
McRank: Learning to Rank Using Multiple
Classification and Gradient Boosting

Ping Li ∗

Dept. of Statistical Science
Cornell University

pingli@cornell.edu

Christopher J.C. Burges
Microsoft Research

Microsoft Corporation
cburges@microsoft.com

Qiang Wu
Microsoft Research

Microsoft Corporation
qiangwu@microsoft.com

Abstract
We cast the ranking problem as (1) multiple classification (“Mc”) (2) multiple or-
dinal classification, which lead to computationally tractable learning algorithms
for relevance ranking in Web search. We consider the DCG criterion (discounted
cumulative gain), a standard quality measure in information retrieval. Our ap-
proach is motivated by the fact that perfect classifications result in perfect DCG
scores and the DCG errors are bounded by classification errors. We propose us-
ing theExpected Relevanceto convert class probabilities into ranking scores. The
class probabilities are learned using a gradient boosting tree algorithm. Evalua-
tions on large-scale datasets show that our approach can improveLambdaRank[5]
and the regressions-based ranker [6], in terms of the (normalized) DCG scores. An
efficient implementation of the boosting tree algorithm is also presented.

1 Introduction
The generalrankingproblem has widespread applications including commercial search engines and
recommender systems. We developMcRank, a computationally tractable learning algorithm for the
general ranking problem; and we present our approach in the context of ranking in Web search.

For a given user input query, a commercial search engine returns many pages of URLs, in an order
determined by the underlying proprietary ranking algorithm. The quality of the returned results are
largely evaluated on the URLs displayed in the very first page. The type of ranking problem in this
study is sometimes referred to asdynamic ranking(or simply, justranking), because the URLs are
dynamically ranked (in real-time) according to the specific user input query. This is different from
the query-independentstatic rankingbased on, for example, “page rank” [3] or “authorities and
hubs” [12], which may, at least conceptually, serve as an important “feature” for dynamic ranking
or to guide the generation of a list of URLs fed to the dynamic ranker.

There are two main categories of ranking algorithms. A popular scheme is based on learning
pairwise preferences, includingRankNet[4], LambdaRank[5], RankSVM[11], RankBoost[7],
GBRank[14], andFRank[13]. Both LambdaRankandRankNetused neural nets.1 RankNetused
a cross-entropy type of loss function andLambdaRankused a gradient based on NDCG smoothed
by the RankNet loss. Another scheme is based on regression [6]. [6] considered the DCG measure
(discounted cumulative gain) [10] and showed that the DCG errors are bounded by regression errors.

In this study, we also consider the DCG measure. From the definition of DCG, it appears more direct
to cast the ranking problem as multiple classification (“Mc”) as opposed to regression. In order to
convert classification results into ranking scores, we propose a simple and stable mechanism by
using theExpected Relevance. Our evaluations on large-scale datasets demonstrate the superiority
of the classification-based ranker (McRank) over both the regression-based and pair-based schemes.

2 Discounted Cumulative Gain (DCG)
For an input query, the ranker returnsn ordered URLs. Suppose the URLs fed to the ranker are orig-
inally ordered{1, 2, 3, ..., n}. The ranker will output a permutation mappingπ : {1, 2, 3, ..., n} →
{1, 2, 3, ..., n}. We denote the inverse mapping byσi = σ(i) = π−1(i).

The DCG score is computed from the relevance levels of then URLs as

DCG =

n
∑

i=1

c[i] (2
yσi − 1) =

n
∑

i=1

c[πi] (2
yi − 1) , (1)

∗Much of the work was conducted while Ping Li was an intern at Microsoft in 2006.
1In fact LambdaRank supports any preference function, although the reported results in [5] are for pairwise.

where[i] is the rank order, andyi ∈ {0, 1, 2, 3, 4} is the relevancelevel of theith URL in the
original (pre-ranked) order.yi = 4 corresponds to a “perfect” relevance andyi = 0 corresponds to
a “poor” relevance. For generating training datasets, human judges have manually labeled a large
number of queries and URLs. In this study, we assume these labels are “gold-standard.”

In the definition of DCG,c[i], which is a non-increasing function ofi, is typically set as

c[i] =
1

log(1 + i)
, if i ≤ L, and c[i] = 0, if i > L, (2)

whereL is the “truncation level” and is typically set to beL = 10, to reflect the fact that the search
quality of commercial search engines is mainly determined by the URLs displayed in the first page.

