inverse dynamicsτ (q, q̇, q̈)
are often infeasible, for example due to uncertainty in the physical parameters of the robot, or the
difficulty of modelling friction. This leads to the need tolearn the inverse dynamics.

A given robotic manipulator will often need to be controlled while holding different loads in its end
effector. We refer to different loadings as differentcontexts. The inverse dynamics functions depend
on the different contexts. A simple approach is to learn a different mapping for each context, but
it is more attractive if one can exploit commonality in these related tasks to improve performance,
i.e. to carry outmulti-task learning (MTL) [1, 2]. The aim of this paper is to show how this can be
carried out for the inverse dynamics problem using a multi-task Gaussian process (GP) framework.

In §2 we discuss the relevant theory for the problem. Details of how we optimize the hyperparam-
eters of the multi-task GP are given in§3, and model selection is described in§4. Relationships to
other work are discussed in§5, and the experimental setup and results are given in§6.

2 Theory

We first describe the relationship of inverse dynamics functions among contexts in§2.1. In§2.2 we
review the multi-task GP regression model proposed in [3], and in§2.3 we describe how to derive a
multi-task GP model for the inverse-dynamics problem.

2.1 Linear relationship of inverse dynamics between contexts

Suppose we have a robotic manipulator consisting ofJ joints, and a set ofM loads. Figure 1 illus-
trates a six-jointed manipulator, with jointj connecting linksj−1 andj. We wish to learn the inverse
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Figure 1: Schematic of the PUMA 560 without
the end-effector (to be connected to joint 6).
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Figure 2: A schematic diagram on how the dif-
ferent functions are related. A plate repeats its
contents over the specified range.

dynamics model of the manipulator for themth context, i.e. when it handles themth load in its end-
effector connected to the last link. We denote this byτm(x) ∈ R

J , with x def= (qT, q̇T, q̈T)T ∈ R
3J .

It can be shown that the required torque for thejth joint can be written as [4]

τm
j (x) =

∑J

j′=j yT
jj′(x)πm

j′ yjj′ : R
3J 7→ R

10, (1)

where theyjj′ ’s are vector-valued functions ofx, andπm
j′ ∈ R

10 is the vector of inertial parameters1

of thej′th joint when manipulating themth load. The inertial parameters for a joint depend on the
physical characteristics of its corresponding link (e.g. mass) and are independent ofx.

When, as in our case, the loads are rigidly attached to the end effector, each load may be considered
as part of the last link, and thus modifies the inertia parameters for the last link only [5]. The
parameters for the other links remain unchanged since the parameters are local to the links and their
frames. Denoting the common inertial parameters of thej′th link by π•

j′ , we can write

τm
j (x) = hj(x) + yT

jJ(x)πm
J , where hj(x) def=

∑J−1

j′=j yT
jj′(x)π•

j′ . (2)

Define ỹj(x) def= (hj(x), (yjJ(x))T)T andπ̃m def= (1, (πm
J )T)T, thenτm

j (x) = ỹj(x)Tπ̃m. Note
that theỹjs are shared among the contexts, while theπ̃ms are shared among theJ links, as illustrated
in Figure 2. This decomposition is not unique, since given a non-singular square11×11 matrixAj ,
settingzj(x) def= A−T

j ỹj(x) andρm
j

def= Ajπ̃
m, we also have

τm
j (x) = ỹj(x)TA−1

j Ajπ̃
m = zj(x)Tρm

j . (3)

Hence the vector of parameters̃πγ is identifiable only up to a linear combination. Note that in
general the matrixAj may vary across the joints.

2.2 Multi-task GP regression model

We give a brief summary of the multi-task Gaussian process (GP) regression model described in [3].
This model learnsM related functions{fm}M

m=1 by placing a zero mean GP prior which directly
induces correlations between tasks. Lettm be the observation of themth function atx. Then the
model is given by

〈fm(x)fm′

(x′)〉
def
= Kf

mm′kx(x,x′) tm ∼ N (fm(x),σ2
m), (4)

wherekx is a covariance function over inputs,Kf is a positive semi-definite (p.s.d) matrix of inter-
task similarities, andσ2

m is the noise variance for themth task.

2.3 Multi-task GP model for multiple contexts

We now show that the multi-task GP model can be used for inferring inverse dynamics for multiple
contexts. We begin by placing independent zero mean GP priors on all the component functions of
z1(·), . . . ,zJ(·). Let α be an index into the elements of the vector functionzj(·), then our prior is

〈zjα(x)zj′α′(x′)〉 = δjj′δαα′kx
j (x,x′). (5)

1We may also formulate our model using the more general vector of dynamic parameters which includes
also the friction parameters, motor inertia etc. However, these additional parameters are independent of the
load, and so can be absorbed into the functionhj in eq. 2.



