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Abstract

We study a pattern classification algorithm which has recently been proposed by
Vapnik and coworkers. It builds on a new inductive principle which assumes that
in addition to positive and negative data, a third class of data is available, termed
the Universum. We assay the behavior of the algorithm by establishing links with
Fisher discriminant analysis and oriented PCA, as well as with an SVM in a pro-
jected subspace (or, equivalently, with a data-dependent reduced kernel). We also
provide experimental results.

1 Introduction

Learning algorithms need to make assumptions about the problem domain in order to generalise
well. These assumptions are usually encoded in the regulariser or the prior. A generic learning algo-
rithm usually makes rather weak assumptions about the regularities underlying the data. An example
of this is smoothness. More elaborate prior knowledge, often needed for a good performance, can
be hard to encode in a regulariser or a prior that is computationally efficient too.

Interesting hybrids between both extremes are regularisers that depend on an additional set of data
available to the learning algorithm. A prominent example of data-dependent regularisation is semi-
supervised learning [1], where an additional set of unlabelled data, assumed to follow the same
distribution as the training inputs, is tied to the regulariser using the so-called cluster assumption.

A novel form of data-dependent regularisation was recently proposed by [11]. The additional dataset
for this approach is explicitly not from the same distribution as the labelled data, but represents a
third — neither — class. This kind of dataset was first proposed by Vapnik [10] under the name
Universum, owing its name to the intuition that the Universum captures a general backdrop against
which a problem at hand is solved. According to Vapnik, a suitable set for this purpose can be
thought of as a set of examples that belong to the same problem framework, but about which the
resulting decision function should not make a strong statement.

Although initially proposed for transductive inference, the authors of [11] proposed an inductive
classifier where the decision surface is chosen such that the Universum examples are located close
to it. Implementing this idea into an SVM, different choices of Universa proved to be helpful in
various classification tasks. Although the authors showed that different choices of Universa and loss
functions lead to certain known regularisers as special cases of their implementation, there are still
a few unanswered questions. On the one hand it is not clear whether the good performance of their
algorithm is due to the underlying original idea, or just a consequence of the employed algorithmic
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relaxation. On the other hand, except in special cases, the influence of the Universum data on the
resulting decision hyperplane and therefore criteria for a good choice of a Universum is not known.

In the present paper we would like to address the second question by analysing the influence of the
Universum data on the resulting function in the implementation of [11] as well as in a least squares
version of it which we derive in section 2. Clarifying the regularising influence of the Universum on
the solution of the SVM can give valuable insight into which set of data points might be a helpful
Universum and how to obtain it.

The paper is structured as follows. After briefly deriving the algorithms in section 2 we show
in section 3 that the algorithm of [11] pushes the normal of the hyperplane into the orthogonal
complement of the subspace spanned by the principal directions of the Universum set. Furthermore,
we demonstrate that the least squares version of the Universum algorithm is equivalent to a hybrid
between kernel Fisher Discriminant Analysis and kernel Oriented Principal Component Analysis. In
section 4, we validate our analysis on toy experiments and give an example how to use the geometric
and algorithmic intuition gained from the analysis to construct a Universum set for a real world
problem.

2 The Universum Algorithms

2.1 The Hinge Loss U-SVM

We start with a brief review of the implementation proposed in [11]. Let L =
{(x1, y1), ..., (xm, ym)} be the set of labelled examples and let U = {z1, ..., zq} denote the set
of Universum examples. Using the hinge loss Ha[t] = max{0, a− t} and fw,b(x) = 〈w,x〉+ b, a
standard SVM can compactly be formulated as

min
w,b

1
2
||w||2 + CL

m∑
i=1

H1[yifw,b(xi)].

In the implementation of [11] the goal of bringing the Universum examples close to the separating
hyperplane is realised by also minimising the cumulative ε-insensitive loss Iε[t] = max{0, |t| − ε}
on the Universum points

min
w,b

1
2
||w||2 + CL

m∑
i=1

H1[yifw,b(x)] + CU

q∑
j=1

Iε[ |fw,b(zj)| ]. (1)

Noting that Iε[t] = H−ε[t] + H−ε[−t], one can use the simple trick of adding the Universum
examples twice with opposite labels and obtain an SVM like formulation which can be solved with
a standard SVM optimiser.

