
Hippocampal Contributions to Control:
The Third Way

– Supporting Material –

Máté Lengyel
Collegium Budapest Institute for Advanced Study
2 Szentháromság u, Budapest, H-1014, Hungary

and
Computational & Biological Learning Lab

Cambridge University Engineering Department
Trumpington Street, Cambridge CB2 1PZ, UK

lmate@gatsby.ucl.ac.uk

Peter Dayan
Gatsby Computational Neuroscience Unit, UCL

17 Queen Square, London WC1N 3AR, UK
dayan@gatsby.ucl.ac.uk

Abstract

Our aim is to derive analytical approximations for the performance of a model-
based controller in tree-structured Markov decision processes.

1 Paradigm for analysis

A controller navigating an initially unknown environment (defined as a Markov decision process,
MDP) needs to have two component algorithms: a learning algorithm that defines a mapping from
the history of experienced state-action transitions and obtained rewards to some internal representa-
tion (eg a value function), and an action selection algorithm (policy) that defines a mapping from this
internal representation and the current state to an action (or, in the case of stochastic action choice,
a distribution over actions).1 Thus, the performance of a controller depends on how close to optimal
its two component algorithms are: how efficiently it uses sample data points when learning, and how
accurately it selects actions based on the knowledge it acquired about its environment so far. There
is a theoretically optimal, but of course hugely impractical, solution to this problem: a controller
which has an explicit statistical model of its environment, learns it by Bayesian updating (assuming
it has the correct priors), and then uses this model to exhaustively simulate all possible outcomes
of its actions. Here we analyse the performance of such a controller to derive upper bounds on the
performance of any other controller, and also investigate how the performance of this model-based
controller breaks down if action selection (but not learning!) involves approximations rendering it
imperfect – which is one obvious way to approach practicality.

Since our ultimate interest lies in analyzing the trade-offs between multiple alternative controllers
that might be available to the same agent, we consider off-policy controllers that are able to learn
from experience even if it was gathered while following a policy other than the controller’s own.

1For a general introduction to the topic and definitions of all terms not defined here see [1]. Direct policy
improvement algorithms are also possible and if the authors were hard-pressed those would be considered as a
special case of this general scheme, in which the ‘policy’ that is being improved is the internal representation
in our terms, and action selection just looks up the action for the current state.

1

The model-based controller investigated here is such an off-policy controller. Furthermore, because
the problem presented by the exploration-exploitation dilemma is notoriously difficult to solve in
a well-founded way, we will focus on exploitation performance. In order to separate the effects
of exploitation from those of exploration, the performance of a controller is analysed using a two-
stage procedure. First, in the learning stage, the controller learns from experience gathered while
following for a number of steps a ‘parallel sampler’ which guarantees an unbiased coverage of state-
action pairs. Second, in the test stage, the controller is allowed to make a number of consecutive
action-choices with the objective that it should maximize return in these few steps (finite horizon)
using its knowledge about the environment acquired during the learning stage (there is no learning
during the test stage).2

For mathematical tractability, we analyze the case of discrete-time episodic tasks without temporal
discounting in fully observable discrete-state tree-structured MDPs (tMPDs). Let Ss denote the set
of successor states of state s, ie states for which there is an action that takes the agent there from state
swith some non-zero probability, andAs denote the set of available actions at s. TMDPs are defined
as MDPs for which, under any policy, the directed graph of the corresponding Markov process is a
rooted tree (|{s′ : s ∈ Ss′}| = 1 for all states s, except for the root state for which {s′ : s ∈ Ss′} =
∅). In particular, we consider ‘regular’ tMDPs in which all terminal states s• (Ss• = ∅) have the
same distance from the root (the depth of the tMDP, D), all non-terminal states, s◦, have the same
number of successor states (the branching factor of the tMDP, B = |Ss◦ | > 0 for all s◦), and there
is an identical number of possible actions available in each of them (A = |As◦ | for all s◦).

