
CPR for CSPs: A Probabilistic Relaxation of
Constraint Propagation

Luis E. Ortiz
ECE Dept, Univ. of Puerto Rico, Mayagüez, PR 00681-9042

leortiz@ece.uprm.edu

Abstract

This paper proposes constraint propagation relaxation (CPR), a probabilistic ap-
proach to classical constraint propagation that provides another view on the whole
parametric family of survey propagation algorithms SP(ρ). More importantly, the
approach elucidates the implicit, but fundamental assumptions underlying SP(ρ),
thus shedding some light on its effectiveness and leading to applications beyond
k-SAT.

1 Introduction

Survey propagation (SP) is an algorithm for solving k-SAT recently developed in the physics com-
munity [1, 2] that exhibits excellent empirical performance on “hard” instances. To understand the
behavior of SP and its effectiveness, recent work (see Maneva et al. [3] and the references therein)
has concentrated on establishing connections to belief propagation (BP) [4], a well-known approxi-
mation method for computing posterior probabilities in probabilistic graphical models. Instead, this
paper argues that it is perhaps more natural to establish connections to constraint propagation (CP),
another message-passing algorithm tailored to constraint satisfaction problems (CSPs) that is well-
known in the AI community. The ideas behind CP were first proposed by Waltz [5] 1 Yet, CP has
received considerably less attention than BP lately.

This paper reconnects BP to CP in the context of CSPs by proposing a probabilistic relaxation
of CP that generalizes it. Through the approach, it is easy to see the exact, implicit underlying
assumptions behind the entire family of survey propagation algorithms SP(ρ). (Here, the approach
is presented in the context of k-SAT; it will be described in full generality in a separate document.)
In short, the main point of this paper is that survey propagation algorithms are instances of a natural
generalization of constraint propagation and have simple interpretations in that context.

2 Constraint Networks and Propagation

This section presents a brief introduction to the graphical representation of CSPs and CP, and con-
centrates on the aspects that are relevant to this paper. 2

A constraint network (CN) is the graphical model for CSPs used in the AI community. Of interest
here is the CN based on the hidden transformation. (See Bacchus et al. [9] for more information
on the different transformations and their properties.) It has a bipartite graph where every variable
and constraint is each represented by a node or vertex in the graph and there is an edge between a
variable i and a constraint a if and only if a is a function of i (see figure 1). From now on, a CN with
a tree graph is referred to as a tree CN, and a CN with an arbitrary graph as an arbitrary CN.

1See also Pearl [4], section 4.1.1, and the first paragraph of section 4.1.2.
2Please refer to Russell and Norvig [6] for a general introduction, Kumar [7] for a tutorial and Dechter [8]

for a more comprehensive treatment of these topics and additional references.

1



4

a b
clauses

variables
21 3

Figure 1: The graph of the constraint network cor-
responding to the 3-SAT formula f(x) = (x1 ∨
x2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4), which has four vari-
ables and two clauses; the first and second clause
are denoted in the figure by a and b, respectively.
Following the convention of the SP community,
clause and variable nodes are drawn as boxes and
circles, respectively; also, if a variable appears as
a negative literal in a clause (e.g., variable 3 in
clause b), the edge between them is drawn as a
dashed line.

Constraint propagation is typically used as part
of a depth-first search algorithm for solving
CSPs. The search algorithm works by extend-
ing partial assignments, usually one variable
at a time, during the search. The algorithm
is called backtracking search because one can
backtrack and change the value of a previously
assigned variable when the search reaches an
illegal assignment.

CP is often applied either as a preprocessing
step or after an assignment to a variable is
made. The objective is to reduce the domains
of the variables by making them locally consis-
tent with the current partial assignment. The
propagation process starts with the belief that
for every value assignment vi in the domain of
each variable i there exists a solution with vi as-
signed to i. The process then attempts to correct
this a priori belief by locally propagating con-
straint information. It is well-known that CP,
unlike BP, always converges, regardless of the
structure of the CN graph. This is because no
possible solution is ignored at the start and none
ever removed during the process. In the end, CP
produces potentially reduced variable domains
that are in fact locally consistent. In turn, the
resulting search space is at worst no larger than the original but potentially smaller while still con-
taining all possible solutions. The computational efficiency and effectiveness of CP in practice has
made it a popular algorithm in the CSP community.

