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Abstract

We develop and analyze an algorithm for nonparametric esitim of divergence
functionals and the density ratio of two probability distriions. Our method is
based on a variational characterizationfedivergences, which turns the estima-
tion into a penalized convex risk minimization problem. Wesgent a derivation
of our kernel-based estimation algorithm and an analysi®o¥ergence rates for
the estimator. Our simulation results demonstrate theergence behavior of the
method, which compares favorably with existing method$@literature.

1 Introduction

An important class of “distances” between multivariatetyadoility distributionsP andQ are the Ali-
Silvey or f-divergences [1, 6]. These divergences, to be defined ftynmahe sequel, are all of the
form Dy (P,Q) = | ¢(dQ/dP)dP, whereg is a convex function of the likelihood ratio. This family,
including the Kullback-Leibler (KL) divergence and the iadional distance as special cases, plays
an important role in various learning problems, includitessification, dimensionality reduction,
feature selection and independent component analysisalFoi these problems, if-divergences
are to be used as criteria of merit, one has to be able to dstiimam efficiently from data.

With this motivation, the focus of paper is the problem ofraating anf-divergence based on i.i.d.
samples from each of the distributioRsandQ. Our starting point is a variational characterization
of f-divergences, which allows our problem to be tackled vidl&mstimation procedure. Specifi-
cally, the likelihood ratio functiodP/dQ and the divergence functional, (P, Q) can be estimated
by solving a convex minimization problem over a functionsslaln this paper, we estimate the like-
lihood ratio and the KL divergence by optimizingpenalized convex risk. In particular, we restrict
the estimate to a bounded subset of a reproducing kerne¢ttiipace (RKHS) [17]. The RKHS
is sufficiently rich for many applications, and also allows €¢omputationally efficient optimization
procedures. The resulting estimator is nonparametritidhit entails no strong assumptions on the
form of P and@Q, except that the likelihood ratio function is assumed t@bglto the RKHS.

The bulk of this paper is devoted to the derivation of the dtgm, and a theoretical analysis of the
performance of our estimator. The key to our analysis is &lasquality relating a performance
metric (the Hellinger distance) of our estimator to the sapa of two empirical processes (with
respect td® andQ) defined on a function class of density ratios. Convergeatesiare then obtained
using techniques for analyzing nonparameireestimators from empirical process theory [20].

Related work. The variational representation of divergences has beawedeindependently and
exploited by several authors [5, 11, 14]. Broniatowski amdiku [5] studied testing and estimation
problems based on dual representationg-dfvergences, but working in a parametric setting as op-
posed to the nonparametric framework considered here. &igetyal. [14] established a one-to-one
correspondence between the familyfeflivergences and the family of surrogate loss functions [2]
through which the (optimum) “surrogate risk” is equal to tiegative of an associatgddivergence.
Another link is to the problem of estimating integral furctals of a single density, with the Shan-
non entropy being a well-known example, which has been stlektensively dating back to early



work [9, 13] as well as the more recent work [3, 4, 12]. See §ifsd0, 8] for the problem of
(Shannon) entropy functional estimation. In another bnawfcrelated work, Wang et al. [22] pro-
posed an algorithm for estimating the KL divergence for pardus distributions, which exploits
histogram-based estimation of the likelihood ratio by ding data-dependent partitions of equiv-
alent (empirical)yQ-measure. The estimator was empirically shown to outperfdirect plug-in
methods, but no theoretical results on its convergencewate provided.

This paper is organized as follows. Sec. 2 provides a badkgrof f-divergences. In Sec. 3, we
describe an estimation procedure based on penalized risknimation and accompanying conver-
gence rates analysis results. In Sec. 4, we derive and ingpleefficient algorithms for solving
these problems using RKHS. Sec. 5 outlines the proof of tladyais. In Sec. 6, we illustrate the
behavior of our estimator and compare it to other methodsiwalations.

2 Background

We begin by definingf-divergences, and then provide a variational representatf the f-
divergence, which we later exploit to develop afrestimator.