Furthermore, we assume that the vector of transition probability pa-
rameters, pas◦ , for the (multinomial) transition probability distribution
P[state(t+ 1) = s′ ∈ Ss◦ | state(t) = s◦, action(t) = a] = pas◦s′ of each (non-terminal)
state-action pair, s◦ and a, are sampled iid from the same Dirichlet distribution
P[pas◦] = Dirichlet(pas◦ ; α), and rewards are only available at the BD terminal states, s•,
stochastically from P[reward(t) = r | state(t) = s•] = N (r; r̄s• , 1) normal distributions, where
the mean reward r̄s• for each terminal state is sampled iid from the same normal distribution
P[r̄s•] = N

(
r̄s• ;µr̄ , σ

2
r̄

)
.

We assume that the hyperparameters, Θ =
{
D,B,A,α, µr̄ , σ

2
r̄ ,
}

, and the structure,
Ss◦ and As◦ for all s◦ ∈ T , of the tMDP representing the current environment, T , are known a
priori to the controller, but its actual parameters, θ =

{
{pas◦}a∈As◦ ,s◦∈T , {r̄s•}s•∈T

}
, are un-

known. Of particular interest is the performance of each controller as a function of the amount of
experience available during the learning stage and the hyperparameters of the tMDP.

2 Exploration by the ‘parallel sampler’

In our paradigm, the task of the parallel sampler is to collect experience from which the other
controllers, whose exploitation performance is our main interest, can learn. As noted in Section 1,
we do not deal with the problem of exploration in any substance here. Our aim is neither to define an
optimal exploratory algorithm, nor to make a statement about possible actual exploration strategies
used by animals / humans. Rather, we choose an algorithm which has minimal bias to favour any
particular exploitation algorithm for a fair comparison, and makes it relatively easy to analyse the
effects of learning, similar to [2].

We define the parallel sampler with the objective that in each iteration it should sample all non-
terminal state-action pairs n◦ times (at least on average). Each iteration consists of several trials. On
each trial, the controller is started from some non-terminal state s◦, which is not necessarily the root
of the tMDP, and made to select action a ∈ As◦ . This will take it to another state, and from then
on it selects actions randomly until it reaches a terminal state, which ends the trial. The question
is how many trials should be started on each iteration from the same state to satisfy our objective?
We need to take into account that each state-action pair (but those for the root state) can be visited
in two ways: directly, by starting a trial there, and indirectly, when a trial started ‘upstream’ of it
happens to go through it. This means that for each state-action pair at level d > 0 (distance from

2A corollary of concentrating on exploitation performance is that only deterministic policies need to be
considered.

2

the root state), the number of times a trial should be started from it, pd, should satisfy the following
constraint:

n◦ = pd︸︷︷︸
direct visits

+n◦A
1
B

1
A︸ ︷︷ ︸

indirect visits

(1)

which readily gives us

pd =
{
n◦ for d = 0
n◦
(
1− 1

B

)
for 0 < d < D

(2)

(We deal with fractional starts by stochastically deciding whether to skip a trial for a state-action
pair.)

We also note that this exploration algorithm will sample each terminal state n• = A
B n
◦ times.

We measure ‘learning time’ in units of iterations of the parallel sampler. Thus, at the end of time
step T , each action at non-terminal states and each terminal state has been probed N◦ = Tn◦ and
N• = Tn• = A

BN
◦ times on average. One needs to keep in mind that the computational complexity

of a single iteration of the parallel sampler scales as A·B
D+1−1
B−1 . Hence, the actual amount of time

required to collect the same relative amount of experience (number of samples per state-action pair)
will be considerably larger for more complex environments (characterized by larger A, B or D).
Our measure of learning time strips away this factor which can always be included as an appropriate
rescaling of the time axis.

3 Model-based control

A model-based controller maintains an explicit model of the environment. In order to achieve opti-
mality, this model has to be in the form of a distribution over possible tMDPs. This makes learning
maximally data-efficient but, as we will see, makes action choice computationally extremely expen-
sive.