3 Terminology and Notation

clauses

variables
2 3 4

fb

b

1

fb→2 a

Figure 2: The graph inside the continuous curve is
the CN graph for the formula fb that results from
removing clause b from f . The graph inside the
dashed curve is the CN graph for fb→2, which cor-
responds to the formula for the connected compo-
nent of the CN graph for fb that contains variable
2.

Let V (a) be the set of variables that appear in
constraint a and C(i) the set of constraints in
which variable i appears. Let also Vi(a) ≡
V (a) − {i} and Ca(i) ≡ C(i) − {a}. In k-
SAT, the constraints are the clauses, each vari-
able is binary, with domain {0, 1}, and a solu-
tion corresponds to a satisfying assignment. If
i ∈ V (a), denote by sa,i the value assignment
to variable i that guarantees the satisfiability of
clause a; and denote the other possible assign-
ment to i by ua,i. Finally, let Cs

a(i) and Cu
a (i)

be the set of clauses in Ca(i) where variable i
appears in the same and different literal form as
it does in clause a, respectively.

The k-SAT formula under consideration is de-
noted by f . It is convenient to introduce no-
tation for formulae associated to the CN that
results from removing variables or constraints
from f . Let fa be the function that results from
removing clause a from f (see figure 2), and
similarly, abusing notation, let fi be the function that results from removing variable i from f . Let
fa→i be the function that corresponds to the connected component of the CN graph for fa that con-
tains variable i ∈ V (a), and let fi→a be the function that corresponds to the connected component
of the CN graph for fi that contains a ∈ C(i). (Naturally, if node a is not a separator of the CN
graph for f , fa has a single connected component, which leads to fa→i = fa; similarly for fi.)

2



It is convenient to use a simple, if perhaps unusual, representation of sets in order to track the
domains of the variables during the propagation process. Each subset A of a set S of size m is
represented as a bit array of m elements where component k in the array is set to 1 if k is in A and
to 0 otherwise. For instance, if S = {0, 1}, then the array [00] represents ∅, and similarly, [01], [10]
and [11] represent {0}, {1} and {0, 1}, respectively.

It is also useful to introduce the concept of (globally) consistent domains of variables and SAT
functions. Let Sf = {x|x satisfies f} be the set of assignments that satisfy f . Given a complete
assignment x, denote by x−i the assignments to all the variables except i; thus, x = (x1, . . . , xn) =
(xi, x−i). Let the setWi be the consistent domain of variable i in f ifWi = {xi|x = (xi, x−i) ∈
Sf for some x−i}; that is, Wi contains the set of all possible values that variable i can take in an
assignment that satisfies f . Let the setW be the consistent domain of f ifW = ×n

i=1Wi and, for
all i,Wi is the consistent domain of variable i in f .

Finally, some additional terminology classifies variables of a SAT function given a satisfying assign-
ment. Given a function f and a satisfying assignment x, let variable i be fixed if changing only its
assignment xi in x does not produce another satisfying assignment for f ; and be free otherwise.

4 Propagation Algorithms for Satisfiability

Constraint Propagation. In CP for k-SAT, the message Ma→i that clause a sends to variable i
is an array of binary values indexed by the elements of the domain of i; similarly, for the message
Mi→a that variable i sends to clause a. Intuitively, for all xi ∈ {0, 1}, Mi→a(xi) = 1 if and only
if assigning value xi to variable i is “ok” with all clauses other than a. Formally, Mi→a(xi) = 1
if and only if fa→i has a satisfying assignment with xi assigned to variable i (or in other words,
xi is in the consistent domain of i in fa→i). Similarly, Ma→i(xi) = 1 if and only if clause a
is “ok” with assigning value xi to variable i; or formally, Ma→i(xi) = 1 if and only if fi→a

has a satisfying assignment with xi assigned to variable i, or assigning xi to variable i by itself
satisfies a. It is convenient to denote Mi→a(xi) and Mi→a(xi) by Mxi

a→i and Mxi
a→i, respectively.

In addition, Msa,i

i→a, Mua,i

i→a, Msa,i

a→i and M
ua,i

a→i are simply denoted by Ms
i→a, Mu

i→a, Ms
a→i and

Mu
a→i, respectively.

In summary, we can write CP for k-SAT as follows.