Suppose a dataset containsNQ queries. It is a common practice to normalize the DCG score for
each query and report the normalized DCG (“NDCG”) score averaged over all queries. In other
words, the NDCG for thejth query (NDCGj) and the final NDCG of the dataset (NDCGF) are

NDCGj =
DCGj

DCGj,g
, NDCGF =

1

NQ

NQ
∑

j=1

NDCGj , (3)

where DCGj,g is the maximum possible (or “gold standard”) DCG score of thejth query.

3 Learning to Rank Using Classification
The definition of DCG suggests that we can cast the ranking problem naturally as multiple classi-
fication (i.e.,K = 5 classes), because obviously perfect classifications will lead to perfect DCG
scores. While the DCG criterion is non-convex and non-smooth, classification is very well-studied.

We should mention that one does not really need perfect classifications in order to produce perfect
DCG scores. For example, suppose within a query, the URLs are all labeled level 1 or higher. If
an algorithm always classifies the URLs one level lower (i.e., URLs labeled level 4 are classified as
level 3, and so on), we still have the perfect DCG score but the classification “error” is100%. This
phenomenon to an extent, may provide some “safety cushion” for casting ranking as classification.

[6] cast ranking as regression and showed that the DCG errors are bounded by regression errors. It
appears to us that the regression-based approach is less direct and possibly also less accurate than our
classification-based proposal. For example, it is well-known that, although one can use regression
for classification, it is often better to use logistic regression especially for multiple classification [8].

3.1 Bounding DCG Errors by Classification Errors
Following [6, Theorem 2], we show that the DCG errors can be bounded by classification errors.

For a permutation mappingπ, the error is DCGg - DCGπ . One simple way to obtain the perfect
DCGg is to rank the URLs directly according to the gold-standard relevance levels. That is, all
URLs with relevance levelk + 1 are ranked higher than those with relevance level≤ k; and the
URLs with the same relevance levels are arbitrarily ranked without affecting DCGg. We denote the
corresponding permutation mapping also byg.

Lemma 1 Givenn URLs, originally ordered as{1, 2, 3, ..., n}. Suppose a classifier assigns a rele-
vance level̂yi ∈ {0, 1, 2, 3, 4} to theith URL, for alln URLs. A permutation mappingπ ranks the
URLs according tôyi, i.e.,π(i) < π(j) if ŷi > ŷj , and, URLi and URLj are arbitrarily ranked if
ŷi = ŷj . The corresponding DCG error is bounded by the square root of the classification error,

DCGg − DCGπ ≤15
√

2

(

n
∑

i=1

c
2
[i] − n

n
∏

i=1

c
2/n
[i]

)1/2(n
∑

i=1

1yi 6=ŷi

)1/2

. (4)

Proof:
DCGπ =

n
∑

i=1

c[πi] (2
yi − 1) =

n
∑

i=1

c[πi]

(

2ŷi − 1
)

+
n
∑

i=1

c[πi]

(

2yi − 2ŷi

)

≥
n
∑

i=1

c[gi]

(

2ŷi − 1
)

+
n
∑

i=1

c[πi]

(

2yi − 2ŷi

)

=

n
∑

i=1

c[gi] (2
yi − 1) −

n
∑

i=1

c[gi]

(

2yi − 2ŷi

)

+

n
∑

i=1

c[πi]

(

2yi − 2ŷi

)

=DCGg +

n
∑

i=1

(

c[πi] − c[gi]

)

(

2yi − 2ŷi

)

.

Note that
∑n

i=1 c[πi]

(

2ŷi − 1
)

≥
∑n

i=1 c[gi]

(

2ŷi − 1
)

. Therefore,

DCGg − DCGπ ≤
n
∑

i=1

(

c[gi] − c[πi]

)

(

2yi − 2ŷi

)

≤

(

n
∑

i=1

(

c[gi] − c[πi]

)2

)1/2(n
∑

i=1

(

2yi − 2ŷi

)2
)1/2

≤

(

2
n
∑

i=1

c
2
[i] − 2n

n
∏

i=1

c
2/n

[i]

)1/2

15

(

n
∑

i=1

1yi 6=ŷi

)1/2

Note that
∑n

i=1 c2
[πi]

=
∑n

i=1 c2
[gi]

=
∑n

i=1 c2
[i],
∏n

i=1 c2
[πi]

=
∏n

i=1 c2
[gi]

=
∏n

i=1 c2
[i], and24 − 20 = 15.