2.2 The Least Squares U-SVM

The derivation of the least squares U-SVM starts with the same general regularised error minimisa-
tion problem

min
w,b

1
2
||w||2 +

CL

2

m∑
i=1

Qyi [fw,b(x)] +
CU

2

q∑
j=1

Q0[fw,b(zj)]. (2)

Instead of using the hinge loss, we employ the quadratic loss Qa[t] = ||t− a||22 which is used in the
least squares versions of SVMs [9]. Expanding (2) in terms of slack variables ξ and ϑ yields

min
w,b

1
2
||w||2 +

CL

2

m∑
i=1

ξ2i +
CU

2

q∑
j=1

ϑ2
j (3)

s.t. 〈w,xi〉+ b = yi − ξi for i = 1, ...,m
〈w, zj〉+ b = 0− ϑj for j = 1, ..., q.

Minimising the Lagrangian of (3) with respect to the primal variables w, b, ξ and ϑ, and substituting
their optimal values back into (3) yields a dual maximisation problem in terms of the Lagrange
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multipliers α. Since this dual problem is still convex, we can set its derivative to zero and thereby
obtain the following linear system(

0 1>

1 K + C

)(
b
α

)
=

(
0
y
0

)
,

Here, K =
(

KL,L KL,U

K>L,U KU,U

)
denotes the kernel matrix between the input points in the sets L and

U, and C =
( 1

CL
I 0

0 1
CU

I

)
an identity matrix of appropriate size scaled with 1

CL
in dimensions

associated with labelled examples and 1
CU

for dimensions corresponding to Universum examples.

The solution (α, b) can then be obtained by a simple matrix inversion. In the remaining part of this
paper we denote the least squares SVM by Uls-SVM.

2.3 Related Ideas

Although [11] proposed the first algorithm that explicitly refers to Vapnik’s Universum idea, there
exist related approaches that we shall mention briefly. The authors of [12] describe an algorithm
for the one-vs-one strategy in multiclass learning that additionally minimises the distance of the
separating hyperplane to the examples that are in neither of the classes. Although this is algorithmi-
cally equivalent to the U-SVM formulation above, their motivation is merely to sharpen the contrast
between the different binary classifiers. In particular, they do not consider using a Universum for
binary classification problems.

There are also two Bayesian algorithms that refer to non-examples or neither class in the binary
classification setting. [8] gives a probabilistic interpretation for a standard hinge loss SVM by estab-
lishing the connection between the MAP estimate of a Gaussian process with a Gaussian prior using
a covariance function k and a hinge loss based noise model. In order to deal with the problem that
the proposed likelihood does not integrate to one the author introduces a third — the neither— class,
A similar idea is used by [4], introducing a third class to tackle the problem that unlabelled examples
used in semi-supervised learning do not contribute to discriminative models PY|X(yi|xi) since the
parameters of the label distribution are independent of input points with unknown, i.e., marginalised
value of the label. To circumvent this problem, the authors of [4] introduce an additional — neither
— class to introduce a stochastic dependence between the parameter and the unobserved label in the
discriminative model. However, neither of the Bayesian approaches actually assigns an observed
example to the introduced third class.

3 Analysis of the Algorithm

The following two sections analyse the geometrical relation of the decision hyperplane learnt with
one of the Universum SVMs to the Universum set. It will turn out that in both cases the optimal
solutions tend to make the normal vector orthogonal to the principal directions of the Universum.
The extreme case where w is completely orthogonal to U, makes the decision function defined by w
invariant to transformations that act on the subspace spanned by the elements of U. Therefore, the
Universum should contain directions the resulting function should be invariant against.

In order to increase the readability we state all results for the linear case. However, our results
generalise to the case where the xi and zj live in an RKHS spanned by some kernel.

3.1 U-SVM and Projection Kernel

For this section we start by considering a U-SVM with hard margin on the elements of U. Further-
more, we use ε = 0 for the ε-insensitive loss. After showing the equivalence to using a standard
SVM trained on the orthogonal complement of the subspace spanned by the zj , we extend the result
to the cases with soft margin on U.