• Messages that clause a sends to variable i:

Mxi
a→i = 1 if and only if xi = sa,i or, there exists j ∈ Vi(a), s.t. Ms

j→a = 1. (1)

• Messages that variable i sends to clause a:

Mxi
i→a = 1 if and only if for all b ∈ Ca(i),Mxi

b→i = 1. (2)

It is convenient to express CP mathematically as follows.

• Messages that clause a sends to variable i:

Mxi
a→i =

{
1, if xi = sa,i,
1−

∏
j∈Vi(a)(1−Ms

j→a), if xi = ua,i.

• Messages that variable i sends to clause a: Mxi
i→a =

∏
b∈Ca(i)M

xi

b→i.

In order to guarantee convergence, the message values in CP are initialized as Ms
i→a = 1, Mu

i→a =
1, Mu

a→i = 1, and naturally, Ms
a→i = 1. This initialization encodes the a priori belief that every

assignment is a solution. CP attempts to “correct” or update this belief through the local propagation
of constraint information. In fact, the expressions in CP force the messages to be locally consistent.
By being initially conservative about the consistent domains, no satisfying assignment is discarded
during the propagation process.

Once CP converges, for each variable i, its locally-consistent domain becomes
{xi|

∏
a∈C(i)M

xi
a→i = 1} = {xi|

∏
a∈C(i):xi=ua,i

Mu
a→i = 1} ∈ 2{0,1}. For general CSPs,

CP is usually very effective because it can significantly reduce the original domain of the variables,

3



leading to a smaller search space of possible assignments. It should be noted that in the particular
case of k-SAT with arbitrary CNs, CP is usually only effective after some variables have already
being assigned during the search, because those (partial) assignments can lead to “boundary
conditions.” Without such boundary conditions, however, CP never reduces the domain of the
variables in k-SAT, as can be easily seen from the expressions above.

On the other hand, when CP is applied to tree CNs, it exhibits additional special properties. For
example, convergence is actually guaranteed regardless of how the messages are initialized, because
of the boundary conditions imposed by the leaves of the tree. Also, the final messages are in fact
globally consistent (i.e., all the messages are consistent with their definition). Therefore, the locally-
consistent domains are in fact the consistent domains. Whether the formula is satisfiable, or not,
can be determined immediately after applying CP. If the formula is not satisfiable, the consistent
domains will be empty sets. If the formula is in fact satisfiable, applying depth-first search always
finds a satisfying assignment without the need to backtrack.

We can express CP in a way that looks closer to SP and BP. Using the reparametrization Γa→i =
1−Mu

a→i, we get the following expression of CP.

• Message that clause a sends to variable i: Γa→i =
∏

j∈Vi(a)(1−Ms
j→a).

• Message that variable i sends to clause a: Ms
i→a =

∏
b∈Cu

a (i)(1− Γb→i).

Survey Propagation. Survey propagation has become a very popular propagation algorithm for
k-SAT. It was developed in the physics community by Mézard et al. [2]. The excitement around
SP comes from its excellent empirical performance on hard satisfiability problems; that is, k-SAT
formulae with a ratio α of the number of clauses to the number of variables near the so called
satisfiability threshold αc.

The following is a description of an SP-inspired family of message-passing procedures, parametrized
by ρ ∈ [0, 1]. It is often denoted by SP(ρ), and contains BP (ρ = 0) and (pure) SP (ρ = 1).

• Message that clause a sends to variable i:

ηa→i =
∏

j∈Vi(a)

Πu
j→a

Πu
j→a+Πs

j→a+Π∗j→a

• Messages that variable i sends to clause a:

Πu
i→a =

(
1− ρ

∏
b∈Cu

a (i)(1− ηb→i)
)∏

b∈Cs
a(i)(1− ηb→i)

Πs
i→a =

∏
b∈Cu

a (i)(1− ηb→i)
(

1−
∏

b∈Cs
a(i)(1− ηb→i)

)
Π∗i→a =

∏
b∈Cu

a (i)(1− ηb→i)
∏

b∈Cs
a(i)(1− ηb→i) =

∏
b∈Ca(i)(1− ηb→i)

SP was originally derived via arguments and concepts from physics. A simple derivation based on a
probabilistic interpretation of CP is given in the next section of the paper. The derivation presented
here elucidates the assumptions that SP algorithms make about the satisfiability properties and struc-
ture of k-SAT formulae. However, it is easy to establish strong equivalence relations between the
different propagation algorithms even at the basic level, before introducing the probabilistic inter-
pretation (details omitted).

