Appendix 1: Computing Clebsch-Gordan Coefficients

One way to compute Clebsch-Gordan coefficients is to nawiely it as a similarity matrix recovery
problem, with the twist that the similarity matrix must bensgstent over all group elements. We
first cast the problem of recovering a similarity matrix asuigpace computation.

Proposition 1. Let 4, B, C be matrices such thatC andC B are defined. Lei = I A—BT®1.
ThenAC = CB if and only if ve¢C') € Nullspacg k).

Proof. A well known matrix identity ([1]) states that ifi, B, C' are matrices such that the product
ABC'is defined, then véed BC) = (CT @ A) ved B). Applying the identity,
veqACI) = vedICB)
(I® A)vedC) = (B"®1I)vedC)
(I®A-B"®I)vedC) = 0
O

For eachr € S,,, the matrixi,, constructed using the above proposition yields the spaceabices
C;; such that

(pi © pj(0)) - C = C - &2 pi(0)
To find a C;; which is consistent across all group elements, we need totfiadntersection:

N, Nullspace(K, ). Atfirst glance, it seems that this might require lookinghhullspaces, but as
luck would have it, most of these nullspaces are extranexsuse now show.

Definition 2. We say that a groufy is generatedy a set ofgeneratorsS = {gi, ..., gm | if every
element ofG can be written as a finite product of elementsiand their inverses.

To ensure a consistent similarity matrix for all group elaisewe use the follow proposition which
says that it suffices to be consistent on only a set of gensratahe group.

Proposition 3. Let p and T be representations @F. Suppose that: is generated by the elements
g1, -- -, gm. If there exists a linear ma@' such thatp(g;) - C = C - 7(g;) for eachi € {1,...,m},
thenp andr are equivalent as representations withas the equivalence map.

Proof. We just need to show that is a similarity transform for any other element@fas well. Let
z be any element off and write it as a product of generators:= [];__, g;. It follows that:

e = C_l'p<Hgi> O=0"" (Hmm) .
- H (€7 plgi) - C) = HT(gz‘) =T (H 97:> =7(x)

Since this holds for every € G, we have showid' to be an equivalence map between representa-
tions. O

The good news is that despite having ordgrS,, can be generated by just two elements, and so the
problem reduces to solving for the intersection of two malses, which can be done using standard
numerical methods. Computationally, it is often useful $e gparse nullspace algorithms since the
matrices happen to be quite sparse. Most of sparse nullgpga@ethms require an initial estimate
for the dimension of the nullspace, and for our particuladpem of finding a similarity transform
between two tensor product representations, there exisaaaytical expression for the dimension
of this nullspace.

Theorem 4. If K is constructed for finding the Clebsch-Gordan coefficiemtpf®p;, the nullspace
of the matrixk is (Zk zfjk)-dimensional, where; ;. is the Clebsch-Gordan series.

Proof. The result follows directly from some basic results aboudanorphism algebras and
Schur’s lemma (ch 1.7 from [2]). O



There is a second algorithm for finding Clebsch-Gordan aoeffts which is more efficient than the
one described here; we refer the reader to [3] for detailhie&igenfunction methad

Appendix 2: Proof of Proposition 3

We use the following matrix identities:

1. LetA be ann x n matrix, andC' an invertiblen x n matrix. Then Trd = Tr (C~'AC).

2. Let A be ann x n matrix andB; be matrices of sizen;, x m; where)_, m; = n. Then
Tr (A- (6, Bi)) = >_, Tr (A; - B;), whereA,; is the block ofA corresponding to block
B; in the matrix(D, B;).

3. If AandB are square, T(A® B) = (TrA) - (Tr B)

4. (A®B)-(C®D)=AC® BD

We also use the fact thét;; is orthogonal for all pairgp;, p;): CZ -Cy = 1.
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