Lemma A U-SVM withCU =∞, ε = 0 is equivalent to training a standard SVM with the training
points projected onto the orthogonal complement of span{zj−z0, zj ∈ U}, where z0 is an arbitrary
element of U.
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Proof: Since CU =∞ and ε = 0, any w yielding a finite value of (1) must fulfil 〈w, zj〉+ b = 0 for
all j = 1, ..., q. So 〈w, zj−z0〉 = 0 and w is orthogonal to span{zj−z0, zj ∈ U}. Let PU⊥ denote
the projection operator onto the orthogonal complement of that set. From the previous argument, we
can replace 〈w,xi〉 by 〈PU⊥w,xi〉 in the solution of (1) without changing it. Indeed, the optimal
w in (1) will satisfy w = PU⊥w. Since PU⊥ is an orthogonal projection we have that PU⊥ = P>U⊥
and hence 〈PU⊥w,xi〉 = 〈w, P>U⊥xi〉 = 〈w, PU⊥xi〉. Therefore, the optimisation problem in (1) is
the same as a standard SVM where the xi have been replaced by PU⊥xi. �

The special case the lemma refers to, clarifies the role of the Universum in the U-SVM. Since the
resulting w is orthogonal to an affine space spanned by the Universum points, it is invariant against
features implicitly specified by directions of large variance in that affine space. Picturing the 〈·, zj〉
as filters that extract certain features from given labelled or test examples x, using the Universum
algorithms means suppressing the features specified by the zj .

Finally, we generalise the result of the lemma by dropping the hard constraint assumption on the
Universum examples, i.e. we consider the case CU <∞. Let w∗ and b∗ the optimal solution of (1).
We have that

CU

q∑
j=1

|〈w∗, zj〉+ b∗| ≥ CU min
b

q∑
j=1

|〈w∗, zj〉+ b|.

The right hand side can be interpreted as an ”L1 variance”. So the algorithm tries to find a direction
w∗ such that the variance of the projection of the Universum points on that direction is small. As
CU approaches infinity this variance approaches 0 and we recover the result of the above lemma.

3.2 Uls-SVM, Fisher Discriminant Analysis and Principal Component Analysis

In this section we present the relation of the Uls-SVM to two classic learning algorithms: (kernel)
oriented Principal Component Analysis (koPCA) and (kernel) Fisher discriminant analysis (kFDA)
[5]. As it will turn out, the Uls-SVM is equivalent to a hybrid between both up to a linear equality
constraint. Since koPCA and kFDA can both be written as maximisation of a Rayleigh Quotient we
start with the Rayleigh quotient of the hybrid

max
w

w>

from FDAz }| {
(c

+ − c
−

)(c
+ − c

−
)
>

w

w>(CL

X
k=±

X
i∈Ik

(xi − c
k
)(xi − c

k
)
>

| {z }
from FDA

+CU

qX
j=1

(zj − c̃)(zj − c̃)
>

| {z }
from oPCA

)w

.

Here, c± denote the class means of the labelled examples and c̃ = 1
2 (c+ +c−) is the point between

them. As indicated in the equation, the numerator is exactly the same as in kFDA, i.e. the inter-
class variance, while the denominator is a linear combination of the denominators from kFDA and
koPCA, i.e. the inner class variances from kFDA and the noise variance from koPCA.

As noted in [6] the numerator is just a rank one matrix. For optimising the quotient it can be fixed
to an arbitrary value while the denominator is minimised. Since the denominator might not have
full rank it needs to be regularised [6]. Choosing the regulariser to be ||w||2, the problem can be
rephrased as

min
w

||w||2 + w>
“
CL

P
k=±

P
i∈Ik (xi − ck)(xi − ck)> + CU

Pq
j=1(zj − c̃)(zj − c̃)>

”
w (4)

s.t. w>(c+ − c−) = 2

As we will see below this problem can further be transformed into a quadratic program
min
w,b

||w||2 + CL||ξ||2 + CU||ϑ||2 (5)

s.t. 〈w,xi〉+ b = yi + ξi for all i = 1, ...,m
〈w, zj〉+ b = ϑj for all j = 1, ..., q

ξ>1k = 0 for k = ±.
Ignoring the constraint ξ>1k = 0, this program is equivalent to the quadratic program (3) of the
Uls-SVM. The following lemma establishes the relation of the Uls-SVM to kFDA and koPCA.
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Lemma For given CL and CU the optimisation problems (4) and (5) are equivalent.