In addition to independence specified by the Kronecker delta functionsδ··, this model also imposes
the constraint that all component functions for a given jointj share the same covariance function
kx

j (·, ·). With this prior over thezjs, the Gaussian process prior forτm
j (·) is given by

〈τm
j (x)τm′

j′ (x′)〉 = δjj′(Kρ

j )mm′kx
j (x,x′), (6)

where we have setPj
def= (ρ1

j | · · · |ρ
M
j ) and Kρ

j
def= PT

j Pj , so that(ρm
j )Tρm′

j = (Kρ

j )mm′ , the
(m,m′)th entry of the positive semi-definite matrixKρ

j . Notice thatKρ

j defines the similarity
between different contexts. The rank ofKρ

j is the rank ofPj , and is upper bounded bymin(M , 11),
reflecting the fact that there are at most11 underlying latent functions (see Figure 2).

Let tmj (x) be the observed value ofτm
j (x). The deviations fromτm

j (x) may be modelled with
tmj (x) ∼ N (τm

j (x), (σm
j )2), though in practice we letσj

def= σ1
j ≡ σ2

j . . . ≡ σM
j , sharing the vari-

ance parameters among the contexts. This completes the correspondence with the multi-task GP
model in eq. 4. Note, however, that in this case we haveJ multi-task GP models, one for each joint.

This model is a simple and convenient one where the prior, likelihood and posterior factorize over
joints. Hence inference and hyperparameter learning can be done separately for each joint.

Making predictions As in [3], inference in our model can be done by using the standard GP
formulae for the mean and variance of the predictive distribution with the covariance function given
in eq. 6 together with the normal noise model. The observations over all contexts for a given jointj
will be used to make the predictions. For the case of complete data (where there are observations at
the same set ofx-values for all contexts) one can exploit the Kronecker-product structure [3, eq. 2].

2.3.1 The relationship among task similarity matrices

Let Π̃ def= (π̃1| · · · |π̃M ). Recall that̃πm is an 11 dimensional vector. However, if the different loads
in the end effector do not explore the full space (e.g. if some of the inertial parameters are constant
over all loads), then it can happen thats def= rank(Π̃) ≤ min(M , 11).

It is worthwhile to investigate the relationship betweenKρ

j andKρ

j′ , j 6= j′. Recall from eq. 3 that

ρm
j

def= Ajπ̃
m, whereAj is a full-rank square matrix. This givesPj = AjΠ̃ andKρ

j = Π̃TAT
j AjΠ̃,

so thatrank(Kρ

j ) = rank(Π̃). Therefore theKρ

j s have the same rank for all joints, although their
exact values may differ. This observation will be useful for model selection in§4.

3 Learning the hyperparameters — a staged optimization heuristic

In this section, we drop the joint indexj for the sake of brevity and clarity. The following applies
separately for each joint. Lettm be the vector ofnm observed torques at the joint for contextm,
andXm be the corresponding3J×nm design matrix. Further, letX be the3J×N design matrix
of distinctx-configurations observed over allM contexts. Given this data, we wish to optimize the
marginal likelihoodL(θx,Kρ,σ2) def= p({tm}M

m=1|X,θx,Kρ,σ2), whereθx are the parameters of
kx. As pointed out in [3], one may approach this either using general gradient-based optimization,
or using expectation-maximization. In this paper, the former is used.

In general, the objective functionL(θx,Kρ,σ2) will have multiple modes, and it is a difficult prob-
lem of how to locate the best mode. We propose a staged strategy during optimization to help
localize the search region. This is outlined below, with details given in the subsections that follow.

Require: Starting positionsθx
0, Kρ

0 , σ2
0 , and rankr.

{All arg max operations are understood to find only the local maximum.}
1: Starting fromθx

0 andσ2
0 , find (θx

1,σ
2
1) = arg maxθx,σ2 L(θx,Kρ

0 ,σ2).
2: CalculateK1

ρ based on details in§3.2.
3: Starting fromθx

1, Kρ

1 , andσ2
0 , find (θx

ans,K
ρ

ans,σ2
ans) = arg maxθx,Kρ,σ2 L(θx,Kρ,σ2).

