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Abstract

We introduce a functional representation of time series which allows forecasts to
be performed over an unspecified horizon with progressively-revealed informa-
tion sets. By virtue of using Gaussian processes, a complete covariance matrix
between forecasts at several time-steps is available. This information is put to use
in an application to actively trade price spreads between commodity futures con-
tracts. The approach delivers impressive out-of-sample risk-adjusted returns after
transaction costs on a portfolio of 30 spreads.

1 Introduction

Classical time-series forecasting models, such as ARMA models [6], assume that forecasting is
performed at a fixed horizon, which is implicit in the model. An overlaying deterministic time trend
may be fit to the data, but is generally of fixed and relatively simple functional form (e.g. linear,
quadratic, or sinusoidal for periodic data). To forecast beyond the fixed horizon, it is necessary
to iterate forecasts in a multi-step fashion. These models are good at representing the short-term
dynamics of the time series, but degrade rapidly when longer-term forecasts must be made, usually
quickly converging to the unconditional expectation of the process after removal of the deterministic
time trend. This is a major issue in applications that require a forecast over a complete future
trajectory, and not a single (or restricted) horizon. These models are also constrained to deal with
regularly-sampled data, and make it difficult to condition the time trend on explanatory variables,
especially when iteration of short-term forecasts has to be performed. To a large extent, the same
problems are present with non-linear generalizations of such models, such as time-delay or recurrent
neural networks [1], which simply allow the short-term dynamics to become nonlinear but leave
open the question of forecasting complete future trajectories.

Functional Data Analysis (FDA) [10] has been proposed in the statistical literature as an answer
to some of these concerns. The central idea is to consider a whole curve as an example (specified
by a finite number of samples 〈t, yt〉), which can be represented by coefficients in a non-parametric
basis expansion such as splines. This implies learning about complete trajectories as a function
of time, hence the “functional” designation. Since time is viewed as an independent variable, the
approach can forecast at arbitrary horizons and handle irregularly-sampled data. Typically, FDA is
used without explanatory time-dependent variables, which are important for the kind of applications
we shall be considering. Furthermore, the question remains of how to integrate a progressively-
revealed information set in order to make increasingly more precise forecasts of the same future
trajectory. To incorporate conditioning information, we consider here the output of a prediction to
be a whole forecasting curve (as a function of t).

The motivation for this work comes from forecasting and actively trading price spreads between
commodity futures contracts (see, e.g., [7], for an introduction). Since futures contracts expire and
have a finite duration, this problem is characterized by the presence of a large number of separate
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historical time series, which all can be of relevance in forecasting a new time series. For example,
we expect seasonalities to affect similarly all the series. Furthermore, conditioning information, in
the form of macroeconomic variables, can be of importance, but exhibit the cumbersome property
of being released periodically, with explanatory power that varies across the forecasting horizon. In
other words, when making a very long-horizon forecast, the model should not incorporate condi-
tioning information in the same way as when making a short- or medium-term forecast. A possible
solution to this problem is to have multiple models for forecasting each time series, one for each
time scale. However, this is hard to work with, requires a high degree of skill on the part of the
modeler, and is not amenable to robust automation when one wants to process hundreds of time
series. In addition, in order to measure risk associated with a particular trade (buying at time t and
selling at time t′), we need to estimate the covariance of the price predictions associated with these
two points in the trajectory.

These considerations motivate the use of Gaussian processes, which naturally provide a covariance
matrix between forecasts made at several points. To tackle the challenging task of forecasting and
trading spreads between commodity futures, we introduce here a form of functional data analysis
in which the function to be forecast is indexed both by the date of availability of the information
set and by the forecast horizon. The predicted trajectory is thus represented as a functional object
associated with a distribution, a Gaussian process, from which the risk of different trading decisions
can readily be estimated. This approach allows incorporating input variables that cannot be assumed
to remain constant over the forecast horizon, like statistics of the short-term dynamics.

Previous Work Gaussian processes for time-series forecasting have been considered before.
Multi-step forecasts are explicitly tackled by [4], wherein uncertainty about the intermediate values
is formally incorporated into the predictive distribution to obtain more realistic uncertainty bounds
at longer horizons. However, this approach, while well-suited to purely autoregressive processes,
does not appear amenable to the explicit handling of exogenous input variables. Furthermore, it
suffers from the restriction of only dealing with regularly-sampled data. Our approach is inspired
by the CO2 model of [11] as an example of application-specific covariance function engineering.