Proof: Let w, b, ξ and ϑ the optimal solution of (5). Combining the first and last constraint, we get
w>c±+b∓1 = 0. This gives us w>(c+−c−) = 2 as well as b = −w>c̃. Plugging ξ and ϑ in (5)
and using this value of b, we obtain the objective function (4). So we have proved that the minimum
value of (4) is not larger than the one of (5).

Conversely, let w be the optimal solution of (4). Let us choose b = −w>c̃, ξi = w>xi + b−yi and
ϑj = w>zj+b. Again both objective functions are equal. We just have to check that

∑
i: yi=±1 ξi =

0. But because w>(c+ − c−) = 2, we have

1
m±

∑
i: yi=±1

ξi = w>c± + b∓ 1 = w>c± − w>(c+ + c−)
2

∓ 1 =
w>(c± − c∓)

2
∓ 1 = 0.�

The above lemma establishes a relation of the Uls-SVM to two classic learning algorithms. This
further clarifies the role of the Universum set in the algorithmic implementation of Vapnik’s idea
as proposed by [11]. Since the noise covariance matrix of koPCA is given by the covariance of the
Universum points centered on the average of the labelled class means, the role of the Universum as
a data-dependent specification of principal directions of invariance is affirmed.

The koPCA term also shows that both the position and covariance structure are crucial to a good
Universum. To see this, we rewrite

∑q
j=1(zj − c̃)(zj − c̃)> as

∑q
j=1(zj − z̃)(zj − z̃)> + q(z̃ −

c̃)(z̃ − c̃)>, where z̃ = 1
q

∑q
j=1 zj is the Universum mean. The additive relationship between

covariance of Universum about its mean, and the distance between Universum and training sample
means projected onto w shows that either quantity can dominate depending on the data at hand.

In the next section, we demonstrate the theoretical results of this section on toy problems and give
an example how to use the insight gained from this section to construct an appropriate Universum.

4 Experiments

4.1 Toy Experiments

The theoretical results of section 3 show that the covariance structure of the Universum as well as
its absolute position influence the result of the learning process. To validate this insight on toy data,
we sample ten labelled sets of size 20, 50, 100 and 500 from two fifty-dimensional Gaussians. Both
Gaussians have a diagonal covariance that has low standard deviation (σ1,2 = 0.08) in the first two
dimensions and high standard deviation (σ3,...,50 = 10) in the remaining 48. The two Gaussians are
displaced such that the mean of µ±i = ±0.3 exceeds the standard deviation by a factor of 3.75 in
the first two dimensions but was 125 times smaller in the remaining ones. The values are chosen
such that the Bayes risk is approx. 5%. Note, that by construction the first two dimensions are most
discriminative.

We construct two kinds of Universa for this toy problem. For the first kind we use a mean zero
Gaussian with the same covariance structure as the Gaussians for the labelled data (σ3,...,50 = 10),
but with varied degree of anisotropy in the first two dimensions (σ1,2 = 0.1, 1.0, 10). According to
the results of section 3 the Universa should be more helpful for larger anisotropy. For the second
kind of Universa we use the same covariance as the labelled classes but shifted them along the line
between the means of the labelled Gaussians. This kind of Universa should have a positive effect
on the accuracy for small displacements but that effect should vanish with increasing amount of
translation.

Figure 1 shows the performance of a linear U-SVMs for different amounts of training and Universum
data. In the top row, the degree of isotropy increases from left to right, whereas σ = 10 refers to the
complete isotropic case. In the bottom row, the amount of translation increases from left to right.
As expected, performance converges to the performance of an SVM for high isotropy σ and large
translations t. Note, that large translations do not affect the accuracy as much as a high isotropy.
However, this might be due to the fact the variance along the principal components of the Universum
is much larger in magnitude than the applied shift. We obtained similar results for the Uls-SVM.
Also, the effect remains when employing an RBF kernel.
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Figure 1: Learning curves of linear U-SVMs for different degrees of isotropy σ and different amounts of
translation z 7→ z + t

2
· (c+ − c−). With increasing isotropy and translation the performance of the U-SVMs

converges to the performance of a normal SVM.

