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Abstract

We present a new local approximation algorithm for computibAP and log-
partition function for arbitrary exponential family digiution represented by a
finite-valued pair-wise Markov random field (MRF), s&y Our algorithm is
based on decomposidginto appropriatelychosen small components; computing
estimates locally in each of these components and then pirtglagoodglobal
solution. We prove that the algorithm can provide approxé@solution within
arbitrary accuracywhenG excludes some finite sized graph as its minor &hd
has bounded degree: all Planar graphs with bounded degrea@mples of such
graphs. The running time of the algorithm@gn) (» is the number of nodes in
(), with constant dependent on accuracy, degree of graphiaeadtthe graph
that is excluded as a minor (constant for Planar graphs).

Our algorithm for minor-excluded graphs uses the decontipasscheme of
Klein, Plotkin and Rao (1993). In general, our algorithm kswith any decom-
position scheme and provides quantifiable approximati@rantee that depends
on the decomposition scheme.

1 Introduction

Markov Random Field (MRF) based exponential family of digttion allows for representing dis-
tributions in an intuitive parametric form. Therefore, #shbeen successful for modeling in many
applications Specifically, consider an exponential faroity: random variableX = (X;,..., X,,)
represented by a pair-wise (undirected) MRF with graphcttne G = (V, E), where vertices
V ={1,...,n}and edge seE C V x V. EachX; takes value in a finite sé (e.g.X = {0, 1}).
The joint distribution ofX = (X;): forx = (z;) € ¥",

PriX =x] o exp (Z ¢i(wi) + Z Uh‘j(%‘@j)) : 1)

eV (i,j)€E

Here, functionsp; : ¥ — RT 2 {z € R : 2 > 0}, andyy; : 2 — Rt are as-
sumed to be arbitrary non-negative (real-valued) funstforThe two most important computa-
tional questions of interest are: (i) finding maximum a-pasti (MAP) assignmenk*, where
x* = argmaxyeyn Pr[X = x|; and (ii) marginal distributions of variables, i.ePr[X; =
z]; for z € ¥,1 < i <n. MAP is equivalent to aninimal energy assignmefor ground state)
where energy¢ (x), of statex € X" is defined ag€ (x) = —H(x) + Constant, where H(x) =
Yy G (xi)+2(i,j)eE ¥i;(xq, x;). Similarly, computing marginal is equivalent to computing-

partition function, defined aeg Z = log (erzn exp (Ziev Gi(2i) + 2 jyer Vis (i :Q))) .
In this paper, we will finde-approximation solutions of MAP and log-partition funetiathat is,x
andlog Z such that(1 — e)H(x*) < H(%) < H(x*), (1—¢e)logZ <logZ < (1+¢)logZ.

"Here, we assume the positivity of’s and«;;’s for simplicity of analysis.



Previous Work. The question of finding MAP (or ground state) comes up in margartant appli-
cation areas such as coding theory, discrete optimizaitiage denoising.Similarly, log-partition
function is used in counting combinatorial objects losshaility computation in computer net-
works, etc. Both problems are NP-hard for exact and evers{aat) approximate computation for
arbitrary graptG. However, applications require solving this problem usiagy simple algorithms.

A plausible approach is as follows. First, identify widesdaf graphs that have simple algorithms
for computing MAP and log-partition function. Then, try taildl system (e.g. codes) so that such
good graph structure emerges and use the simple algoritiefis@use the algorithm as a heuristic.

Such an approach has resulted in many interesting recantseasarting the Belief Propagation
(BP) algorithm designed for Tree graph [1].Since there & litasature on this topic, we will recall
only few results. Two important algorithms are the geneedlibelief propagation (BP) [2] and the
tree-reweighted algorithm (TRW) [3,4].Key properties offdrest for these iterative procedures are
the correctness of fixed points and convergence. Many eeshidtracterizing properties of the fixed
points are known starting from [2]. Various sufficient cdratis for their convergence are known
starting [5]. However, simultaneous convergence and coress of such algorithms are established
for only specific problems, e.g. [6].

Finally, we discuss two relevant results. The first resulalimut properties of TRW. The TRW
algorithm provides provable upper bound on log-partitiondtion for arbitrary graph [3]However,
to the best of authors’ knowledge the error is not quantifietde TRW for MAP estimation has
a strong connection to specific Linear Programming (LP)xagian of the problem [4]. This was
made precise in a sequence of work by Kolmogorov [7], Kolnmrog@and Wainwright [8] for binary

MRF. It is worth noting that LP relaxation can be poor evendionple problems.