The optimization order reflects the relative importance of the different constituents of the model.
The most important iskx, hence the estimation ofθx begins in step1; the least important isσ2,
hence its estimation from the initial valueσ2

0 is in step3. For our application, we find that this
strategy works better than one which simultaneously optimizes for all the parameters.



3.1 The initial choice ofKρ

The choice ofKρ

0 is important, since it affects the search very early on. Reasonable values that
admit ready interpretations are the matrix of ones11T and the identity matrixI. For Kρ

0 = 11T,
we initially assume the contexts to be indistinguishable from each other; while forKρ

0 = I, we
initially assume the contexts to be independent given the kernel parameters, which is a multi-task
learning model that has been previously explored, e.g. [6]. These two are at the opposite extremes
in the spectrum of inter-context/task correlation, and we believe the merit of each will be application
dependent. Since these two models have the same number of free parameters, we select the one with
the higher likelihood as the starting point for the search in step 2. However, we note that in some
applications there may be reasons to prefer one over the other.

3.2 Computation ofKρ

1 in step 2

Given estimatesθx
1 andσ2

1 , we wish to estimate aKρ

1 from which the likelihood can be optimized
in step 3. Here we give the sequence of considerations that leads to a formula for computingKρ

1 .

Let Kx
1 be the covariance matrix for all pairs inX, usingθx

1 for kx. LetT be anN×M matrix which
corresponds to the true values of the torque functionτm(xi) for m = 1, . . . ,M andi = 1, . . . ,N .
Then as per the EM step discussed in [3, eq. 4], we have

Kρ

EM = N−1
〈

T T(Kx
1 )−1T

〉

θ̃0

≃ N−1 〈T 〉T
θ̃0

(Kx
1 )−1 〈T 〉

θ̃0
, (7)

where the expectations are taken w.r.t a GP with parametersθ̃0 = (θx
1,K

ρ

0 ,σ2
1), and the(i,m)th

entry of〈T 〉
θ̃0

is the mean ofτm(xi) with this GP. The approximation neglects the GP’s variance;
this is justifiable since the current aim is to obtain a starting estimate ofKρ for a search procedure.

There are two weaknesses with eq. 7 that we shall address. The first is that the rank of〈T 〉
θ̃0

is
upper bounded by that ofKρ

0 , so that the rank ofKρ

EM is similarly upper bounded.2 This property
is undesirable, particularly whenKρ

0 = 11T . We ameliorate this by replacing〈τm(xi)〉θ̃0
with the

corresponding observed valuetm(xi) wherever it is available, and call the resultant matrixTaug.
The second weakness is that with the commonly used covariance functions,Kx

1 will typically have
rapidly decaying eigenvalues [7,§4.3.1]. To overcome this, we regularize its inversion by addingη2I
to the diagonal ofKx

1 to giveKρ

aug = N−1T T
aug(K

x
1 + η2I)−1Taug. We setη2 to tr(T T

augTaug)/(MN),
so thattr(Kρ

aug) = M if Kx
1 were the zero matrix.

Finally, the requiredKρ

1 is obtained fromKρ

aug by constraining it to have rankr. This is cur-
rently achieved by computing the eigen-decomposition ofKρ

aug and keeping only the topr eigen-
vectors/values; it could also be implemented using an incomplete Cholesky decomposition.

3.3 Incorporating a novel task

Above we have assumed that data from all contexts is available at training time. However, we may
encounter a new context for which we have not seen much data. In this case we fixθx andσ2 while
extendingKρ by an extra row and column for the new context, and it is only this new border which
needs to be learned by maximising the marginal likelihood. Note that asKρ is p.s.d this means
learning only at mostM new parameters, or fewer if we exploit the rank-constraint property ofKρ.

4 Model selection

The choice of the rankr of Kρ

j in the model is important, since it reflects on the ranks of Π̃. In our
model,r is not a hyperparameter to be optimized. Thus to infer its value we rely on an information
criterion to select the most parsimonious correct model. Here, we use the Bayesian Information
Criterion (BIC), but the use of Akaike or Hannan-Quinn criteria is similar.