5 A Probabilistic Relaxation of Constraint Propagation for Satisfiability

The main idea behind constraint propagation relaxation (CPR) is to introduce a probabilistic model
for the k-SAT formula and view the messages as random variables in that model. If the formula f
has n variables, the sample space Ω = (2{0,1})n is the set of the n-tuple whose components are
subsets of the set of possible values that each variable i can take (i.e., subsets of {0, 1}). The “true
probability law” Pf of a SAT formula f that corresponds to CP is defined in terms of the consistent
domain of f : for allW ∈ Ω,

Pf (W) =
{

1, ifW is the consistent domain of f,
0, otherwise.

4



Clearly, if we could compute the consistent domains of the remaining variables after each variable
assignment during the search, there would be no need to backtrack. But, while it is easy to compute
consistent domains for tree CNs, it is actually hard in general for arbitrary CNs. Thus, it is generally
hard to compute Pf . (CNs with graphs of bounded tree-width are a notable exception.)

However, the probabilistic interpretation will allow us to introduce “bias” on Ω, which leads to a
heuristic for dynamically ordering both the variables and their values during search. As shown in
this section, it turns out that for arbitrary CNs, survey propagation algorithms attempt to compute
different “approximations” or “relaxations” of Pf by making different assumptions about its “prob-
abilistic structure.”

Let us now view each message Ms
a→i, M

u
a→i, M

s
i→a, and Mu

i→a for each variable i and clause
a as a (Bernoulli) random variable in some probabilistic model with sample space Ω and a, now
arbitrary, probability law P. 3 Formally, for each clause a, variable i and possible assignment value
xi ∈ {0, 1}, we define

Mxi
a→i ∼ Bernoulli(pxi

a→i) and Mxi
i→a ∼ Bernoulli(pxi

i→a)
where pxi

a→i = P(Mxi
a→i = 1) and pxi

i→a = P(Mxi
i→a = 1). This is a distribution over all possible

subsets (i.e., the power set) of the domain of each variable, not just over the variable’s domain itself.
Also, clearly we do not need to worry about ps

a→i because it is always 1, by the definition of Ms
a→i.

The following is a description of how we can use those probabilities during search. In the SP
community, the resulting heuristic search is called “decimation” [1, 2]. If we believe that P “closely
approximates” Pf , and know the probability pxi

i ≡ P(Mxi
a→i = 1 for all a ∈ C(i)) that xi is in

the consistent domain for variable i of f , for every variable i, clause a and possible assignment
xi, we can use them to dynamically order both the variables and the values they can take during
search. Specifically, we first compute p1

i = P(Mu
a→i = 1 for all a ∈ C−(i)) and p0

i = P(Mu
a→i =

1 for all a ∈ C+(i)) for each variable i, where C+(i) and C−(i) are the sets of clauses where
variable i appears as a positive and a negative literal, respectively. Using those probability values,
we then compute what the SP community calls the “bias” of i: |p1

i −p0
i |. The variable to assign next

is the one with the largest bias. 4 We would set that variable to the value of largest probability; for
instance, if variable i has the largest bias, then we set i next, to 1 if p1

i > p0
i , and to 0 if p1

i < p0
i .

The objective is then to compute or estimate those probabilities.

The following are (independence) assumptions about the random variables (i.e., messages) used in
this section. The assumptions hold for tree CNs and, as formally shown below, are inherent to the
survey propagation process.
Assumption 1. For each clause a and variable i, the random variables Ms

j→a for all j ∈ Vi(a) are
independent.
Assumption 2. For each clause a and variable i, the random variables Mu

b→i for all clauses b ∈
Cu

a (i) are independent.
Assumption 3. For each clause a and variable i, the random variables Mu

b→i for all clauses b ∈
Cs

a(i) are independent.

Without any further assumptions, we can derive the following, by applying assumption 1 and the
expression for Mu

a→i that results from 1:
pu

a→i = P(Mu
a→i = 1) = 1−

∏
j∈Vi(a) P(Ms

j→a = 0) = 1−
∏

j∈Vi(a)(1− ps
j→a).