The second is an approximation algorithm proposed by Gkalveand Jaakkola [9] to compute
log-partition function using Planar graph decompositieBC). PDC uses techniques of [3] in con-
junction with known result about exact computation of @i function for binary MRF wheidr is
Planar and the exponential family has specific form. Thejodathm provides provable upper bound
for arbitrary graph. However, they do not quantify the eirarurred. Further, their algorithm is
limited to binary MRF.

Contribution. We propose a novel local algorithm for approximate comportadf MAP and log-
partition function. For any > 0, our algorithm can produce anapproximate solution for MAP
and log-partition function foarbitrary MRF G as long as7 excludes a finite graph as a minor
(precise definition later). For example, Planar graph ededus 5, K5 as a minor. The running
time of the algorithm i®(n), with constant dependent enthe maximum vertex degree 6fand
the size of the graph that is excluded as minor. Specifidaliyg Planar graph with bounded degree,
it takes< C'(¢)n time to finde-approximate solution wittbg log C(¢) = O(1/¢). In general, our
algorithm works for anyz and we can quantify bound on the error incurred by our algoritlt is
worth noting that our algorithm provides a provable loweuihd on log-partition function as well
unlike many of previous works.

The precise results for minor-excluded graphs are stat€tdéorems 1 and 2. The result concerning
general graphs are stated in the form of Lemmas 2-3-4 fopktjtion and Lemmas 5-6-7 for MAP.

Techniques. Our algorithm is based on the following idea: First, decosg@ into small-size
connected components sé¥, . . ., G, by removing few edges aff. Second, compute estimates
(either MAP or log-partition) in each af; separately. Third, combine these estimates to produce a
global estimate whiléaking careof the effect induced by removed edges. We show that the ierror
the estimate depends only on the edges removed. This ewadluharacterization is applicable for
arbitrary graph.

Klein, Plotkin and Rao [10]introduced a clever and simpleaieposition method for minor-
excluded graphs to study the gap between max-flow and mifecumulticommodity flows. We
use their method to obtain a good edge-set for decomposingrrakcluded= so that the error
induced in our estimate is small (can be made as small asregjui

In general, as long a5 allows for such good edge-set for decomposihinto small components,
our algorithm will provide a good estimate. To compute eatis in individual components, we
use dynamic programming. Since each component is smalnib computationally burdensome.



However, one may obtain further simpler heuristics by reipig dynamic programming by other
method such as BP or TRW for computation in the components.

2 Preliminaries

Here we present useful definitions and previous results tattecomposition of minor-excluded
graphs from [10,11].

Definition 1 (Minor Exclusion) A graph H is called minor ofG if we can transform into H
through an arbitrary sequence of the following two operasin(a) removal of an edge; (b) merge
two connected vertices v: thatis, remove edgg:, v) as well as vertices andv; add a new vertex
and make all edges incident on this new vertex that were émtidnu or v. Now, if H is not a minor
of G then we say thatr excludesd as a minor.

The explanation of the following statement may help undadthe definitionany graphH with

r nodes is a minor of<,., whereK, is a complete graph of nodes. This is true because one may
obtain H by removing edges fronk’,. that are absent ifif. More generally, ifG is a subgraph of

G’ andG hasH as a minor, thei’ hasH as its minor. LetX,. . denote a complete bipartite graph
with r nodes in each partition. Thei, is a minor of ;. .. An important implication of this is as
follows: to prove property P for grap@d that excludedd, of sizer, as a minor, it is sufficient to
prove that any graph that exclud&S , as a minor has property P. This fact was cleverly used by
Klein et. al. [10] to obtain a good decomposition scheme idlesd next. First, a definition.

Definition 2 ((8, A)-decomposition) Given graph = (V, E), arandomly chosen subset of edges
B C FEis called (0, A) decomposition of7 if the following holds: (a) For any edge € F,
Pr(e € B) <. (b) LetSy, ..., Sk be connected components of gragh= (V, E\B) obtained by
removing edges df from G. Then, for any such componesit, 1 < j < K and anyu,v € S; the
shortest-path distance betwegn v) in the original graphG is at mostA with probability 1.