3.1 Learning

Learning in the model-based controller amounts to updating the distribution of possible tMDPs as
experience accumulates. Given the prior knowledge of hyperparameters and structure, its task is to
infer from experience a posterior distribution over all the parameters θ.

Taking advantage of the Dirichlet distribution being the conjugate prior for the parameters of a multi-
nomial observation distribution, and the normal distributions being the conjugate prior for the mean
of a normal observation distribution (with known variance), the posterior distribution over tMDPs
can be conveniently parametrised by three sets of parameters: {α̂a

s◦}a∈As◦ ,s◦∈T for transition prob-
abilities {pas◦}a∈As◦ ,s◦∈T

P[p̂as◦] = Dirichlet(p̂as◦ ; α̂
a
s◦) (3a)

and {ν̂s•}s•∈T and
{
ρ̂2
s•
}
s•∈T for mean rewards {r̄s•}s•∈T

P
[
ˆ̄rs•
]

= N
(
ˆ̄rs• ; µ̂s• , ρ̂

2
s•
)

, where µ̂s• = ν̂s• ρ̂
2
s• (3b)

These posterior parameters are initialised according to their prior counterparts
α̂a
s◦ := α (4a)

ν̂s• := µr̄ σ
2
r̄ (4b)

ρ̂2
s• := σ 2

r̄ (4c)

and updated whenever state s′ is reached from non-terminal state s◦ by taking action a
α̂as◦s′ → α̂as◦s′ + 1 (5a)

or reward r is experienced in terminal state s•

ν̂s• → ν̂s• + r (5b)

ρ̂2
s• → ρ̂2

s• + 1 (5c)

3

3.2 Action selection

Given its current knowledge about the environment, represented by the three sets of posterior pa-
rameters, Θ̂ =

{
{α̂a

s◦}a∈As◦ ,s◦∈T , {ν̂s•}s•∈T ,
{
ρ̂2
s•
}
s•∈T

}
, selecting the optimal action a∗ that

maximises expected return when in (non-terminal) state s◦ requires a recursive ‘mental simulation’
of the consequences of taking each possible action in each state, which is – at least formally – a
relatively straight-forward exercise in dynamic programming:3

a∗ = argmax
a∈As◦

Q̂as◦ (6a)

Q̂as◦ =
∑
s′∈Ss◦

p̄as◦s′ V̂s′ , where p̄as◦s′ = 〈p̂as◦s′〉 =
α̂as◦s′∑

s′′∈Ss◦

α̂as◦s′′
(6b)

V̂s =

{
max
a∈As◦

Q̂as◦ if s is non-terminal

µ̂s• if s is terminal
(6c)

Straight-forward this procedure may seem, the recursion implied by Equations 6b-6c means that
the computational complexity of optimal (exploitative) action selection is immense: it is potentially
exponential in D.

4 Performance analysis

4.1 Asymptotic performance

We are interested in the expected return harvested by the model-based controller averaged over a
distribution of possible tMDPs defined by hyperparameters Θ.

As a first step, we calculate the asymptotic performance when infinitely many data have been col-
lected so that P[p̂as◦] → δ(p̂as◦ − pas◦) and P

[
ˆ̄rs•
]
→ δ

(
ˆ̄rs• − r̄s•

)
. Therefore, in this limit, tran-

sition probabilities pas◦ and mean rewards r̄s• can be treated as known quantities, and the expected
return for starting from state s is given simply by its value, Vs, which can be computed using direct
analogues of Equations 6b-6c:

Vs =

{
max
a∈As◦

Qas◦ if s is non-terminal

r̄s• if s is terminal
(7a)

Qas◦ =
∑
s′∈Ss◦

pas◦s′Vs′ (7b)

In order to compute the average return, we first compute the distribution of this value given the
hyperparameters by marginalizing over possible tMDP instances defined by θ

P[Vs | Θ] =
∫

dθ P[Vs | θ,Θ] P[θ | Θ] (8)

where the first term is a delta distribution concentrated on the value computed in Equations 7a-7b.