Universum 0 1 2 3 4 6 7 9
Test error 1.234 1.313 1.399 1.051 1.246 1.111 1.338 1.226
Mean output 0.406 -0.708 -0.539 -0.031 -0.256 0.063 -0.165 -0.360
Angle 81.99 85.57 79.49 69.74 79.75 81.02 82.72 77.98

Table 1: See text for details. Without Universum, test error is 1.419%. The correlation between the test error
and the absolute value of the mean output (resp. angle) is 0.71 (resp 0.64); the p-value (i.e the probability of
observing such a correlation by chance) is 3% (resp 5.5%). Note that for instance that digits 3 and 6 are the
best Universum and they are also the closest to the decision boundary.

4.2 Results on MNIST

Following the experimental work from [11], we took up the task of distinguishing between the
digits 5 and 8 on MNIST data. Training sets of size 1000 were used, and other digits served as
Universum data. Using different digits as universa, we recorded the test error (in percentage) of
U-SVM. We also computed the mean output (i.e. 〈w,x〉 + b) of a normal SVM trained for bi-
nary classification between the digits 5 and 8, measured on the points from the Universum class.
Another quantity of interest measured was the angle between covariance matrices of training and
Universum data in the feature space. Note that for two covariance matrices CX and CY corre-
sponding to matrices X and Y (centered about their means), the cosine of the angle is defined
as trace(CXCY )/

√
trace(C2

X)trace(C2
Y ). This quantity can be computed in feature space as

trace(KXY K>XY )/
√

trace(K2
XX)trace(K2

Y Y ), with KXY the kernel matrix between the sets X
and Y . These quantities have been documented in Table 1. All the results reported are averaged
over 10-folds of cross-validation, with C = CU = 100, and ε = 0.01.

4.3 Classification of Imagined Movements in Brain Computer Interfaces

Brain computer interfaces (BCI) are devices that allow a user to control a computer by merely
using his brain activity [3]. The user indicates different states to a computer system by deliberately
changing his state of mind according to different experimental paradigms. These states are to be
detected by a classifier. In our experiments, we used data from electroencephalographic recordings
(EEG) with a imagined-movement paradigm. In this paradigm the patient imagines the movement
of his left or right hand for indicating the respective state. In order to reverse the spatial blurring of
the brain activity by the intermediate tissue of the skull, the signals from all sensors are demixed via
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DATA I
Algorithm U FS JH JL

SVM ∅ 40.00± 7.70 40.00± 11.32 30.00± 15.54
U-SVM UC3 41.33± 7.06 (0.63) 34.58± 9.22 (0.07) 30.56± 17.22 (1.00)

Unm 39.67± 8.23 (1.00) 37.08± 11.69 (0.73) 30.00± 16.40 (1.00)

LS-SVM ∅ 41.00± 7.04 40.42± 11.96 30.56± 15.77
Uls-SVM UC3 40.67± 7.04 (1.00) 37.08± 7.20 (0.18) 31.11± 17.01 (1.00)

Unm 40.67± 6.81 (1.00) 37.92± 12.65 (1.00) 30.00± 15.54 (1.00)

DATA II
S1 S2 S3

SVM ∅ 12.35± 6.82 35.29± 13.30 35.26± 14.05
U-SVM UC3 13.53± 6.83 (0.63) 32.94± 11.83 (0.63) 35.26± 14.05 (1.00)

Unm 12.35± 7.04 (1.00) 27.65± 14.15 (0.13) 36.84± 13.81 (1.00)

LS-SVM ∅ 13.53± 8.34 33.53± 13.60 34.21± 12.47
Uls-SVM UC3 12.94± 6.68 (1.00) 32.35± 10.83 (0.38) 35.79± 15.25 (1.00)

Unm 16.47± 7.74 (0.50) 31.18± 13.02 (0.69) 35.79± 15.25 (1.00)

Table 2: Mean zero-one test error scores for the BCI experiments. The mean was taken over ten single error
scores. The p-value for a two-sided sign test against the SVM error scores are given in brackets.

an independent component analysis (ICA) applied to the concatenated lowpass filtered time series
of all recording channels [2].