Thus, we can minimize the classification error
∑n

i=1 1yi 6=ŷi
as a surrogate for minimizing the DCG

error. Of course, since the classification error itself is non-convex and non-smooth, we actually
should use other (well-known) surrogate loss functions such as (7).

3.2 Input Data for Classification
A training dataset containsNQ queries. Thejth query corresponds tonj URLs; each URL is
manually labeled by one of theK = 5 relevance levels. Engineers have developed methodologies
to construct “features” by combining the query and URLs, but the details are usually “trade secret.”

One important aspect in designing features, at least for the convenience of using traditional machine
learning algorithms, is that these features should be comparable across queries. For example, one
(artificial) feature could be the number of times the query appears in the Web page, which is com-
parable across queries. Both pair-based rankers and regression-based rankers implicitly made this
assumption, as they tried to learn a single rank function for all queries using the same set of features.

Thus, after we have generated feature vectors by combining the queries and URLs, we can create a
“training data matrix” of sizeN ×P , whereN =

∑NQ

j=1 nj is the total number of “data points” (i.e.,
Query+URL) andP is the total number of features. This way, we can use the traditional machine
learning notation{yi, xi}

N
i=1 to denote the training dataset. Herexi ∈ R

P is theith feature vector
in P dimensions; andyi ∈ {0, 1, 2, 3, 4 = K − 1} is the class (relevance) label of theith data point.

3.3 From Classification to Ranking
Although perfect classifications lead to perfect DCG scores, in reality, we will need a mechanism to
convert (imperfect) classification results into ranking scores.

One possibility is already mentioned in Lemma 1. That is, we classify each data point into one of
theK = 5 classes and rank the data points according to the class labels (data points with the same
labels are arbitrarily ranked). This suggestion, however, will lead to highly unstable ranking results.

Our proposed solution is very simple. We first learn the class probabilities by somesoft classification
algorithm and then score each data point (query+URL) according to theExpected Relevance.

Recall we assume a training dataset{yi,xi}
N
i=1, where the class labelyi ∈ {0, 1, 2, 3, 4 = K − 1}.

We learn the class probabilitiespi,k = Pr(yi = k), denoted bŷpi,k, and define a scoring function:

Si =

K−1
∑

k=0

p̂i,kT (k), (5)

whereT (k) is some monotone (increasing) function of the relevance levelk. Once we have com-
puted the scoresSi for all data points, we can then sort the data points within each query by the
descending order ofSi. This approach is apparently sensible and highly stable. In fact, we exper-
imented with bothT (k) = k andT (k) = 2k; the performance difference in terms of the NDCG
scores was negligible, althoughT (k) = k appeared to be a slightly better choice (see Figure 3(c) in
Appendix II). In this paper, the reported experimental results were based onT (k) = k.

When T (k) = k, the scoring functionSi is the Expected Relevance. Note that any monotone
transformation onSi (e.g.,2Si − 1) will not change the ranking results. Consequently, the ranking
results are not affected by any affine transformation onT (k), aT (k) + b, (a > 0), because

K−1
∑

k=0

pi,k (a × T (k) + b) = a ×

(

K−1
∑

k=0

pi,kT (k)

)

+ b, since
K−1
∑

k=0

pi,k = 1. (6)

3.4 The Boosting Tree Algorithm for Learning Class Probabilities
For multiple classification, we consider the following common (e.g., [8,9]) surrogate loss function

N
∑

i=1

K−1
∑

k=0

− log(pi,k)1yi=k. (7)

Algorithm 1 implements a boosting tree algorithm for learning class probabilitiespi,k; and we use
basically the same implementation later for regression as well as multiple ordinal classification.

Algorithm 1 The boosting tree algorithm for multiple classification, taken from [9, Algorithm 6],
although the presentation is slightly different.
0: ỹi,k = 1, if yi = k, andỹi,k = 0 otherwise.
1: Fi,k = 0, k = 0 to K − 1, i = 1 to N
2: Form = 1 to M Do
3: Fork = 0 to K − 1 Do
4: pi,k = exp(Fi,k)/

∑K−1
s=0 exp(Fi,s)

5: {Rj,k,m}
J

j=1 = J-terminal node regression tree for{ỹi,k − pi,k, xi}
N
i=1

6: βj,k,m = K−1
K

∑

xi∈Rj,k,m
ỹi,k−pi,k

∑

xi∈Rj,k,m
(1−pi,k)pi,k

7: Fi,k = Fi,k + ν
∑J

j=1 βj,k,m1xi∈Rj,k,m

8: End
9: End

There are three main parameters.M is the total number of boosting iterations,J is the tree size
(number of terminal nodes), andν is the shrinkage coefficient. As commented in [9] and verified in
our experiments, the performance of the algorithm is not sensitive to these parameters.