Consider two distribution® and Q, both assumed to be absolutely continuous with respect to
Lebesgue measure, with positive densitieg, and ¢y, respectively, on some compact domain
X c R%. The class of Ali-Silvey orf-divergences [6, 1] are “distances” of the form:

Dy(P,Q) = / pod(do/po) di, )

where¢ : R — R is a convex function. Different choices ¢fresult in many divergences that play
important roles in information theory and statistics, utthg the variational distance, Hellinger
distance, KL divergence and so on (see, e.g., [19]). As awitapt example, the Kullback-Leibler
(KL) divergence betweel? andQ is given byD (P, Q) = [ polog(po/q0) dp. corresponding to
the choicep(t) = — log(t) for t > 0 and+oo otherwise.

Variational representation: Sinceg is a convex function, by Legendre-Fenchel convex dualigy [1
we can writep(u) = sup,cg(uv — ¢*(v)), whereg* is the convex conjugate @f. As a result,

Dy(E.Q) = [ msup(Fao/m o (1) d = sup ( [raa- o) dP),

where the supremum is taken over all measurable functfonst — R, and [ f dP denotes the
expectation off under distributior. Denoting byd¢ the subdifferential [16] of the convex function
¢, it can be shown that the supremum will be achieved for famstf such thaty,/py € 9¢*(f),
whereqq, pp andf are evaluated at anyc X'. By convex duality [16], this is true if € d¢(qo0/po)
for anyz € X. Thus, we have proved [15, 11]:

Lemma 1. Letting F beany function classin X — R, there holds:
Dy(.Q) > sup [ £ a0~ o7(f) P @
€

with equality if F N dé(qo/po) # 0.

To illustrate this result in the special case of the KL dierge, here the functiog has the form
¢(u) = —log(u) foru > 0 and+oo for u < 0. The convex dual op is ¢* (v) = sup,,(vv—¢(u)) =
—1 — log(—v) if u < 0 and+oco otherwise. By Lemma 1,

Dk (P,Q) = sup/f dQ — /(—1 — log(—f)) dP = sup/logg dP — /gd@ +1. (3)

f<0 g>0
In addition, the supremum is attainedgat po/qo.

3 Penalized M-estimation of KL divergence and the density ratio

Let X1,..., X, be a collection of: i.i.d. samples from the distributiof, and letYy,...,Y,, be
n ii.d. samples drawn from the distributidh Our goal is to develop an estimator of the KL
divergence and the density ragie = po/qo based on the samplés(; } , and{Y;}" ;.



The variational representation in Lemma 1 motivates tHewiohg estimator of the KL divergence.
First, letG be a function class ot — R,. We then compute

Dk = sup / log g dP,, — / 9dQ,, + 1, 4)
g€eg

where[ dP, and/ dQ,, denote the expectation under empirical measBreandQ,,, respectively.
If the supremum is attained &, theng,, serves as an estimator of the density rgtic= po/qo-

In practice, the “true” size of is not known. Accordingly, our approach in this paper is daral
native approach based on controlling the siz¢ &y using penalties. More precisely, [Bly) be a
non-negative measure of complexity fpsuch that/(gy) < co. We decompose the function class
G as follows:
G =Ui<m<ccGm, %)

whereGy, :={g | I(g9) < M} is aball determined by(-).
The estimation procedure involves solving the followinggmam:

~ . >\7I,

gn = argmin, g /gd@n — /logg dP,, + 712 (9), (6)

where)\,, > 0 is a regularization parameter. The minimizing argumgnts plugged into (4) to
obtain an estimate of the KL divergen£ky.