Similarly, by assumption 2 and the expression for Ms
i→a that results from 2, we derive

ps
i→a = P(Ms

i→a = 1) =
∏

b∈Cu
a (i) P(Mu

b→i = 1) =
∏

b∈Cu
a (i) p

u
b→i.

Using the reparametrization ηa→i = P(Mu
a→i = 0) = 1− pu

a→i, we obtain the following message-
passing procedure.

3Given clause a and variable i of SAT formula f , let Dj
a→i be the (globally) consistent domain of fa→i

for variable j. The random variables corresponding to the messages from variable i to clause a are defined as
Mxi

i→a(W) = 1 iffWj ⊂ Dj
a→i for every variable j of fa→i; and xi ∈ Di

a→i. The other random variables are
then defined as Ms

a→i(W) = 1 and Mu
a→i(W) = 1−

Q
j∈Vi(a)(1−M

s
j→a(W)) for allW .

4For both variable and value ordering, we can break ties uniformly at random. Also, the description of
SP(ρ) used often, sets a fraction β of the variables that remained unset during search. While clearly this
speeds up the process of getting a full assignment, the effect that heuristic might have on the completeness of
the search procedure is unclear, even in practice.

5



• Message that clause a sends to variable i: ηa→i =
∏

j∈Vi(a)(1− ps
i→a)

• Message that variable i sends to clause a: ps
i→a =

∏
b∈Cu

a (i)(1− ηb→i)

We can then use assumption 3 to estimate pu
i→a as

∏
b∈Cs

a(i)(1− ηb→i).

Note that this message-passing procedure is exactly “classical” CP if we initialize ηa→i = 0 and
ps

i→a = 1 for all variables i and clause a. However, the version here allows the messages to be in
[0, 1]. At the same time, for tree CNs, this algorithm is the same as classical CP (i.e., produces the
same result), regardless of how the messages ηa→i and ps

i→a are initialized. In fact, in the tree case,
the final messages uniquely identify P = Pf .

Making Assumptions about Satisfiability. Let us make the following assumption about the
“probabilistic satisfiability structure” of the k-SAT formula.
Assumption 4. For some ρ ∈ [0, 1], for each clause a and variable i,

P(Ms
i→a = 0,Mu

i→a = 0) = (1− ρ)P(Ms
i→a = 1,Mu

i→a = 1).

For ρ = 1, the last assumption essentially says that fa→i has a satisfying assignment; i.e.,
P(Ms

i→a = 0,Mu
i→a = 0) = 0. For ρ = 0, it essentially says that the likelihood that fa→i does

not have a satisfying assignment is the same as the likelihood that fa→i has a satisfying assignment
where variable i is free. Formally, in this case, we have P(Ms

i→a = 0,Mu
i→a = 0) = P(Ms

i→a =
1,Mu

i→a = 1), which, interestingly, is equivalent to the condition P(Ms
i→a = 1) + P(Mu

i→a =
1) = 1.

Let us introduce a final assumption about the random variables associated to the messages from
variables to clauses.
Assumption 5. For each clause a and variable i, the random variables Ms

i→a and Mu
i→a are

independent.

Note that assumptions 2, 3 and 5 hold (simultaneously) if and only if for each clause a and variable
i, the random variables Mu

b→i for all clauses b ∈ Ca(i) are independent.

The following theorem is the main result of this paper.
Theorem 1. (Sufficient Assumptions) Let assumptions 1, 2 and 3 hold. The message-passing
procedure that results from CPR as presented above is

1. belief propagation (i.e., SP(0)), if assumption 4, with ρ = 0, holds, and

2. a member of the family of survey propagation algorithms SP(ρ), with 0 < ρ ≤ 1, if
assumption 4, with the given ρ, and assumption 5 hold.

These assumptions are also necessary in a strong sense (details omitted), Assumptions 1, 2, 3, and
even 5 might be obvious to some readers, but assumption 4 might not be, and it is essential.

Proof. As in the last subsection, assumption 1 leads to pu
a→i = 1 −

∏
j∈Vi(a)(1 − ps

j→a), while
assumptions 2 and 3 lead to ps

i→a =
∏

b∈Cu
a (i) p

u
b→i and pu

i→a =
∏

b∈Cs
a(i) p

u
b→i.