Let Ljr be the likelihood for each joint at optimized hyperparametersθx
j , Kρ

j , andσ2
j , whenKρ

j

is constrained to have rankr; let nm
j be the number of observations for thejth joint in the mth

2This is not due to our approximation; indeed, it can be shown that the rank ofK
ρ

EM is upper bounded by
that ofKρ

0
even if the exact EM update in eq. 7 has been used.



context, andn def=
∑

j,m nm
j be the total number of observations; and letdj be the dimensionality of

θx
j . Since the likelihood of the model factorizes over joints, we have

BIC(r) = −2
∑J

j=1 log Ljr +
(

∑J

j=1 dj + J
2
r(2M + 1 − r) + J

)

log n, (8)

wherer(2M + 1 − r)/2 is the number of parameters needed to define an incomplete Cholesky
decomposition of rankr for anM×M matrix. For selecting the appropriate rank of theKρ

j s, we
compute and compare BIC(r) for different values ofr.

5 Relationships to other work

We consider related work first with regard to the inverse dynamics problem, and then to multi-task
learning with Gaussian processes.

Learning methods for the single-context inverse dynamics problem can be found in e.g. [8], where
the locally weighted projection regression (LWPR) method is used. Gaussian process methods for
the same problem have also been shown to be effective [7,§2.5; 9]. The LWPR method has been
extended to the multi-context situation by Petkos and Vijayakumar [5]. If the inertial parameters
πm

J s are known for at least 11 contexts then the estimated torque functions can be used to estimate
the underlyingyjj′s using linear regression, and prediction in a novel context (with limited training
data) will depend on estimating the inertial parameters for that context. Assuming the original
estimated torque functions are imperfect, having more than 11 models for distinct known inertial
parameters will improve load estimation. If the inertial parameters are unknown, the novel torque
function can still be represented as a linear combination of a set of 11 linearly independent torque
functions, and so one can estimate the inverse dynamics in a novel context by linear regression on
those estimated functions. In contrast to the known case, however, no more than 11 models can be
used [5,§V]. Another difference between known and unknown parameters is that in the former case
the resultingπm

J s are interpretable, while in the latter there is ambiguity due to theAjs in eq. 3.

Comparing our approach with [5], we note that: (a) their approach does not exploit the knowledge
that the torque functions for the different contexts are known to share latent functions as in eq. 2,
and thus it may be useful to learn theM inverse dynamics modelsjointly. This is expected to be
particularly advantageous when the data for each task explores rather different portions ofx-space;
(b) rather than relying on least-squares methods (which assume equal error variances everywhere),
our fully probabilistic model will propagate uncertainties (co-variances for jointly Gaussian models)
automatically; and (c) eq. 6 shows that we do not need to be limited to exactly11 reference contexts,
either fewer or more than11 can be used. On the other hand, using the LWPR methods will generally
give rise to better computational scaling for large data-sets (although see approximate GP methods
in [7, ch. 8]), and are perhaps less complex than the method in this paper.

Earlier work on multiple model learning such as Multiple Model Switching and Tuning (MMST)
[10] uses an inverse dynamics model and a controller for each context, switching among the models
to the one producing the most accurate predictions. The models are linear-in-the-parameters with
known non-linear regressor functions ofx, and the number of models are assumed known. MMST
involves very little dynamics learning, estimating only the linear parameters of the models. A closely
related approach is Modular Selection and Identification for Control (MOSAIC) [11], which uses
inverse dynamics models for control and forward dynamics models for context identification. How-
ever, MOSAIC was developed and tested on linear dynamics models without the insights into how
eq. 1 may be used across contexts for more efficient and robust learning and control.

Early references to general multi-task learning are [1] and [2]. There has been a lot of work in recent
years on MTL with e.g. neural networks, Dirichlet processes, Gaussian processes and support vector
machines. Some previous models using GPs are summarized in [3]. An important related work is the
semiparametric latent factor model [12] which has a number of latent processes which are linearly
combined to produce observable functions as in eq. 3. However, in our model all the latent functions
share a common covariance function, which reduces the number of free parameters and should thus
help to reduce over-fitting. Also we note that the regression experiments by Teh et al. [12,§4] used
a forward dynamics problem on a four-jointed robot arm for a single context, with an artificial linear
mixing of the four target joint accelerations to produce six response variables. In contrast, we have
shown how linear mixing arises naturally in a multi-context inverse dynamics situation. In relation
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Table 1: The trajectories at which the training
samples for each load are acquired. All loads
have training samples from the common trajec-
tory (p2, s3). For the multiple-contexts setting,
c15, and hence(p4, s4), is not used for training.

s1 s2 s3 s4

p1 c1 c7 c13 c14

p2 c6 c12 c1 · · · c15 c5

p3 c11 c3 c4 c10

p4 c2 c8 c9 c15∗

Table 2: The average nMSEs of the predictions by LR and sGP, for joint 3 and for both kinds of test
sets. Training set sizes given in the second row. The nMSEs are averaged over loadsc1 . . . c15.