For the KL divergence, the differen¢®x — Dk (P,Q)| is a natural performance measure. For
estimating the density ratio, various metrics are possMiwing go = po/qo as a density function
with respect td) measure, one useful metric is the (generalized) Hellinggadce:

W(00.9) = / (90"* ~ g/%)* dQ. U]

For the analysis, several assumptions are in order. Fgstinae thaty (not all of G) is bounded
from above and below:

0 < ng < go < m for some constantsgy, 7, . (8)

Next, the uniform norm o, is Lipchitz with respect to the penalty measufe), i.e.:

sup |gleo < cM foranyM > 1. )
9gEGM

Finally, on the bracket entropy ¢f [21]: For som&) < v < 2,
HE (Gor, L2(Q)) = O(M/8)" for anys > 0. (10)

The following is our main theoretical result, whose proogiigen in Section 5:
Theorem 2. (a) Under assumptions (8), (9) and (10), and letting A,, — 0 so that:

At = 0p(n® ) (1 + I(g0)),
then under P:
ha(90: 9n) = Oe(A\/*) 1+ 1(90)),  1(dn) = Op(1+I(go)).
(b) If, in addition to (8), (9) and (10), there holds inf ;¢ g(x) > 1o for any z € X', then

Dk — Dk (P, Q)| = Op(M/?)(1 + I(go))- (11)

4 Algorithm: Optimization and dual formulation

Gisan RKHS. Our algorithm involves solving program (6), for some chadéunction class;.

In our implementation, relevant function classes are takdye a reproducing kernel Hilbert space
induced by a Gaussian kernel. The RKHS'’s are chosen bedaeygarte sufficiently rich [17], and
as in many learning tasks they are quite amenable to effiojgithization procedures [18].



Let K : X x X — R be a Mercer kernel function [17]. Thug is associated with a feature
map® : X — H, whereH is a Hilbert space with inner produ¢t, .) and for allz, 2’ € X,
K(z,2") = (®(x), ®(2’)). As a reproducing kernel Hilbert space, any functipre H can be
expressed as an inner produyct:) = (w, ®(z)), where|lg|lxy = ||w||%. A kernel used in our
simulation is the Gaussian kernel:

K(z,y) = e lz—ul’/e
where||.|| is the Euclidean metric iR?, ando > 0 is a parameter for the function class.
Let G := H, and let the complexity measure bgy) = ||g||~. Thus, Eq. (6) becomes:

n

1 1 — An
H}IIJIIJ = mln - Z(w, O(z;)) — - Zlog(w7 D(y;)) + 7||w|\%(7 (12)
i=1 j=1

where{z;} and{y,} are realizations of empirical data drawn fr@nandP, respectively. Théog
function is extended take valuecc for negative arguments.

Lemma 3. min,, J hasthe following dual form:

n

. 1
—min 2 T lognaj )\ Zalaj (vi,y5)+ 2)\ ) ZK (@i, 25)— Za] (@i, ;).
Proof. Lety;(w) := 2(w, ®(x;)), p;(w) := — L log(w, ®(y;)), andQ(w) = Az ||lwl||2,. We have
minJ = —max((O, w) — J(w)) = =J*(0)
= —751115127,/1 u; —|—Z<pj v;) + Q%( Z Zv]
“ =1 i=1 j=1

where the last line is due to the inf-convolution theoreni.[Bmple calculations yield:

1 1 . .
pilv) = - log na; if v =—a;®(y;) and + oo otherwise
. 1 .
Pi(u) = 0ifu= Eq}(m) and + oo otherwise
i 1
@) = gl

So,miny, J = —ming, Y7, (= — 5 lognay) + 55— [ 7, o ®(y;) — 5 Soiny ®(x3)]l3,, which
implies the lemma immediately. O

If & is solution of the dual formulation, it is not difficult to siwahat the optimato is attained at
W= ﬁ(zg':l a;®(y;) — %Z’L‘:l ®(z;)).

For an RKHS based on a Gaussian kernel, the entropy conditinholds for anyy > 0 [23].
Furthermore, (9) trivially holds via the Cauchy-Schwarednality: |g(z)| = |[(w, ®(x))| <
[wll#/|® (@)l < I(g)\/K (2, ) < I(g). Thus, by Theorem 2(ajsd(|7 = [|gnll2 = Op(llgoll»),
so the penalty term,, ||« || vanishes at the same rate)as We have arrived at the following esti-
mator for the KL divergence:

n

= i ————1ognaj) Z—%logndj.