Note also that assumption 4 is equivalent to ps
i→a + pu

i→a − ρP(Ms
i→a = 1,Mu

i→a = 1) = 1. This
allows us to express

P(Ms
i→a = 1) = ps

i→a =
ps

i→a

ps
i→a + pu

i→a − ρP(Ms
i→a = 1,Mu

i→a = 1)
,

which implies

P(Ms
i→a = 0) =

pu
i→a − ρP(Ms

i→a = 1,Mu
i→a = 1)

pu
i→a − ρP(Ms

i→a = 1,Mu
i→a = 1) + ps

i→a

.

If ρ = 0, then the last expression simplifies to

P(Ms
i→a = 0) =

pu
i→a

pu
i→a + ps

i→a

.

6



Using the reparametrization ηa→i ≡ P(Mu
a→i = 0) = 1− pu

a→i, Πu
i→a ≡ P(Mu

i→a = 1) = pu
i→a

and Πs
i→a + Π∗i→a ≡ P(Ms

i→a = 1) = ps
i→a, leads to BP (i.e., SP(0)).

Otherwise, if 0 < ρ ≤ 1, then using the reparametrization ηa→i ≡ P(Mu
a→i = 0),

Πu
i→a ≡ P(Mu

i→a = 1)− ρP(Ms
i→a = 1,Mu

i→a = 1)
= P(Ms

i→a = 0,Mu
i→a = 1) + (1− ρ)P(Ms

i→a = 1,Mu
i→a = 1),

Πs
i→a ≡ P(Ms

i→a = 1,Mu
i→a = 0), and

Π∗i→a ≡ P(Ms
i→a = 1,Mu

i→a = 1),

and applying assumption 5 leads to SP(ρ).

The following are some remarks that can be easily derived using CPR.

On the Relationship Between SP and BP. SP essentially assumes that every sub-formula fa→i

has a satisfying assignment, while BP assumes that for every clause a and variable i ∈ V (a), variable
i is equally likely not to have a satisfying assignment or being free in fa→i, as it is easy to see from
assumption 4. The parameter ρ just modulates the relative scaling of those two likelihoods. While
the same statement about pure SP is not novel, the statement about BP, and more generally, the class
SP(ρ) for 0 ≤ ρ < 1, seems to be.

On the Solutions of SAT formula f . Note that Pf may not satisfy all or any of the assumptions.
Yet, satisfying an assumption imposes constraints on what Pf actually is and thus on the solution
space of f . For example, if Pf satisfies assumption 4 for any ρ < 1, which includes BP when ρ = 0,
and for all clauses a and variables i, then Pf (Ms

i→a = 0,Mu
i→a = 0) = Pf (Ms

i→a = 1,Mu
i→a =

1) = 0 and therefore either Pf (Ms
i→a = 1,Mu

i→a = 0) = 1 or Pf (Ms
i→a = 0,Mu

i→a = 1) = 1
holds, but not both of course. That implies f must have a unique solution!

On SP. This result provides additional support to previous informal conjectures as to why SP is
so effective near the satisfiability threshold: SP concentrates all its efforts on finding a satisfying
assignment when they are scarce and “scattered” across the space of possible assignments. Thus, SP
assumes that the set of satisfying assignments has in fact special structure.

To see that, note that assumptions 4, with ρ = 1, and 5 imply that P(Ms
i→a = 1,Mu

i→a = 0) = 0
or P(Ms

i→a = 0,Mu
i→a = 1) = 0 must hold. This says that in every assignment that satisfies

fa→i, variable i is either free or always has the same value assignment. This observation is relevant
because it has been argued that as we approach the satisfiability threshold, the set of satisfying
assignments decomposes into many “local” or disconnected subsets. It follows easily from the
discussion here that SP assumes such a structure, therefore potentially making it most effective
under those conditions (see Maneva et al. [3] for more information).

Similarly, it has also been empirically observed that SP is more effective for ρ close to, but strictly
less than 1. The CPR approach suggests that such behavior might be because, with respect to any
P that satisfies assumption 4, unlike pure SP, for such values of ρ < 1, SP(ρ) guards against the
possibility that fa→i is not satisfiable, while still being somewhat optimistic by giving more weight
to the event that variable i is free in fa→i. Naturally, BP, which is the case of ρ = 0, might be too
pessimistic in this sense.