If s is terminal than this distribution is simply

P[Vs• | Θ] = N
(
Vs• ;µr̄ , σ

2
r̄

)
(9)

3In principle, optimal action selection should also take advantage of the internal representation of the en-
vironment being fully probabilistic, and take into account the uncertainties associated with the values, in the
form of computing some sort of ‘exploration bonuses’ [3] in each step of the recursion in Equations 6b-6c, or –
to be strictly optimal – by performing dynamic programming on the corresponding belief-state MDP. However,
in the case of concentrating exclusively on exploitation – which we study –, only the expected values matter.

4

V ′
1

V ′
2

V ′
B

⋯V

⋯

Q1

QA

p1
1

pA
B

Figure 1: A sub-treelet of a regular tMDP, in which the value distribution of the root state can be
computed by Equations 12a-12b.

In the case when s is non-terminal, we can take advantage of the Markov property of values implied
by the recursive nature of Equations 7a-7b and that parameters are iid, and write

P[Vs◦ | Θ] =
∫

dPs◦ d {Vs′}s′∈Ss◦ P
[
Vs◦ | Ps◦ , {Vs′}s′∈Ss◦

] ∏
a∈As◦

Dirichlet(pas◦ ; α)
∏

s′∈Ss◦

P[Vs′ | Θ]

(10)

where Ps◦ = {pas◦}a∈As◦ contains the transition probability parameters for all actions available at
s◦.

Equation 10 gives a recursive definition of value distributions in a tMDP that closely parallels the
recursion in Equations 7a-7b. The computational complexity of this recursion is still exponential in
D. However, in regular tMDPs, all successor states of the same state have the same value distribu-
tion. More generally, it is easy to see that all states s(d) at the same level d in a regular tMDP will
have the same distribution because they are also at the same distance from the terminal states, and
their subtrees (of which they are the root) are identical in their structure and parameter priors. By
defining P(d)

V (V) := P[Vs(d) = V | Θ], this allows us to rewrite Equations 9-10 more conveniently:

P(d)
V (V) =

∫
dp1 . . . dpA dV ′1 . . . dV

′
B P
[
V | p1 . . .pA, V ′1 . . . V

′
B

]
·

·
A∏
a=1

Dirichlet(pa; α)
B∏
b=1

P(d+1)
V (V ′b) for d < D (11a)

N
(
V ;µr̄ , σ

2
r̄

)
for d = D (11b)

Thus, it is possible to compute the value distribution of a state at a given level in the tMDP iter-
atively, by proceeding ‘backwards’ from terminal states (d = D) to the state (level) in question.
Note that the complexity of this computation is only linear in D. Although this is already a sub-
stantial improvement, the integrals in Equation 11a will generally be analytically intractable, so the
complexity of computing them numerically is still exponential in A and B (at worst).

We now rewrite the value distribution of a state at a non-terminal level d < D (Eq. 11a) making use
of action values (Q) defined in Equation 7b and the Markov properties within a ‘sub-treelet’ of a
tMDP upon which the state value in question depends (see Fig. 1):

P(d)
V (V) =

∫
dQ1 . . . dQA P

[
V | Q1 . . . QA

]
P(d)

Q

(
Q1 . . . QA

)
(12a)

P(d)
Q

(
Q1 . . . QA

)
=

∫
dp1 . . . dpA

∫
dV ′1 . . . dV

′
B

A∏
a=1

Dirichlet(pa; α)
B∏
b=1

P(d+1)
V (V ′b) P

[
Q1 . . . QA | p1 . . .pA, V ′1 . . . V

′
B

]
(12b)

5

For analytical tractability, we approximate P(d)
Q

(
Q1 . . . QA

)
with a multivariate normal distribution

P(d)
Q

(
Q1 . . . QA

)
' N

(
Q1 . . . QA; ν(d),Ξ(d)