The existence ofd, A)-decomposition implies that it is possible to rem@viaction of edges so
that graphdecomposemto connected components whatiameteris small. We describe a simple
and explicit construction of such a decomposition for miexcluded class of graphs. This scheme
was proposed by Klein, Plotkin, Rao [10] and Rao [11].

DeC(G, r, A)

(0) Inputis graptG = (V, E) andr, A € N. Initially, i = 0, Go = G, B = (.
(1) Fori =0,...,r — 1, do the following.
(a) LetS},...,S; be the connected components@f
(b) ForeachS?, 1 < j < k;, pick an arbitrary node; € S.
o Create a breadth-first search tfEerooted at; in 5.
o Choose a numbei’; uniformly at random from{0, ..., A —1}.
o LetB; be the set of edges atleve}, A + L}, 2A + L%,... in 7).
o UpdateB = BUY., Bi.
(c) seti =i+ 1.
(3) OutputB and graphG’ = (V, E\B).

As stated above, the basic idea is to use the following steyrsevely (upto depth of recursion):

in each connected component, $gychoose a node arbitrarily and create a breadth-first sé@eh
say7 . Choose a number, sdy, uniformly at random fron{0, ..., A — 1}. Remove (add td) all
edges that are at levél+ kA, k > 0in 7. Clearly, the total running time of such an algorithm is
O(r(n + |E|)) for a graphG = (V, E) with |V | = n; with possible parallel implementation across
different connected components.

The algorithmDeC(G, r, A) is designed to provide a good decomposition for class oftgraipat

excludeK, , as a minor. Figure 1 explains the algorithm for a line-graph o= 9 nodes, which
excludesK », as a minor. The example is about a sample rube€(G, 2, 3) (Figure 1 shows the
first iteration of the algorithm).



Figure 1: The first of two iterations in execution@&C(G, 2, 3) is shown.

Lemmal If G excludesK,, as a minor, then algorithnDeC(G, r, A) outputs B which is
(r/A,O(A))-decomposition of7.

Itis known that Planar graph exclud&s ; as a minor. Hence, Lemma 1 implies the following.

Corollary 1 Given a planar graphG, the algorithm DeC(G, 3, A) produces(3/A,O(A))-
decomposition for anj > 1.

3 Approximate log Z

Here, we describe algorithm for approximate computatiole@¥ for any graph. The algorithm
uses a decomposition algorithm as a sub-routine. In whivis| we use term Bcomp for a
generic decomposition algorithm. The key point is that dgoathm provides provable upper and
lower bound orog Z for any graph; the approximation guarantee and computttiendepends on
the property of zcomMP. Specifically, forK, , minor excluded~ (e.g. Planar graph with = 3),

we will useDeC(G, r, A) in place of DEcomP. Using Lemma 1, we show that our algorithm based
on DeC provides approximation upto arbitrary multiplicative acacy by tuning parametex.

LOG PARTITION(G)

(1) Use DecomA(G) to obtains € E such that
(@) G' = (V, E\B) is made of connected componests.. .., Sk.
(2) For each connected componéiptl < j < K, do the following:

(a) Compute par_tition functio; restricted toS; by dynamic programming(or exhaus-
tive computation).

3) Let?/)lj = min,, =)ex? ij(x, x'), U- = MaX(y ;/)ex? 111” (z,2z"). Then
log Zig = Zlogz + D Wi logZus = Zlogz + D Ui
(i,7)€B (i,7)€B
(4) Output: lower boun¢bg Z.s and upper bountbg Zys.

In words, LOG PARTITION(G) produces upper and lower bound loig Z of MRF G as follows:
decompose grap&’ into (small) componentsy, ..., Sk by removing (few) edge$ C FE using
DecomMRA(G). Compute exact log-partition function in each of the comgats. To produce bounds
log Zg, log Zyg take the summation of thus computed component-wise lotitiparfunction along
with minimal and maximal effect of edges frofh

Analysis of LOG PARTITION for General G : Here, we analyze performance obt PARTI-
TION for anyG. In the next section, we will specialize our analysis for atiexcluded& when
LOG PARTITION usesDeC as the Ecompalgorithm.