In Algorithm 1, Line 5 contains most of the implementation work, i.e., building the regression trees
with J terminal nodes. Appendix I describes an efficient implementation for building the trees.

4 Multiple Ordinal Classification to Further Improve Ranking

There is the possibility to (slightly) further improve our classification-based ranking scheme by
taking into account the natural orders among the class labels, i.e., the multiple ordinal classification.

A common approach for multiple ordinal classification is to learn the cumulative probabilities
Pr (yi ≤ k) instead of the class probabilitiesPr (yi = k) = pi,k. We suggest a simple method
similar to the so-called cumulative logits approach known in statistics [1, Section 7.2.1].

We first partition the training data points into two groups:{yi ≥ 4} and{yi ≤ 3}. Now we have
a binary classification problem and hence we can use exactly the same boosting tree algorithm for
multiple classification. Thus we can learnPr (yi ≤ 3) easily. We can similarly partition the data and
learnPr (yi ≤ 2), Pr (yi ≤ 1), andPr (yi ≤ 0), separately. We then infer the class probabilities

pi,k = Pr (yi = k) = Pr (yi ≤ k) − Pr (yi ≤ k − 1) , (8)

and again we use theExpected Relevanceto compute the ranking scores and sort the URLs.

We call both rankers based on multiple classification and multiple ordinal classification asMcRank.

5 Regression-based Ranking Using Boosting Tree Algorithm

With slight modifications, the boosting tree algorithm can be used for regressions. Recall the input
data are{yi,xi}

N
i=1, whereyi ∈ {0, 1, 2, 3, 4}. [6] suggested regressing the feature vectorsxi on

the response values2yi − 1.

Algorithm 2 implements the least-square boosting tree algorithm. The pseudo code is similar to [9,
Algorithm 3] by replacing the (l1) least absolute deviation (LAD) loss with the (l2) least square loss.
In fact, we also implemented the LAD boosting tree algorithm but we found the performance was
considerably worse than the least-square tree boost.

Algorithm 2 The boosting tree algorithm for regressions. After we have learned the values forSi,
we use them directly as the ranking scores to order the data points within each query.
0: ỹi = 2yi − 1

1: Si = 1
N

∑N

s=1 ỹs, i = 1 to N
2: Form = 1 to M Do
5: {Rj,m}

J

j=1 = J-terminal node regression tree for{ỹi − Si, xi}
N
i=1

6: βj,m = meanxi∈Rj,m
ỹi − Si

7: Si = Si + ν
∑J

j=1 βj,m1xi∈Rj,m

9: End

6 Experimental Results

We present the evaluations of 4 ranking algorithms (LambdaRankwith two-layer nets, regression,
multiple classification, and multiple ordinal classification) on 4 datasets, including one artificial
dataset and three Web search datasets, denoted by Web-1, Web-2, and Web-3. The artificial dataset
and Web-1 are the same datasets used in [5]. Web-2 is the main dataset used in [13].

For the artificial data and Web-1, [5] reported thatLambdaRankimprovedRankNetby about 1.0 (%)
NDCG. For Web-2, [13] reported thatFRankslightly improvedRankNet(by about 0.5 (%) NDCG)
and considerably improvedRankSVMandRankBoost; but [13] did not compare withLambdaRank.
Our experiment showed thatLambdaRankimprovedFRankby about 0.9 (%) NDCG on Web-2.

6.1 The Datasets

The artificial dataset [5] was meant to remove any variance caused by the quality of features and/or
relevance labels. The data were generated from random cubic polynomials, with 50 features, 50
URLs per query, and 10,000/5,000/10,000 queries for train/validation/test.

The Web search dataset Web-1 [5] has 367 features and 10,000/5,000/10,000 queries for
train/validation/test, with in total 652,500 URLs.

Web-2 [13] has 619 features and 12,000/3,800/3,800 queries for train/validation/test, with in total
1,741,930 URLs. Note that this dataset is only partially labeled with 20 unlabeled URLs per query.
These unlabeled URLs were assigned the level 0 [13].