)
(13a)

where we need to determine the elements of the mean vector, ν(d), and covariance matrix, Ξ(d).
We know from Equation 7b that P[Qa | pa, V ′1 . . . V ′B] in fact expresses each Qa as a deterministic
sum of successor state values weighted by transition probabilities, and so Equation 12b entails the
averaging of this weighted sum over a distribution of each term in the sum. This argument readily
gives us

ν(d)
a = 〈Qa〉 = µVd+1 (13b)

Ξ(d)
aa′ = 〈QaQa′〉 − 〈Qa〉 〈Qa′〉 =

σ2
Vd+1

ξ0 for a = a′

σ2
Vd+1

ξ1 otherwise
(13c)

with ξ0 =
∑
b

α2
b + αb

α2
0 + α0

, ξ1 =
∑
b

α2
b

α2
0

, and α0 =
∑
b

αb (13d)

where µVd and σ2
Vd

are the mean and variance of P(d)
V (V), respectively.

Finally, since P
[
V | Q1 . . . QA

]
in Equation 12a simply entails choosing deterministically the max-

imum of Q1 . . . QA (Eq. 7a), we can also observe that P(d)
V (V) just expresses the Ath order statistic

of P(d)
Q

(
Q1 . . . QA

)
, which we also approximate with a normal distribution

P(d)
V (V) = POS

[
V ; P(d)

Q

(
Q1 . . . QA

)
, A
]
' N

(
V ;µVd , σ

2
Vd

)
(14)

whose mean, µVd and variance, σ2
Vd

, we need to determine.

The order statistics of uncorrelated variables can be conveniently expressed through a Beta distri-
bution, so that the distribution of Z(k)

A , the kth order statistic of A iid standard normal variates,
W1 . . .WA, takes the form:

POS

[
Z

(k)
A ;

A∏
i=1

N ∗(Wi) , k

]
= N ∗

(
Z

(k)
A

)
Beta

(
Ψ∗
(
Z

(k)
A

)
; k,A+ 1− k

)
(15)

whereN ∗ and Ψ∗ are the p.d.f. and c.d.f. of the standard normal distribution, and k = A in our case
because we are interested in the distribution of the maximum.

Using this formula and slightly extending the results of [4] on the moments of order statistics from
the equicorrelated multivariate normal distribution (which is the case of P(d)

Q

(
Q1 . . . QA

)
, as can be

seen from Eq. 13c), the mean and variance of P(d)
V (V) are

µVd = µVd+1 + λ1 σVd+1 (16a)

σ2
Vd

= λ2 σ
2
Vd+1

(16b)

with

λ1 = (ξ0 − ξ1)1/2
Z1
A, λ2 = ξ1 + (ξ0 − ξ1)

(
Z2
A − Z1

A

2
)

, and (16c)

ZiA =
∫

dZ ZiN ∗(Z) Beta(Ψ∗(Z) ;A, 1) (16d)

6

which can be re-expressed in closed form, without any recursion, as

µVd = µr̄ +
1− λ(D−d)/2

2

1− λ1/2
2

λ1 σr̄ (17a)

σ2
Vd

= λ
(D−d)
2 σ2

r̄ (17b)

This completes our derivation: the average expected return of the model-based controller in tMDPs
of hyperparameters Θ is simply given by substituting d = 0 to Equation 17a (and as a bonus, Eq. 17b
also gives us the variance of the expected return).

4.2 Effects of computational noise

As we noted in Section 3.2, the computational complexity of optimal action selection is immense. In
any practical case, it will be so overwhelming that approximations will be required while computing
the values of different options, such as pruning (ie ignoring parts of the tree), or sampling, etc.
Clearly, these approximations will have adverse effects on the performance of the controller.