Lemma 2 Given an MRFG described by (1), theoG PARTITION producedog Z g, log Zug such
that
log Z1g <log Z < log Zyg, logZug —logZis = Z (5] — ¥i5) -
(i,5)eB



It takesO (|E|KX571) 4 Tpecowe time to produce this estimate, whee*| = max/<, |S;| with
Decomp producing decomposition @f into Sy, . .., Sk in timeTpecome- '

Lemma 3 If G has maximum vertex degréethen,log Z > 5= [Z(i,j)eE o — vk
Lemma 4 If G has maximum vertex degrde and theDECOMAG) producesB that is (9, A)-

decomposition, then
E |log Zug — log ZALB} < (D +1)log Z,

w.r.t. the randomness i, andL oG PARTITION takes tim@(nD|E|DA) + Tbecowmp-

Analysis of LOG PARTITION for Minor-excluded G : Here, we specialize analysis oDl PAR-
TiTioNfor minor exclude grapli. ForG that exclude minok,. .., we use algorithnDeC(G, r, A).
Now, we state the main result for log-partition function qautation.

Theorem 1 LetG excludekK, , as minor and havé as maximum vertex degree. Giver 0, use
LoG PARTITION algorithm withDeC(G, r, A) whereA = (@1. Then,

log ZLB <logZ < log ZUB; E |log ZUB — log ZALB} <elogZ.
Further, algorithm take$nC'(D, |X], ¢)), where constanf'(D, |X|, ) = D|E|DO(TD/E).
We obtain the following immediate implication of Theorem 1.
Corollary 2 Foranye > 0, theLoG PARTITION algorithm withDeCalgorithm for constant degree
Planar graphG based MRF, producdsg Z, g, log Zyg So that
(I—-¢)logZ < 1ogZLB <logZ < 1ogZUB <(l+¢)logZ,
intimeO(nC(g)) whereloglog C(e) = O(1/e).

4 Approximate MAP

Now, we describe algorithm to compute MAP approximatelyis lvery similar to the l0G PAR-
TITION algorithm: givenG, decompose it into (small) componesis . .., Sk by removing (few)
edges3 C E. Then, compute an approximate MAP assignment by compuxiact &1AP restricted

to the components. As indG PARTITION, the computation time and performance of the algorithm
depends on property of decomposition scheme. We descgbethim for any grapld; which will

be specialized fok,. , minor excluded> usingDeC(G, r, A).

MODE(G)

(1) Use DecomA(G) to obtains € E such that
(a) G’ = (V, E\B) is made of connected componests. . ., Sk.
(2) For each connected componéntl < j < K, do the following:
(@) Through dynamic programming (or exhaustive computafiod exact MAPx*J for
componentS;, wherex*J = (27" )cs, .

K2

(3) Produce output*, which is obtained by assigning values to nodes uging 1 < j < K.

Analysis of MODE for General G : Here, we analyze performance ofdde for anyG. Later,

we will specialize our analysis for minor excludédwhen it use®eC as the Ecompalgorithm.

Lemma 5 Given an MRFG described by (1), thoDpE algorithm produces outputs* such that
H(x*) = X e (U - L) < H(x") < H(xY). IttakesO (|E|KE¥T) + Tpecows time to
produce this estimate, wheyg*| = max/* | [S;| with DEcomp producing decomposition f into

Sl, ceey SK |n timeTDECOMp.

Lemma 6 If G has maximum vertex degrég then

* 1 U 1 U L
H(X)ZD+1 Z vij| 2 D+1 Z vij = Vi

(i,J)€E (i,J)€E




Lemma 7 If G has maximum vertex degrde and theDECOMA(G) producesB that is (9, A)-
decomposition, then

E [H(x") = H(E)| < (D + DHE),
where expectation is w.r.t. the randomnesBirFurther, M oDE takes timeO(nD|E|DA )+ Tbecomp-

Analysis of MoODE for Minor-excluded G : Here, we specialize analysis of e for minor

exclude graplG. ForG that exclude minof, ., we use algorithnDeC(G, r, A). Now, we state
the main result for MAP computation.

Theorem 2 LetG excludeK, , as minor and havé as the maximum vertex degree. Given 0,

useM oDE algorithm withDeC(G, r, A) whereA = [@1. Then,

(1 — e)H(x*) < H(x*) < H(x").
Further, algorithm takes. - C'(D, |X|, ¢) time, where constartt(D, |3, ) = D|Z|DO(TD/E).
We obtain the following immediate implication of Theorem 2.

Corollary 3 For anye > 0, the MoDE algorithm withDeC algorithm for constant degree Planar
graphG based MRF, produces estimate so that

(1 —e)H(x") < H(x) < H(x"),
intimeO(nC(g)) whereloglog C(e) = O(1/e).