2 The Model

We consider a set of N real time series each of length Mi, {yi
t}, i = 1, . . . , N and t = 1, . . . ,Mi.

In our application each i represents a different year, and the series is the sequence of commodity
spread prices during the period where it is traded. The lengths of all series are not necessarily
identical, but we shall assume that the time periods spanned by the series are “comparable” (e.g.
the same range of days within a year if the series follow an annual cycle) so that knowledge from
past series can be transferred to a new one to be forecast. The forecasting problem is that given
observations from the complete series i = 1, . . . , N − 1 and from a partial last series, {yN

t }, t =
1, . . . ,MN , we want to extrapolate the last series until a predetermined endpoint, i.e. characterize
the joint distribution of {yN

τ }, τ = MN +1, . . . ,MN +H . We are also given a set of non-stochastic
explanatory variables specific to each series, {xi

t}, where xi
t ∈ Rd. Our objective is to find an

effective representation of P ({yN
τ }τ=MN+1,...,MN+H | {xi

t, y
i
t}

i=1,...,N
t=1,...,Mi

), with τ, i and t ranging,
respectively over the forecasting horizon, the available series and the observations within a series.

Gaussian Processes Assuming that we are willing to accept a normally-distributed posterior,
Gaussian processes [8, 11, 14] have proved a general and flexible tool for nonlinear regression in
a Bayesian framework. Given a training set of M input–output pairs 〈X ∈ RM×d,y ∈ RM 〉,
a set of M ′ test point locations X∗ ∈ RM ′×d and a positive semi-definite covariance function
k : Rd ×Rd 7→ R, the joint posterior distribution of the test outputs y∗ follows a normal with mean
and covariance given by

E [y∗ |X,X∗,y] = K(X∗,X)Λ−1y, (1)

Cov [y∗ |X,X∗,y] = K(X∗,X∗)−K(X∗,X)Λ−1K(X,X∗), (2)

where we have set Λ = K(X,X) + σ2
nIM , with K the matrix of covariance evaluations,

K(U,V)i,j
4
= k(Ui,Vj), and σ2

n the assumed process noise level. The specific form of the covari-
ance function used in our application is described below, after introducing the representation used
for forecasting.
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Functional Representation for Forecasting In the spirit of functional data analysis, a first attempt
at solving the forecasting problem is to set it forth in terms of regression from the input variables to
the series values, adding to the inputs an explicit time index t and series identity i,

E
[
yi

t

∣∣ Ii
t0 ] = f(i, t,xi

t|t0) Cov
[
yi

t, y
i′

t′

∣∣∣ Ii
t0

]
= g(i, t,xi

t|t0 , i
′, t′,xi′

t′|t0), (3)

these expressions being conditioned on the information set Ii
t0 containing information up to time

t0 of series i (we assume that all prior series i′ < i are also included in their entirety in Ii
t0). The

notation xi
t|t0 denotes a forecast of xi

t given information available at t0. Functions f and g result
from Gaussian process training, eq. (1) and (2), using information in Ii

t0 . To extrapolate over the
unknown horizon, one simply evaluates f and g with the series identity index i set to N and the time
index t within a series ranging over the elements of τ (forecasting period). Owing to the smoothness
properties of an adequate covariance function, one can expect the last time series (whose starting
portion is present in the training data) to be smoothly extended, with the Gaussian process borrowing
from prior series, i < N , to guide the extrapolation as the time index reaches far enough beyond the
available data in the last series.

The principal difficulty with this method resides in handling the exogenous inputs xN
t|t0 over the

forecasting period: the realizations of these variables, xN
t , are not usually known at the time the

forecast is made and must be extrapolated with some reasonableness. For slow-moving variables
that represent a “level” (as opposed to a “difference” or a “return”), one can conceivably keep their
value constant to the last known realization across the forecasting period. However, this solution
is restrictive, problem-dependent, and precludes the incorporation of short-term dynamics variables
(e.g. the first differences over the last few time-steps) if desired.

Augmenting the Functional Representation We propose in this paper to augment the functional
representation with an additional input variable that expresses the time at which the forecast is being
made, in addition to the time for which the forecast is made. We shall denote the former the operation
time and the latter the target time. The distinction is as follows: operation time represents the time
at which the other input variables are observed and the time at which, conceptually, a forecast of
the entire future trajectory is performed. In contrast, target time represents time at a point of the
predicted target series (beyond operation time), given the information known at the operation time.