Web-3 has 450 features and 26,000 queries, with in total 474,590 URLs. We conducted five-fold
cross-validations and report the average NDCG scores.

6.2 The Parameters:M , J , ν

There are three main parameters in the boosting tree algorithm.M is the total number of iterations,
J is the number of terminal nodes in each tree, andν is the shrinkage factor. Our experiments verify
that these parameters are not sensitive as long as they are within some “reasonable” ranges [9]. Since
these experiments are time-consuming, we did not tune these parameters (M , J , ν) exhaustively;
but the experiments appear to be convincing enough to establish the superiority ofMcRank.

[9] suggested settingν ≤ 0.1, to avoid over-fitting. We fixν = 0.05 for the artificial dataset
and Web-1, and fixν = 0.02 for Web-2 and Web-3. The number of terminal nodes,J , should be
reasonably big (but not too big) when the dataset is large with a large number of features, because
the tree has to be deep enough to consider higher-order interactions [9]. We letJ = 10 for the
artificial dataset and Web-1,J = 40 for Web-2, andJ = 20 for Web-3.

With these values ofJ andν, we did not observe obvious over-fitting even for a very large number
of boosting iterationsM . We will report the results withM = 1000 for the artificial data and Web-1,
M = 2000 for Web-2, andM = 1500 for Web-3.

6.3 The Test NDCG Results at Truncation LevelL = 10

Table 1 lists the NDCG results (both the mean and standard deviation, in percentages (%)) for all 4
datasets and all 4 ranking algorithms, evaluated at the truncation levelL = 10.

The NDCG scores indicate that thatMcRank(ordinal classification and classification) considerably
improves the regression-based ranker andLambdaRank. If we conduct a one-sidedt-test, the im-

Table 1:The test NDCG scores produced by 4 rankers on 4 datasets. The average NDCG scores are presented
in percentages (%) with the standard deviations in the parentheses. Note that for the artificial data and Web-1,
theLambdaRankresults were taken directly from [5]. We also report the (one-sided)p-values to measure the
statistical significance of the improvement ofMcRankover regression andLambdaRank. For the artificial data,
Web-1, and Web-3, we use the ordinal classification results to compute thep-values. However, for Web-2,
because our implementation for testing ordinal classification required too much memory forM = 2000, we
did not obtain the final test NDCG scores; the partial results indicated that ordinal classification did not improve
classification for this dataset. Therefore, we compute thep-values using classification results for Web-2.

Datasets Ordinal Classification Classification Regression,p-value LambdaRank,p-value

Artificial [5] 85.0 (9.5) 83.7 (9.9) 82.9 (10.2), 0 74.9, (12.6), 0
Web-1 [5] 72.4 (24.1) 72.2 (24.1) 71.7 (24.4), 0.021 71.2 (24.5), 0.0002
Web-2 [13] — 75.8 (23.8) 74.7 (24.4), 0.023 74.3 (24.3), 0.003
Web-3 72.5 (26.5) 72.4 (27.3) 72.0 (27.6), 0.017 71.3 (28.8),3.8 × 10−7

provements are significant at about98% level. However, multiple ordinal classification did not show
significant improvement over multiple classification, except for the artificial dataset.

For the artificial data, all other 3 rankers exhibit very large improvements overLambaRank. This is
probably due to the fact that the artificial data are generated noise-free and hence the flexible (with
high capacity) rankers using boosting tree algorithms tend to fit the data very well.

6.4 The NDCG Results at Various Truncation Levels (L = 1 to 10)
For the artificial dataset and Web-1, [5] also reported the NDCG scores at various truncation levels,
L = 1 to 10. To make the comparisons more convincing, we also report similar results for the arti-
ficial dataset and Web-1, in Figure 1. For a better clarity, we plot the standard deviations separately
from the averages. Figure 1 verifies that the improvements shown in Table 1 are not only true for
L = 10 but also (essentially) true for smaller truncation levels.