5 Experiments

Our algorithm provides provably good approximation for aviiRF with minor excluded graph
structure, with planar graph as a special case. In thisseatie present experimental evaluation of
our algorithm for popular synthetic model.

Setup 12 Consider binary (i.eX = {0, 1}) MRF on amn x n lattice G = (V, E):

Pr(x) o exp (Z Oixi + Z 9ijxixj> , forx € {0, 1}”2.

eV (i,J)EE

Figure 2 shows a lattice or grid graph with= 4 (on the left side). There are two scenarios for
choosing parameters (with notatidffiz, b] being uniform distribution over intervéd, b)):

(1) Varying interaction d; is chosen independently from distributitti—0.05, 0.05] andd;; chosen
independent frony[—«, o] with o € {0.2,0.4,...,2}.

(2) Varying field.f;; is chosen independently from distributitifi—0.5, 0.5] andf; chosen indepen-
dently froml[—«, o] with « € {0.2,04,...,2}.

The grid graph is planar. Hence, we run our algorithnasslPARTITION and MoDE, with decom-
position schem®eC(G, 3, A), A € {3,4,5}. We consider two measures to evaluate performance:
errorinlog Z, defined as | log Z29 — log Z|; and error irH(x*), defined as’ |1 (x¥9 — H(x*)|.

We compare our algorithm for error ling Z with the two recently very successful algorithms —
Tree re-weighted algorithm (TRW) and planar decomposiigorithm (PDC). The comparison is
plotted in Figure 3 where = 7 and results are averages ovértrials. The Figure 3(A) plots
error with respect to varying interaction while Figure 3(®ts error with respect to varying field
strength. Our algorithm, essentially outperforms TRW toese values ofA and perform very
competitively with respect to PDC.

The key feature of our algorithm is scalability. Specifigatinning time of our algorithm with a
given parameter valuA scales linearly in:, while keeping the relative error bound exactly the
same. To explain this important feature, we plot the thézally evaluated bound on error ing Z

>Though this setup hag;,;; taking negative values, they are equivalent to the setupigered in the
paper as the function values are lower bounded and haffioe shift will make them non-negative without
changing the distribution.



in Figure 4 with tags (A), (B) and (C). Note that error boundtp$ the same fon = 100 (A) and
n = 1000 (B). Clearly, actual error is likely to be smaller than théiseoretically plotted bounds.
We note that these bounds only depend on the interactiomgitre anchot on the values of fields
strengths (C).

Results similar to of oG PARTITION are expected from MDE. We plot the theoretically evaluated
bounds onthe errorin MAP in Figure 4 with tags (A), (B) and.(&jain, the bound on MAP relative
error for givenA parameter remains the same for all values afs shown in (A) fom = 100 and
(B) for n = 1000. There is no change in error bound with respect to the fie&hgth (C).

Setup 2. Everything is exactly the same as the above setup with thediffiérence that grid graph
is replaced bycris-crossgraph which is obtained by adding extra four neighboringesdger node
(exception of boundary nodes). Figure 2 shows cris-croaplgwithn = 4 (on the right side).
We again run the same algorithm as above setup on this graptcrig-cross graph, we obtained
its graph decomposition from the decomposition of its guld-graph. graph Though the cris-cross
graph is not planar, due to the structure of the cris-croaplgit can be shown (proved) that the
running time of our algorithm will remain the same (in ordend error bound will become onby
times weaker than that for the grid graph ! We compute theserétical error bounds fdog Z and
MAP which is plotted in Figure 5. This figure is similar to thigy&ire 4 for grid graph. This clearly
exhibits the generality of our algorithm even beyond minarieded graphs.
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Figure 2: Example of grid graph (left) and cris-cross grajpghf) with n = 4.
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(1-A) Grid, N=7

(1-B) Gird, n=7
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Figure 3: Comparison of TRW, PDC and our algorithm for grid graph with= "7 with respect to error inog Z. Our algorithm outperforms TRW and is

competitive with respect to PDC.
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Figure 4: The theoretically computable error bounds fog Z and MAP under our algorithm for grid with. = 100 andn = 1000 under varying
interaction and varying field model. This clearly shows abdity of our algorithm.
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Figure 5:The theoretically computable error bounds fog Z and MAP under our algorithm for cris-cross with = 100 andn = 1000 under varying
interaction and varying field model. This clearly shows abdity of our algorithm and robustness to graph structure.