Jj=1

logG is an RKHS. Alternatively, we could seflogG to be the RKHS, lettingg(z) =
exp(w, ®(z)), and letting(¢g) = || loggll» = |lw|/%. Theorem 2 is not applicable in this case,
because condition (9) no longer holds, but this choice mtess seems reasonable and worth in-
vestigating, because in effect we have a far richer funatiass which might improve the bias of
our estimator when the true density ratio is not very smooth.



A derivation similar to the previous case yields the follog/iconvex program:

1 n 1 n )\7
HgnJ = mui)n ﬁ;aw’@(m)) - E;@}’ (y;)) + 7L||w||31
n 1 n
R -_ y 2
= i) 1azlog<naz T HZa D () — n;@(yj)lln-

Letting & be the solution of the above convex program, the KL divergaran be estimated by:

- = n
D=1 E v; log &; + &; log —.
K + a;loga; + & og6

=1
5 Proof of Theorem 2

We now sketch out the proof of the main theorem. The key to palyais is the following lemma:
Lemmad. If g, isan estimate of g using (6), then:

1 X Ao, R Jn + An
Zhé(g()agn) + 712(%) < - /(gn —90)d(Q, — Q) +/21og %d(ﬁpn -P)+ 712(90)-

Proof. Defined;(go,9) = [(g9 — 90)dQ — log g%d]P’- Note that forz > 0, 2 logz < \/z — 1. Thus,
Jlog L dP <2 f(gl/QgO_l/2 — 1) dP. As aresult, for any, d, is related tohg as follows:

di(90,9) = /(g—go)d@—2/(91/2951/2—1)dIP’
Jo-a0a0-2 [(520)* - g0) a0 = [ (62 - gi/*)d@ = 20 (90, ).

By the definition (6) of our estimator, we have:

Mo M
[ a0~ [t0gana®s + 21200 < [ g0d0 [ logad®s + 1 (a0).

Both sides (modulo the regularization tedf) are convex functionals gf. By Jensen’s inequality,
if F'is a convex function, theR'((u + v)/2) — F(v) < (F(u) — F(v))/2. We obtain:

ot Gn + A An
[ 2dg, - [rog P 2o, + 52200 < [ 90~ [loggnde, + 31 o)

Rearranging, 252d(Q,, — Q) — [ log 2 9”90 d(P, —P) + 221%(g,) <

In + 9o In — 9o An 2 go + 9n An 9
1 dP — dQ + 22 12(gg) = —d —y,
[ 1o 2220 / 9040 4 202 (g0) = —digo, I 1 2 g

g()+gn )\n 2 1 2 ~ )\n 2
5 )+ZI (90) < _ghQ(gmgn)"_ZI (90),

where the last inequality is a standard result for the (giized) Hellinger distance (cf. [20]). O

< _Qh(%}(907

Let us now proceed to part (a) of the theorem. Define= log %, and letFys := {f4lg € G}
Sincef, is a Lipschitz function of, conditions (8) and (10) imply that

M5 (Far, La(P)) = O(M/5)". (13)

Apply Lemma 5.14 of [20] using distance mettig(go, 9) = ||g — 9ol . (@), the following is true
underQ (and so true unde? as well, sincelP/dQ is bounded from above),
| f(g - gO)d(@n - Q)|

u . =0p(1). (14
zegn‘wdz(go,g)l’”?(l+I(g)+I(go))”/2Vn’m(1+I(g)+I(go)) f 49

5



In the same vein, we obtain that undemeasure:

N N e B VR T s R

By condition (9), we haveds(go,9) = [|g — gollz,@) < 2¢/2(1 + 1(g9) + I(g0))*%ha(go, 9)-
Combining Lemma 4 and Egs. (15), (14), we obtain the follayin
1, o An 9. 2
Zh@(goygn) + 71 (gn) < And(g90)?/2+

Op (nl/Qh@(go,g)l”/z(l +1(g) + I(g0))/*H7/* v ™75 (14 1(g) + I(go))>~ (16)
From this point,Athe proof involves simple algebraic matagan of (16). To simplify notation, let
h = hg(g0,Gn), I = I(gn), andly = I(go). There are four possibilities:
Casea. h > n~V/@) (14 + Iy)"/2 andl > 1 + I,. From (16), either

B2/4 + A\o1%/2 < Op(n=Y2)RA=7/2[Y/200/4 or B2 /4 + A, 1%)2 < A 12)2,
which implies, respectively, either
h < A 1/20 (n 2/(2+v)) <A L0p(n~ 2+v)) or
h< OP(A}/QIO), I < Op(Iy).