As previously, the time series index i remains part of the inputs. In this framework, forecasting is
performed by holding the time series index constant to N , the operation time constant to the time
MN of the last observation, the other input variables constant to their last-observed values xN

MN
, and

varying the target time over the forecasting period τ . Since we are not attempting to extrapolate the
inputs beyond their intended range of validity, this approach admits general input variables, without
restriction as to their type, and whether they themselves can be forecast.

It can be convenient to represent the target time as a positive delta ∆ from the operation time t0. In
contrast to eq. (3), this yields the representation

E
[
yi

t0+∆

∣∣ Ii
t0 ] = f(i, t0,∆,xi

t0) Cov
[
yi

t0+∆, yi′

t′0+∆′

∣∣∣ Ii
t0

]
= g(i, t0,∆,xi

t0 , i
′, t′0,∆

′,xi′

t′0
),
(4)

where we have assumed the operation time to coincide with the end of the information set. Note
that this augmentation allows to dispense with the problematic extrapolation xi

t|t0 of the inputs,
instead allowing a direct use of the last available values xi

t0 . Moreover, from a given information
set, nothing precludes forecasting the same trajectory from several operation times t′ < t0, which
can be used as a means of evaluating the stability of the obtained forecast.

The obvious downside to augmentation lies in the greater computational cost it entails. In particular,
the training set must contain sufficient information to represent the output variable for many combi-
nations of operation and target times that can be provided as input. In the worst case, this implies
that the number of training examples grows quadratically with the length of the training time series.
In practice, a downsampling scheme is used wherein only a fixed number of target-time points is
sampled for every operation-time point.1

1This number was 15 in our experiments, and these were not regularly spaced, with longer horizons spaced
farther apart. Furthermore, the original daily frequency of the data was reduced to keep approximately one
operation-time point per week.
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Covariance Function We used a modified form of the rational quadratic covariance function
with hyperparameters for automatic relevance determination [11], which is expressed as

kAUG-RQ(u,v; `, α, σf , σTS) = σ2
f

(
1 +

1
2α

d∑
k=1

(uk − vk)2

`2k

)−α

+ σ2
TSδiu,iv , (5)

where δj,k
4
= I[j = k] is the Kronecker delta. The variables u and v are values in the augmented

representation introduced previously, containing the three variables representing time (current time-
series index or year, operation time, target time) as well as the additional explanatory variables. The
notation iu denotes the time-series index component i of input variable u. The last term of the co-
variance function, the Kronecker delta, is used to induce an increased similarity among points that
belong to the same time series (e.g. the same spread trading year). By allowing a series-specific
average level to be maintained into the extrapolated portion, the presence of this term was found
to bring better forecasting performance. The hyperparameters `i, α, σf , σTS, σn are found by max-
imizing the marginal likelihood on the training set by a standard conjugate gradient optimization
[11]. For tractability, we rely on a two-stage training procedure, wherein hyperparameter optimiza-
tion is performed on a fairly small training set (M = 500) and final training is done on a larger set
(M = 2250), keeping hyperparameters fixed.

3 Evaluating Forecasting Performance

To establish the benefits of the proposed functional representation for forecasting commodity spread
prices, we compared it against other likely models on three common grain and grain-related
spreads:2 the January–July Soybeans, May–September Soybean Meal, and March–July Chicago
Hard Red Wheat. The forecasting task is to predict the complete future trajectory of each spread
(taken individually), from 200 days before maturity until maturity.

Methodology Realized prices in the previous trading years are provided from 250 days to maturity,
using data going back to 1989. The first test year is 1994. Within a given trading year, the time
variables represent the number of calendar days to maturity of the near leg; since no data is observed
on week-ends, training examples are sampled on an irregular time scale. Performance evaluation
proceeds through a sequential validation procedure [2]: within a trading year, we first train models
200 days before maturity and obtain a first forecast for the future price trajectory. We then retrain
models every 25 days, and obtain revised portions of the remainder of the trajectory. Proceeding
sequentially, this operation is repeated for succeeding trading years. All forecasts are compared
amongst models on squared-error and negative log-likelihood criteria (see “assessing significance”,
below). Input variables are subject to minimal preprocessing: we standardize them to zero mean
and unit standard deviation. The price targets require additional treatment: since the price level of
a spread can vary significantly from year to year, we normalize the price trajectories to start at zero
at the start of every trading year, by subtracting the first price. Furthermore, in order to get slightly
better behaved optimization, we divide the price targets by their overall standard deviation.