average nMSE for theinterpm sets average nMSE for theextrapm sets
20 170 1004 4000 20 170 1004 4000

LR 1×10−1 7×10−4 6×10−4 6×10−4 5×10−1 2×10−1 2×10−1 2×10−1

sGP 1×10−2 2×10−7 2×10−8 3×10−9 1×10−1 3×10−2 4×10−3 3×10−3

to work by Bonilla et al. [3] described in section 2.2, we note that the factorization between inter-task
similarity Kf and a common covariance functionkx is anassumption there, while we have shown
that such decomposition isinherent in our application.

6 Experiments

Data We investigate the effectiveness of our model with the Puma 560 (Figure 1), which has
J = 6 degrees of freedom. We learn the inverse dynamic models of this robot manipulatingM = 15
different loadsc1, . . . , c15 through four different figure-of-eight paths at four different speeds. The
data for our experiments is obtained using a realistic simulation package [13], which models both
Coulomb and viscous frictional forces. Figure 3 shows the pathsp1, . . . , p4 which are placed at
0.35m, 0.45m, 0.55m and0.65m along thex-axis, at0.36m, 0.40m, 0.44m and0.48m along the
z-axis, and rotated about thez-axis by−10◦, 0◦, 10◦ and20◦. There are four speedss1, . . . , s4,
finishing a path in20s, 15s, 10s and5s respectively. In general, loads can have very different
physical characteristics; in our case, this is done by representing each load as a cuboid with differing
dimensions and mass, and attaching each load rigidly to a random point at the end-effector. The
masses range evenly from0.2kg for c1 to 3.0kg for c15; details of the other parameters are omitted
due to space constraints.

For each loadcm, 4000 data points are sampled at regular intervals along the path for each path-speed
(trajectory) combination(p·, s·). Each sample is the pair(t,x), wheret ∈ R

J are the observed
torques at the joints, andx ∈ R

3J are the joint angles, velocities and accelerations. This set of data
is partitioned into train and test sets in the manner described below.

Acquiring training data combinatorially by sampling for every possible load-trajectory pair may be
prohibitively expensive. One may imagine, however, that training data for the handling of a load can
be obtained along a fixed reference trajectoryTr for calibration purposes, and also along a trajectory
typical for that load, sayTm for themth load. Thus, for each load,2000 random training samples
are acquired at a common reference trajectoryTr = (p2, s3), and an additional2000 random training
samples are acquired at a trajectory unique to each load; Table 1 gives the combinations. Therefore
each load has a training set of4000 samples, but acquired only on two different trajectories.

Following [14], two kinds of test sets are used to assess our models for (a) control along a repeated
trajectory (which is of practical interest in industry), and (b) control along arbitrary trajectories
(which is of general interest to roboticists). The test for (a) assesses the accuracy of torque predic-
tions for stayingwithin the trajectories that were used for training. In this case, the test set for load
cm, denoted byinterpm for interpolation, consists of the rest of the samples fromTr andTm that are
not used for training. The test for (b) assesses the accuracy also forextrapolation to trajectories not



sampled for training. The test set for this, denoted byextrapm, consists of all the samples that are
not training samples forcm.

In addition, we consider a data-poor scenario, and investigate the quality of the models using ran-
domly selected subsets of the training data. The sizes of these subsets range from20 to 4000.

Results comparing GP with linear regression We first compare learning the inverse dynamics
with Bayesian linear regression (LR) to learning with single-task Gaussian processes (sGP). For each
context and each joint, we train a LR model and a sGP model with the corresponding training data
separately. For LR, the covariates are(x, sgn(q̇), 1), wheresgn(·) is the component-wise signum
of its arguments; regression coefficientsβ and noise varianceσ2 are given a broad normal-inverse-
gamma priorp(β,σ2) ≡ N (β|0,σ2 · 108I)IG(σ2|1, 1), though note that the mean predictions do
not depend on the parameters of the inverse-gamma prior onσ2. The covariance function of each
sGP model is a sum of an inhomogeneous linear kernel on(x, sgn(q̇)), a squared exponential kernel
onx, and an independent noise component [7,§4.2], with the first two using the automatic relevance
determination parameterization [7,§5.1]. The hyperparameters of sGP are initialized by giving equal
weightings among the covariates and among the components of the covariance function, and then
learnt by optimizing the marginal likelihood independently for each context and each joint.