1 2 3 4 5 6 7 8 9 10
65

70

75

80

85

Truncation level

N
D

C
G

 (
%

)

Artificial

Ordinal
Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
63

64

65

66

67

68

69

70

71

72

73

Truncation level

N
D

C
G

 (
%

)

Web−1

Ordinal
Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
68

69

70

71

72

73

74

75

76

Truncation level

N
D

C
G

 (
%

)

Web−2

Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
58

60

62

64

66

68

70

72

Truncation level

N
D

C
G

 (
%

)

Web−3

Ordinal
Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

Truncation level

N
D

C
G

 s
td

 (
%

)

Ordinal
Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
24

26

28

30

32

34

36

38

40

42

Truncation level

N
D

C
G

 s
td

 (
%

)

Ordinal
Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
22
24
26
28
30
32
34
36
38
40
42
44
46

Truncation level

N
D

C
G

 s
td

 (
%

)

Classification
Regression
LambdaRank

1 2 3 4 5 6 7 8 9 10
26

28

30

32

34

36

38

40

42

44

46

Truncation level

N
D

C
G

 s
td

 (
%

)

Ordinal
Classification
Regression
LambdaRank

Figure 1: The NDCG scores at truncation levelsL = 1 to 10, for four datasets. Upper Panels: the
average NDCG scores. Bottom Panels: the corresponding standard deviations.

7 Conclusion
The ranking problem has become an important topic in machine learning, partly due to its
widespread applications in many decision-making processes especially in commercial search en-
gines. In one aspect, the ranking problem is difficult because the measures of rank quality are
usually based on sorting, which is not directly optimizable (at least not efficiently). On the other
hand, one can cast ranking into various classical learning tasks such as regression and classification.

The proposed classification-based ranking scheme is motivated by the fact that perfect classifications
lead to perfect DCG scores and the DCG errors are bounded by the classification errors. It appears

natural that the classification-based ranker is more direct and should work better than the regression-
based ranker suggested in [6]. To convert classification results into ranking, we propose a simple and
stable mechanism by using theExpected Relevance, computed from the learned class probabilities.

To learn the class probabilities, we implement a boosting tree algorithm for multiple classifica-
tion and we use the same implementation for multiple ordinal classification and regression. Since
commercial proprietary datasets are usually very large, an adaptive quantization-based approach ef-
ficiently implements the boosting tree algorithm, which avoids sorting and has lower memory cost.

Our experimental results have demonstrated thatMcRank(including multiple classification and mul-
tiple ordinal classification) outperforms both the regression-based ranker and the pair-basedLamb-
daRank. However, except for the artificial dataset, we did not observe significant improvement of
ordinal classification over classification.

In a summary, we regardMcRankalgorithm (retrospectively) simple, robust, and capable of produc-
ing quality ranking results.

Appendix I An Efficient Implementation for Building Boosting Trees

We use the standard regression tree algorithm [2], which recursively splits the training data points
into two groups on the current “best” feature that will reduce the mean square errors (MSE) the most.
Efficient (in both time and memory) implementation needs some care. The standard practice [9] is to
pre-sort all the features; then after every split, carefully keep track of the indexes of the data points
and the sorted orders in all other features for the next split.

We suggest a simpler and more efficient approach, by taking advantage of some properties of the
boosting tree algorithm. While the boosting tree algorithm is well-known to be robust and also
accurate, an individual tree has limited predictive power and usually can be built quite crudely.

When splitting on one feature, Figure 2(a) says that sometimes the split point can be chosen within a
certain range without affecting the accuracy (i.e., the reduced MSE due to the split). In Figure 2(b),
we bin (quantize) the data points into two (0/1) levels on the horizontal (i.e., feature) axis. Suppose
we choose the quantization as shown in the Figure 2(b), then the accuracy will not be affected either.

ss sRL x

y

(a)

Bin 0 Bin 1

y

xs

(b)

Bin length

x

y

0 1 2 3 4 5 6 7 8 9 10 1112

(c)
Figure 2: To split on one feature (x), we seek a split points on x such that after the splitting, the
mean square error (MSE, in they axis) of the data points at the left plus the MSE at the right is
reduced the most. Panel (a) suggests that in some cases we can chooses in a range (withinsL and
sR) without affecting the reduced MSE. Panel (b) suggests that, if we bin the data on thex axis to
be binary, the reduced MSE will not be affected either, if the data are binned in the way as in (b).
Panel (c) pictures an adaptive binning scheme to make the accuracy loss (if any) as little as possible.