Models Compared The “complete” model to be compared against others is based on the
augmented-input representation Gaussian process with the modified rational quadratic covariance
function eq. (5). In addition to the three variables required for the representation of time, the fol-
lowing inputs were provided to the model: (i) the current spread price and the price of the three
nearest futures contracts on the underlying commodity term structure, (ii) economic variables (the
stock-to-use ratio and year-over-year difference in total ending stocks) provided on the underlying
commodity by the U.S. Department of Agriculture [13]. This model is denoted AugRQ/all-inp. An
example of the sequence of forecasts made by this model, repeated every 25 times steps, is shown
in the upper panel of Figure 1.

To determine the value added by each type of input variable, we include in the comparison two
models based on exactly on the same architecture, but providing less inputs: AugRQ/less-inp does

2Our convention is to first give the short leg of the spread, followed by the long leg. Hence, Soybeans 1–7
should be interpreted as taking a short position (i.e. selling) in the January Soybeans contract and taking an
offsetting long (i.e. buying) in the July contract. Traditionally, intra-commodity spread positions are taken so
as to match the number of contracts on both legs — the number of short contracts equals the number of long
ones — not the dollar value of the long and short sides.
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Figure 1: Top Panel: Illustration of multiple forecasts, repeated every 25 days, of the 1996 March–July Wheat
spread (dashed lines); realized price is in gray. Although the first forecast (smooth solid blue, with confidence
bands) mistakes the overall price level, it approximately correctly identifies local price maxima and minima,
which is sufficient for trading purposes. Bottom Panel: Position taken by the trading model (in red: short, then
neutral, then long), and cumulative profit of that trade (gray).

not include the economic variables. AugRQ/no-inp further removes the price inputs, leaving only
the time-representation inputs. Moreover, to quantify the performance gain of the augmented repre-
sentation of time, the model StdRQ/no-inp implements a “standard time representation” that would
likely be used in a functional data analysis model; as described in eq. (3), this uses a single time
variable instead of splitting the representation of time between the operation and target times.

Finally, we compare against simpler models: Linear/all-inp uses a dot-product covariance function
to implement Bayesian linear regression, using the full set of input variables described above. And
AR(1) is a simple linear autoregressive model. The predictive mean and covariance matrix for this
last model are established as follows (see, e.g. [6]). We consider the scalar data generating process

yt = φ yt−1 + εt, εt
iid∼ N (0, σ2), (6)

where the process {yt} has an unconditional mean of zero.3 Given information available at time t,
It, the h-step ahead forecast from time t under this model, has conditional expectation and covari-
ance (with the h′-step ahead forecast), expressed as

E [yt+h | It] = φhyt, Cov
[
yt+h|t, yt+h′|t | It

]
= σ2φh+h′ 1− φ−2 min(h,h′)

φ2 − 1
.

Assessing Significance of Forecasting Performance Differences For each trajectory forecast, we
measure the squared error (SE) made at each time-step along with the negative log-likelihood (NLL)
of the realized price under the predictive distribution. To account for differences in target variable
distribution throughout the years, we normalize the SE by dividing it by the standard deviation of
the test targets in a given year. Similarly, we normalize the NLL by subtracting the likelihood of a
univariate Gaussian distribution estimated on the test targets of the year.

Due to the serial correlation it exhibits, the time series of performance differences (either SE or
NLL) between two models cannot directly be subjected to a standard t-test of the null hypothesis of
no difference in forecasting performance. The well-known Diebold-Mariano test [3] corrects for this
correlation structure in the case where a single time series of performance differences is available.
This test is usually expressed as follows. Let {dt} be the sequence of error differences between two
models to be compared. Let d̄ = 1

M

∑
t dt be the mean difference. The sample variance of d̄ is

readily shown [3] to be

v̂DM
4
= Var[d̄] =

1
M

K∑
k=−K

γ̂k,

3In our experiments, we estimate an independent empirical mean for each trading year, which is subtracted
from the prices before proceeding with the analysis.
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Table 1: Forecast performance difference between AugRQ/all-inp and all other models, for the three spreads
studied. For both the Squared Error and NLL criteria, the value of the cross-correlation-corrected statis-
tic is listed (CCC) along with its p-value under the null hypothesis. A negative CCC statistic indicates that
AugRQ/all-inp beats the other model on average.