The trained LR and sGP models are used to predict torques for theinterpm andextrapm data sets. For
each test set, the normalized mean square error (nMSE) of the predictions are computed, by dividing
the MSE by the variance of the test data. The nMSEs are then averaged over the 15 contexts for
the interpm andextrapm tests. Table 2 shows how the averages for joint3 vary with the number
of training samples. Similar relative results are obtained for the other joints. The results show that
sGP outperforms LR for both the test cases. As one would expect, the errors of LR level-off early
at around 200 training samples, while the quality of predictions by sGP continues to improve with
training sample size, especially so for theinterpm sets. Both sGP and LR do reasonably well on the
interpm sets, but not so well on theextrapm sets. This suggests that learning from multiple contexts
which have training data from different parts of the trajectory space will be advantageous.

Results for multi-task GP We now investigate the merit of using MTL, using the training data
tabulated in Table 1 for loadsc1, . . . , c14. We usen to denote the number of observed torques for
each joint totalled across the14 contexts. Note that trajectory(p4, s4) is entirely unobserved during
learning, but is included in theextrapm sets. We learn the hyperparameters of a multi-task GP model
(mGP) for each joint by optimizing the marginal likelihood for all training data (accumulated across
contexts) for that joint, as discussed in§3, using the same kernel and parameterization as for the
sGP. This is done for ranks2, 4, 5, 6, 8 and10. Finally, a common rankr for all the joints is chosen
using the selection criterion given in§4. We denote the selected set of mGP models by mGP-BIC.

In addition to comparing with sGP, we also compare mGP-BIC with two other naı̈ve schemes: (a)
denoted by iGP, a collection of independent GPs for the contexts, but sharing kernel parameters of
kx

j among the contexts; and (b) denoted by pGP, a single GP for each joint that learns by pooling
all training data from all the contexts. The iGP and pGP models can be seen as restrictions of the
multi-task GP model, restrictingKρ

j to the identity matrixI and the matrix of ones11T respectively.

As discussed in§3, the hyperparameters for the mGPs are initialized to either those of pGP or those
of iGP during optimization, choosing the one with the higher marginal likelihood. For our data,
we find that the choice is mostly iGP; pGP is only chosen for the case of joint1 andn < 532. In
addition, the chosen ranks based on the BIC arer = 4 for all cases ofn, except forn = 476 and
n = 1820 whenr = 5 is selected instead.

Figure 4 gives results of sGP, iGP, pGP and mGP-BIC for both theinterpm andextrapm test sets,
and for joints 1 and 4. Plots for the other joints are omitted due to space constraints, but they are
qualitatively similar to the plots for joint 4. The plots are the average nMSEs over the14 contexts
againstn. The vertical scales of the plots indicate that extrapolation is at least an order of magnitude
harder than interpolation. Since the training data are subsets selected independently for the different
values ofn, the plots reflect the underlying variability in sampling. Nevertheless, we can see that
mGP-BIC performs favorably in almost all the cases, and especially so for the extrapolation task.
For joint 1, we see a close match between the predictive performances of mGP-BIC and pGP, with
mGP-BIC slightly better than pGP for the interpolation task. This is due to the limited variation
among observed torques for this joint across the different contexts for the range of end-effector
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Figure 4: Average nMSEs of sGP (), iGP ( ), pGP ( ) and mGP-BIC ( ) againstn (on log2

scale). Ticks on thex-axes represent specified values ofn. The vertical scales of the plots varies. A
value above the upper limit of its vertical range is plotted with a nominal value near the top instead.

movements investigated here. Therefore it is not surprising that pGP produces good predictions
for joint 1. For the other joints, iGP is usually the next best after mGP-BIC. In particular, iGP is
better than sGP, showing that (in this case) combining all the data to estimate the parameters of a
single common covariance function is better than separating the data to estimate the parameters of
14 covariance functions.

7 Summary

We have shown how the structure of the multiple-context inverse dynamics problem maps onto a
multi-task GP prior as given in eq. 6, how the corresponding marginal likelihood can be optimized
effectively, and how the rank of theKρ

j s can be chosen. We have demonstrated experimentally
that the results of the multi-task GP method (mGP) are generally superior to sGP, iGP and pGP.
Therefore it is advantageous to learn inverse dynamics models jointly using mGP-BIC, especially
when each context/task explores different portions of the data space, a common case in dynamics
learning. In future work we would like to investigate if coupling learning over joints is beneficial.
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