Both scenarios conclude the proof if we gt = Op(n?/ ("2 (1 + I,)).
Caseb. h > n= Y@M (1 4+ I + I;)Y/? and] < 1 + I,. From (16), either

B2 /4 + A 1%/2 < Op(n™Y2)RA/2(1 4 1) V/2+7/% or W2 /4 + M\ 0%/2 < \,12/2,
which implies, respectively, either

h<(1+41)Y20p(n Y0+ T<1+1, or
h < Op(\Y21y), 1< O0p(ly).
Both scenarios conclude the proof if we gt = Op(n?/ ("2 (1 + I,)).
Casec. h < n~ /(1 4 I + I;)Y/2 and] > 1 + I,. From (16)
h2 /4 + A% /2 < Op(n=2/ )],

which implies thath < Op(n=Y@+M)[Y/2 and] < A\;1O0p(n=2/(2+). This means thak <
Op(A/D) 1+ 1o), T <O0p(1+ 1) if we setA;! = Op(n? M) (1 + Iy).
Cased. h < n~ Y@ (1 + I + I;)Y/2 and] < 1 + I,. Part (a) of the theorem is immediate.
Finally, part (b) is a simple consequence of part (a) usiegsime argument as in Thm. 9 of [15].

6 Simulation results

In this section, we describe the results of various simatetthat demonstrate the practical viability
of our estimators, as well as their convergence behavior. egerimented with our estimators
using various choices @ and@, including Gaussian, beta, mixture of Gaussians, and vauiéte
Gaussian distributions. Here we report results in termsloéstimation error. For each of the eight
estimation problems described here, we experiment witteasing sample sizes (the sample size,
n, ranges fromi 00 to 10* or more). Error bars are obtained by replicating each s@sgptimes.

For all simulations, we report our estimator’'s performansing the simple fixed rat®,, ~ 1/n,
noting that this may be a suboptimal rate. We set the kerrdihvio be relatively smallo{ = .1) for
one-dimension data, and larger for higher dimensions. WeMisto denote the method in which
G is the RKHS, and M2 for the method in whitbg G is the RKHS. Our methods are compared to
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Figure 1. Results of estimating KL divergences for various choices of probabiltyilutions. In all
plots, the X-axis is the number of data points plotted on a log scale, and tkis ¥ahe estimated
value. The error bar is obtained by replicating the experiment 250 tivigs., I, ) denotes a truncated
normal distribution of dimensions with meafy, ..., a) and identity covariance matrix.



algorithm A in Wang et al [22], which was shown empirically to be one of lest methods in the
literature. Their method, denoted by WKY, is based on dafgeddent partitioning of the covariate
space. Naturally, the performance of WKV is critically degent on the amount of data allocated
to each partition; here we report results with- n”, wherey = 1/3,1/2,2/3.

The first four plots present results with univariate disttibns. In the first two, our estimatord 1
and M2 appear to have faster convergence rate than WKV. The WKYV etstirparforms very well

in the third example, but rather badly in the fourth examplee next four plots present results with
two and three dimensional data. Again, M1 has the best cgenee rates in all examples. The
M2 estimator does not converge in the last example, suggesiat the underlying function class
exhibits very strong bias. The WKV methods have weak convexgjeates despite different choices
of the partition sizes. It is worth noting that as one incesafie number of dimensions, histogram
based methods such as WKV become increasingly difficult tdémpnt, whereas increasing di-
mension has only a mild effect on our method.
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