Soybeans 1–7 Soybean Meal 5–9 Wheat 3–7
Sq. Error NLL Sq. Error NLL Sq. Error NLL

CCC p CCC p CCC p CCC p CCC p CCC p

AugRQ/less-inp −0.86 0.39 −0.89 0.37 −1.05 0.29 −0.95 0.34 −0.05 0.96 1.06 0.29

AugRQ/no-inp −1.68 0.09 −1.73 0.08 −1.78 0.08 −2.42 0.02 −2.75 0.01 −2.42 0.02

Linear/all-inp −1.53 0.13 −1.33 0.18 −1.61 0.11 −2.00 0.05 −4.20 10−4 −3.45 10−3

AR(1) −4.24 10−5 −0.44 0.66 −2.53 0.01 0.12 0.90 −6.50 0.00 −6.07 10−9

StdRQ/no-inp −2.44 0.01 −1.04 0.30 −2.69 0.01 −1.08 0.28 −2.67 0.01 −9.36 0.00

where M is the sequence length and γ̂k is an estimator of the lag-k autocovariance of the dts. The
maximum lag order K is a parameter of the test and must be determined empirically. Then the
statistic DM = d̄/

√
v̂DM is asymptotically distributed as N (0, 1) and a classical test of the null

hypothesis d̄ = 0 can be performed.

Unfortunately, even the Diebold-Mariano correction for autocorrelation is not sufficient to compare
models in the present case. Due to the repeated forecasts made for the same time-step across several
iterations of sequential validation, the error sequences are likely to be cross-correlated since they
result from models estimated on strongly overlapping training sets. This suggests that an additional
correction should be applied to account for this cross-correlation across test sets, expressed as

v̂CCC−DM =
1

M2

∑
i

Mi

K∑
k=−K

γ̂i
k +

∑
i

∑
j 6=i

Mi∩ j

K′∑
k=−K′

γ̂i,j
k

 , (7)

where Mi is the number of examples in test set i, M =
∑

i Mi is the total number of examples,
Mi∩ j is the number of time-steps where test sets i and j overlap, γ̂i

k denote the estimated lag-k
autocovariances within test set i, and γ̂i,j

k denote the estimated lag-k cross-covariances between test
sets i and j. The maximum lag order for cross-covariances, K ′, is possibly different from K (our
experiments used K = K ′ = 15). This revised variance estimator was used in place of the usual
Diebold-Mariano statistic in the results presented below.

Results Results of the forecasting performance difference between AugRQ/all-inp and all other
models is shown in Table 1. We observe that AugRQ/all-inp generally beats the others on both the
SE and NLL criteria, often statistically significantly so. In particular, the augmented representation
of time is shown to be of value (i.e. comparing against StdRQ/no-inp). Moreover, the Gaussian
process is capable of making good use of the additional price and economic input variables, although
not always with the traditionally accepted levels of significance.

4 Application: Trading a Portfolio of Spreads

We applied this forecasting methodology based on an augmented representation of time to trading a
portfolio of spreads. Within a given trading year, we apply an information-ratio criterion to greedily
determine the best trade into which to enter, based on the entire price forecast (until the end of the
year) produced by the Gaussian process. More specifically, let {pt} be the future prices forecast by
the model at some operation time (presumably the time of last available element in the training set).
The expected forecast dollar profit of buying at t1 and selling at t2 is simply given by pt2 − pt1 . Of
course, a prudent investor would take trade risk into consideration. A simple approximation of risk
is given by the trade profit volatility. This yields the forecast information ratio4 of the trade

ÎR(t1, t2) =
E[pt2 − pt1 |It0 ]√
Var[pt2 − pt1 |It0 ]

, (8)

4An information ratio is defined as the average return of a portfolio in excess of a benchmark, divided by
the standard deviation of the excess return distribution; see [5] for more details.
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Figure 2: After a price trajectory forecast (in the top
and left portions of the figure), all possible pairs of buy-
day/sell-day are evaluated on a trade information ra-
tio criterion, whose results are shown by the level plot.
The best trade is selected, here shorting 235 days be-
fore maturity with forecast price at a local maximum,
and covering 100 days later at a local minimum.