On BP. For BP (ρ = 0), making the additional assumption that the formula fa→i is satisfiable
(i.e., P(Ms

i→a = 0,Mu
i→a = 0) = 0) implies that there are no assignments with free variables (i.e.,

P(Ms
i→a = 1,Mu

i→a = 1) = 0). Therefore, the only possible consistent domain is the singleton
{sa,i} or {ua,i} (i.e., P(Ms

i→a = 1,Mu
i→a = 0) + P(Ms

i→a = 0,Mu
i→a = 1) = 1). Thus,

either 0 or 1 can possibly be a consistent value assignment, but not both. This suggests that BP is
concentrating its efforts on finding satisfying assignments without free variables.

On Variable and Value Ordering. To complete the picture of the derivation of SP(ρ) via CPR,
we need to compute p0

i and p1
i for all variables i to use for variable and value ordering during search.

We can use the following, slightly stronger versions of assumptions 2 and 3 for that.
Assumption 6. For each variable i, the random variables Mu

a→i for all clauses a ∈ C−(i) are
independent.

7



Assumption 7. For each variable i, the random variables Mu
a→i for all clauses a ∈ C+(i) are

independent.

Using assumptions 6 and 7, we can easily derive that p1
i =

∏
a∈C−(i)(1 − ηa→i) and p0

i =∏
a∈C+(i)(1− ηa→i), respectively.

On Generalizations. The approach provides a general, simple and principled way to introduce
possibly uncertain domain knowledge into the problem by making assumptions about the structure
of the set of satisfying assignments and incorporating them through P. That can lead to more
effective propagation algorithms for specific contexts.

Related Work. Dechter and Mateescu [10] also connect BP to CP but in the context of the in-
ference problem of assessing zero posterior probabilities. Hsu and McIlraith [11] give an intuitive
explanation of the behavior of SP and BP from the perspective of traditional local search methods.
They provide a probabilistic interpretation, but the distribution used there is over the biases.

Braunstein and Zecchina [12] showed that pure SP is equivalent to BP on a particular MRF over
an extended domain on the variables of the SAT formula, which adds a so called “joker” state.
Maneva et al. [3] generalized that result by showing that SP(ρ) is only one of many families of
algorithms that are equivalent to performing BP on a particular MRF. In both cases, one can easily
interpret those MRFs as ultimately imposing a distribution over Ω, as defined here, where the joker
state corresponds to the domain {0, 1}. Here, the only particular distribution explicitly defined is
Pf , the “optimal” distribution. This paper does not make any explicit statements about any specific
distribution P for which applying CPR leads to SP(ρ).

6 Conclusion

This paper strongly connects survey and constraint propagation. In fact, the paper shows how survey
propagation algorithms are instances of CPR, the probabilistic generalization of classical constraint
propagation proposed here. The general approach presented not only provides a new view on survey
propagation algorithms, which can lead to a better understanding of them, but can also be used to
easily develop potentially better algorithms tailored to specific classes of CSPs.

References
[1] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm for satisfiability. Random

Structures and Algorithms, 27:201, 2005.

[2] M. Mézard, G. Parisi, and R. Zecchina. Analytic and Algorithmic Solution of Random Satisfiability
Problems. Science, 297(5582):812–815, 2002.

[3] E. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey propagation and its generalizations.
ACM, 54(4):2–41, July 2007.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

[5] D. L. Waltz. Generating semantic descriptions from drawings of scenes with shadows. Technical Report
271, MIT AI Lab, Nov. 1972. PhD Thesis.

[6] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, chapter 5, pages 137–160. Prentice
Hall, second edition, 1995.

[7] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13(1):32–44, 1992.

[8] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[9] F. Bacchus, X. Chen, P. van Beek, and T. Walsh. Binary vs. non-binary constraints. AI, 140(1-2):1–37,
Sept. 2002.

[10] R. Dechter and R. Mateescu. A simple insight into iterative belief propagation’s success. In UAI, 2003.

[11] E. I. Hsu and S. A. McIlraith. Characterizing propagation methods for boolean satisfiability. In SAT,
2006.

[12] A. Braunstein and R. Zecchina. Survey propagation as local equilibrium equations. JSTAT, 2004.

8