Of course, we would not know ahead of time how to bin the data to avoid losing accuracy. Therefore,
we suggest an adaptive quantization scheme, pictured in Figure 2(c), to make the accuracy loss (if
any) as little as possible. In the pre-processing stage, for each feature, the training data points are
sorted according to the feature value; and we bin the feature values in the sorted order. We start with
a very small initial bin length, e.g.,10−8. As shown in Figure 2(c), we only bin the data where there
are indeed data, because the boosting tree algorithm will not consider the area where there are no
data anyway. We set an allowed maximum number of bins, denoted byB. If the bin length is so
small that we need more thanB bins, we simply increment the bin length and re-do the quantization.
After the quantization, we replace the original feature value by the bin labels (0, 1, 2, ...). Note that
since we start with a small bin length, the ordinal categorical features are naturally taken care of.

This simple binning scheme is very effective particularly for the boosting tree algorithm:

• It simplifies the implementation. After the quantization, there is no need for sorting (and
keeping track of the indexes after splitting) because we conduct “bucket sort” implicitly.

• It speeds up the computations for the tree-building step, the bottleneck of the algorithm.

• It reduces the memory cost for training. For example, if we set the maximum allowed
number of bins to beB = 28, we only need one byte per data entry.

• It does not really result in loss of accuracy. We experimented with bothB = 28 = 256 and
B = 216 = 65536; and we did not observe real differences in the NDCG scores, although
reported experimental results were all based onB = 216. See Appendix II, Figure 3(a)(b).

Appendix II Some More Experiments on Web-1

Figure 3 (a)(b) present the experiment with our adaptive quantization scheme on Web-1 dataset. We
binned the data with the maximum bin numberB = 23, 24, 25, 26, 27, 28, and216. In (a) and (b),
the horizontal axis is the “exponent” ofB. Panel (a) plots the relative number of total bins in Web-1
as a function of the exponent, normalized by the total number of bins atB = 216. Panel (b) plots
the “NDCG loss” due to the quantization, relative to the NDCG scores atB = 216. WhenB = 28,
the total number of bins is only about6% of that whenB = 216; however, both quantization levels
achieved the same test NDCG scores. Besides the benefit of computational efficiency, quantization
can also be considered as a way of “regularization” to slow down the training, as reflected in (b).

2 3 4 5 6 7 8 16
10

−3

10
−2

10
−1

10
0

Max bin number (Exponent)

P
er

ce
nt

ag
e

of
 to

ta
l b

in
s

(a)

2 3 4 5 6 7 8 16
−4

−3

−2

−1

0

1

Max bin number (Exponent)

N
D

C
G

 L
os

s
(%

)

Train
Validation
Test

(b)

1 200 400 600 800 1000
69

70

71

72

73

74

75

76

77

Iteration

N
D

C
G

 (
%

)

Train

Validation

Test

Relevance
Gain

(c)
Figure 3: Web-1. (a)(b): Experiment with our adaptive quantization scheme. (c): Experiment with
two different scoring functions.

Figure 3 (c) compares two scoring functions to convert learned class probabilities into rank-
ing scores, including theExpected RelevanceSi =

∑K−1
k=0 p̂i,kk and theExpected GainSi =

∑K−1
k=0 p̂i,k

(

2k − 1
)

. Panel (c) suggests that using theExpected Relevanceis consistently better
than using theExpected Gainbut the differences are small, especially for the test NDCG scores.

References
[1] A. Agresti. Categorical Data Analysis. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2002.

[2] L. Brieman, J. Friedman, R. Olshen, and C. Stone.Classification and Regression Trees. 1983.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. InWWW, pages 107–117, 1998.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In
ICML, pages 89–96, 2005.

[5] C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth cost functions. InNIPS, pages 193–200, 2007.

[6] D. Cossock and T. Zhang. Subset ranking using regression. InCOLT, pages 605–619, 2006.

[7] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences.Journal of Machine Learning
Research, 4:933–969, 2003.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.The Annals of Statistics, 28(2):337–
407, 2000.

[9] J. Friedman. Greedy function approximation: A gradient boosting machine.The Annals of Statistics, 29(5):1189–1232, 2001.

[10] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. InSIGIR, pages 41–48, 2000.

[11] T. Joachims. Optimizing search engines using clickthrough data. InKDD, pages 133–142, 2002.

[12] J. Kleinberg. Authoritative sources in a hyperlinked environment. InSODA, pages 668–677, 1998.

[13] M. Tsai, T. Liu, T. Qin, H. Chen, and W. Ma. Frank: a ranking method with fidelity loss. InSIGIR, pages 383–390, 2007.

[14] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework for learning ranking functions using relative relevance judgments. In
SIGIR, pages 287-294, 2007.