Table 2: Financial performance statistics for
the 30-spread portfolio on the 1994–2007 (until
April 30) period, and two disjoint sub-periods.
All returns are expressed in excess of the risk-
free rate. The information ratio statistics are an-
nualized. Skewness and excess kurtosis are on
the monthly return distributions. Drawdown du-
ration is expressed in calendar days. The model
displays good performance for moderate risk.

Full 1994/01 2003/01
Period 2002/12 2007/04

Avg Annual Return 7.3% 5.9% 10.1%

Avg Annual Stddev 4.1% 4.0% 4.1%

Information Ratio 1.77 1.45 2.44

Skewness 0.68 0.65 0.76

Excess Kurtosis 3.40 4.60 1.26

Best Month 6.0% 6.0% 4.8%

Worst Month −3.4% −3.4% −1.8%

Percent Months Up 71% 67% 77%

Max. Drawdown −7.7% −7.7% −4.0%

Drawdown Duration 653 653 23

Drawdown From 1997/02 1997/02 2004/06
Drawdown Until 1998/11 1998/11 2004/07

where Var[pt2 − pt1 |It0 ] can be computed as Var[pt1 |It0 ] + Var[pt1 |It0 ] − 2 Cov[pt1 , pt2 |It0 ],
each quantity being separately obtainable from the Gaussian process forecast, cf. eq. (2). The trade
decision is made in one of two ways, depending on whether a position has already been opened: (i)
When making a decision at time t0, if a position has not yet been entered for the spread in a given
trading year, eq. (8) is maximized with respect to unconstrained t1, t2 ≥ t0. An illustration of this
criterion is given in Figure 2, which corresponds to the first decision made when trading the spread
shown in Figure 1. (ii) In contrast, if a position has already been opened, eq. (8) is only maximized
with respect to t2, keeping t1 fixed at t0. This corresponds to revising the exit point of an existing
position. Simple additional filters are used to avoid entering marginal trades: we impose a trade
duration of at least four days, a minimum forecast IR of 0.25 and a forecast standard deviation of
the price sequence of at least 0.075. These thresholds have not been tuned extensively; they were
used only to avoid trading on an approximately flat price forecast.

We applied these ideas to trading a portfolio of 30 spreads, selected among the following commodi-
ties: Cotton (2 spreads), Feeder Cattle (2), Gasoline (1), Lean Hogs (7), Live Cattle (1), Natural
Gas (2), Soybean Meal (5), Soybeans (5), Wheat (5). The spreads were selected on the basis of
their good performance on the 1994–2002 period. Our simulations were carried on the 1994–2007
period, using historical data (for Gaussian process training) dating back to 1989. Transaction costs
were assumed to be 5 basis points per spread leg traded. Spreads were never traded later than 25
calendar days before maturity of the near leg. Relative returns are computed using as a notional
amount half the total exposure incurred by both legs of the spread.5 Financial performance results
on the complete test period and two disjoint sub-periods (which correspond, until end-2002 to the
model selection period, and after 2003 to a true out-of-sample evaluation) are shown in Table 2. In
all sub-periods, but particularly since 2003, the portfolio exhibits a very favorable risk-return profile,
including positive skewness and acceptable excess kurtosis.6 A plot of cumulative returns, number
of open positions and monthly returns appears in Figure 3.

5This is a conservative assumption, since most exchanges impose considerably reduced margin requirements
on recognized spreads.

6By way of comparison, over the period 1 Jan. 1994–30 Apr. 2007, the S&P 500 index has an information
ratio of approximately 0.37 against the U.S. three-month treasury bills.
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Figure 3: Top Panel: cumulative excess return after transaction costs of a portfolio of 30 spreads traded
according to the maximum information-ratio criterion; the bottom part plots the number of positions open at a
time (right axis). Bottom Panel: monthly portfolio relative excess returns; we observe the significant positive
skewness in the distribution.

5 Future Work and Conclusions

We introduced a flexible functional representation of time series, capable of making long-term fore-
casts from progressively-revealed information sets and of handling multiple irregularly-sampled se-
ries as training examples. We demonstrated the approach on a challenging commodity spread trading
application, making use of a Gaussian process’ ability to compute a complete covariance matrix be-
tween several test outputs. Future work includes making more systematic use of approximation
methods for Gaussian processes (see [9] for a survey). The specific usage pattern of the Gaussian
process may guide the approximation: in particular, since we know in advance the test inputs, the
problem is intrinsically one of transduction, and the Bayesian Committee Machine [12] could prove
beneficial.
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