We treat the effects of all sort of possible approximations as if the action selection algorithm of
Equations 6a-6c was modified so that instead of having access to the true values of available actions,
Q, the controller would only have access, and thus base its decision on, their noisy versions, Q′:

a∗s◦ = argmax
a∈As◦

Q′as◦ (18a)

Q′as◦ = η1Q
a
s◦ + η2z, where P[z] = N (z; 0, 1) (18b)

Qas◦ =
∑
s′∈Ss◦

p̄as◦,s′Vs′ (18c)

Vs =
{
Q
a∗s◦
s◦ if s is non-terminal

µ̂s• if s is terminal
(18d)

This means that the achievable value of a state is not simply the maximum of the values of the
actions available in it. Rather, it will be the true value of the action that happens to have the greatest
noisy value. Thus, the state value distribution of a state will no longer be the maximal order statistic
distribution of the corresponding action value distributions as in Equation 14, but will be something
slightly more complicated:

P(d)
V (V) = A P

[
Q1 = V

]
P
[
Q′1 is greater than any of Q′2 . . . Q′A | Q1 = V

]
(19)

where the middle term on the RHS can be expressed directly from Equations 13a-13c as

P
[
Q1 = V

]
= P(d)

Q (V) ' N
(
V ;µVd+1 , ξ0 σ

2
Vd+1

)
(20)

and the last term as
P
[
Q′1 is greater than any of Q′2 . . . Q′A | Q1 = V

]
=

=
∫

dQ′1 P
[
Q′1 | Q1 = V

] ∫ Q′1

∞
dQ∗ POS

[
Q∗; P

[
Q′2 . . . Q′A | Q1 = V

]
, A− 1

]
(21)

Since we have already approximated the distribution of true action values with a normal in Equa-
tion 13a, it is fair to use a similar normal approximation for the distribution of noisy action values,
where

P
[
Q′1 | Q1 = V

]
' N

(
Q′1; η1 V, η

2
2

)
(22)

and

P
[
Q′2 . . . Q′A | Q1 = V

]
=

∫
dQ2 . . . dQA P

[
Q′2 . . . Q′A | Q2 . . . QA

]
P
[
Q2 . . . QA | Q1 = V

]
' N

(
Q′2 . . . Q′A; ν′(d),Ξ′(d)

)
(23a)

7

is a multivariate normal with mean

ν′(d)
a = η1

〈
Qa+1 | Q1 = V

〉
(23b)

and (co)variance

Ξ′(d)
aa′ =

η2

1 Var
[
Qa+1 | Q1 = V

]
+ η2

2 for a = a′

η2
1 Cov

[
Qa+1, Qa

′+1 | Q1 = V
]

otherwise
(23c)

where, from Equations 13a-13c,〈
Qa | Q1 = V

〉
= µVd+1 + γ

(
V − µVd+1

)
(24a)

with γ =
(A− 1) ξ1ξ0 + 1
ξ0
ξ1

+A− 1
(24b)

Var
[
Qa | Q1 = V

]
= σ2

Vd+1

[
ξ0 −

ξ2
1

ξ0

]
(24c)

Cov
[
Qa, Qa

′
| Q1 = V

]
= σ2

Vd+1

[
ξ1 −

ξ2
1

ξ0

]
(24d)

Thus, P
[
Q′2 . . . Q′A | Q1 = V

]
is equicorrelated, and so the first two moments of its maximal order

statistic can be computed in the same way we obtained Equations 16a-16b, and these in turn can be
used for a Gaussian approximation

POS

[
Q∗; P

[
Q′2 . . . Q′A | Q1 = V

]
, A− 1

]
' N

(
Q∗;µ∗, σ∗2

)
(25a)

with mean and variance

µ∗ = η1

(
µVd+1 + γ

(
V − µVd+1

))
+ λ′1 σVd+1 + λ′′1 (25b)

σ∗2 = λ′2 σ
2
Vd+1

+ λ′′2 (25c)

with
λ′1 = η1 (ξ0 − ξ1)1/2

Z1
A−1, λ′′1 = η2 Z1

A−1, (25d)

λ′2 = η2
1

[(
ξ1 − ξ2

1
ξ0

)
+ (ξ0 − ξ1)

(
Z2
A−1 − Z1

A−1

2
)]
, and

λ′′2 = η2
2

(
Z2
A−1 − Z1

A−1

2
) (25e)