In the experiments below we used two BCI datasets. For the first set (DATA I) we recorded the EEG
activity from three healthy subjects for an imagined movement paradigm as described by [3]. The
second set (DATA II) contains EEG signals from a similar paradigm [7].

We constructed two kind of Universa. The first Universum, UC3 consists of recordings from a third
condition in the experiments that is not related to imagined movements. Since variations in signals
from this condition should not carry any useful information about imagined movement task, the
classifier should be invariant against them. The second Universum Unm is physiologically moti-
vated. In the case of the imagined-movement paradigm the relevant signal is known to be in the so
called α-band from approximately 10− 12Hz and spatially located over the motor cortices. Unfor-
tunately, signals in the α-band are also related to visual activity and independent components can be
found that have a strong influence from sensors over the visual cortex. However, since ICA is un-
supervised, those independent components could still contain discriminative information. In order
to make the learning algorithm prefer the signals from the motor cortex, we construct a Universum
Unm by projecting the labelled data onto the independent components that have a strong influence
from the visual cortex.

The machine learning experiments were carried out in two nested cross validation loops, where
the inner loop was used for model selection and the outer for testing. We exclusively used a linear
kernel. Table 2 shows the mean zero-one loss for DATA I and DATA II and the constructed Universa.

On the DATA I dataset, there is no improvement in the error rates for the subjects FS and JL com-
pared to an SVM without Universum. Therefore, we must assume that the employed Universa did
not provide helpful information in those cases. For subject JH, UC3 and Unm yield an improvement
for both Universum algorithms. However, the differences to the SVM error scores are not signifi-
cantly better according to a two-sided sign test. The Uls-SVM performs worse than the U-SVM in
almost all cases.

On the DATA II dataset, there was an improvement only for subject S2 using the U-SVM with the
Unm and UC3 Universum (8% and 3% improvement respectively). However, also those differences
are not significant. As already observed for the DATA I dataset, the Uls-SVM performs constantly
worse than its hinge loss counterpart.

The better performance of the Unm Universum on the subjects JH and S2 indicates that additional
information about the usefulness of features might in fact help to increase the accuracy of the clas-
sifier. The regularisation constant CU for the Universum points was chosen C = CU = 0.1 in
both cases. This means that the non-orthogonality of w on the Universum points was only weakly
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penalised, but had equal priority to classifying the labelled examples correctly. This could indicate
that the spatial filtering by the ICA is not perfect and discriminative information might be spread
over several independent components, even over those that are mainly non-discriminative. Using
the Unm Universum and therefore gently penalising the use of these non-discriminative features can
help to improve the classification accuracy, although the factual usefulness seems to vary with the
subject.

5 Conclusion

In this paper we analysed two algorithms for inference with a Universum as proposed by Vapnik
[10]. We demonstrated that the U-SVM as implemented in [11] is equivalent to searching for a
hyperplane which has its normal lying in the orthogonal complement of the space spanned by Uni-
versum examples. We also showed that the corresponding least squares Uls-SVM can be seen as a
hybrid between the two well known learning algorithms kFDA and koPCA where the Universum
points, centered between the means of the labelled classes, play the role of the noise covariance in
koPCA. Ideally the covariance matrix of the Universum should thus contain some important invari-
ant directions for the problem at hand.

The position of the Universum set plays also an important role and both our theoretical and exper-
imental analysis show that the behaviour of the algorithm depends on the difference between the
means of the labelled set and of the Universum set. The question of whether the main influence
of the Universum comes from the position or the covariance does not have a clear answer and is
probably problem dependent.

From a practical point, the main contribution of this paper is to suggest how to select a good Uni-
versum set: it should be such that it contains invariant directions and is positioned “in between” the
two classes. Therefore, as can be partly seen from the BCI experiments, a good Universum dataset
needs to be carefully chosen and cannot be an arbitrary backdrop as the name might suggest.
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