As a consequence, the second integral in Equation 21 can be simply expressed with the c.d.f. of the
standard normal:∫ Q′1

∞
dQ∗ POS

[
Q∗; P

[
Q′2 . . . Q′A | Q1 = V

]
, A− 1

]
' Ψ∗

(
Q′1 − µ∗

σ∗

)
(26)

Thus, Equation 21 entails the convolution of a normal p.d.f with a normal c.d.f. Unfortunately, this
does not have a convenient analytical form. We could integrate it numerically, but then it would
be hard to work out the dependence of this integral on V , which we need in order to be able to
have an expression for Equation 19. As a compromise, we approximate Ψ by two Gaussian tails
(one of them upside-down) glued together at their inflection points. Since the mean of the normal
c.d.f., µ∗ (from Eq. 25b), is usually larger than the mean of the normal p.d.f, η1 V (from Eq. 22),
the contribution of the second half of the normal c.d.f. to the integral will be negligible, and so we
finally approximate the normal c.d.f. rather crudely with a single (unnormalized) Gaussian that we
obtain by Taylor expanding its first half in the log domain around 0:

Ψ∗(x) ≈ 1
2
e
√

2
π x−

1
π x

2
for x ≤ 0 (27)

8

This approximation allows us to rewrite the integrand of the outer integral in Equation 21 as a
single unnormalized Gaussian (the product of two Gaussians), which is further simplified by the
observation that the integral is invariant under a change of variables Q′1 → Q′1 + η1V :

P
[
Q′1 is greater than any of Q′2 . . . Q′A | Q1 = V

]
'

'
∫

dQ′1N
(
Q′1;

κ1

2κ2
,

1
2κ2

)
︸ ︷︷ ︸

=1

√
1

2κ2η2
2

1
2
e
κ2

1
4κ2
−κ0 (28a)

with

κ0 =

√
2
π

µ∗ − η1V

σ∗
+

1
π

(µ∗ − η1V)2

σ∗2
(28b)

κ1 =

√
2
π

1
σ∗

+
2
π

µ∗ − η1V

σ∗2
(28c)

κ2 =
1

2η2
2

+
1
π

1
σ∗2

(28d)

Concentrating only on the last term, which is the only one that depends on V , since the rest will be
lumped into the normalization factor of Equation 19, we can write that

P
[
Q′1 is greater than any of Q′2 . . . Q′A | Q1 = V

]
∝ e

κ2
1

4κ2
−κ0 ∝ N

(
V ;µ′V , σ

′2
V

)
(29a)

where

µ′V =
1
κ′′1

(√
π

2
σ∗ + κ′′0

)
(29b)

σ′
2
V =

1
2κ′′1

2κ′2
(29c)

with

κ′2 =
1

π σ∗2

(
1− 1

π κ2σ∗
2

)
(29d)

κ′′0 = η1 (1− γ)µVd+1 + λ′1 σVd+1 + λ′′1 (29e)

κ′′1 = η1 (1− γ) (29f)

Finally, we observe that with the above approximations P(d)
V (V) (Eq. 19) is just the renormalized

product of two Gaussians (one defined in Eq. 20, the other in Eq. 29a), and thus can be written as

P(d)
V (V) ' N

(
V ;µVd , σ

2
Vd

)
(30a)

where

µVd =

µVd+1

ξ0 σ2
Vd+1

+
µ′V
σ′2V

1
σ2
Vd

(30b)

σ2
Vd

=
1

1
ξ0 σ2

Vd+1

+
1
σ′2V

(30c)

Equations 13d, 16d, 24b, 25c-25e, 28d, 29b-29f, 30b-30c jointly define a recursive relationship be-
tween the mean and variance of P(d)

V (V) and P(d+1)
V (V). Unfortunately, there is no obvious way to

9

rewrite it in closed form without recursion, as we could do for the asymptotic case in Equations 17a-
17b. Another somewhat disappointing consequence of the numerous, and sometimes rather crude,
approximations that we made along the way is that Equations 16a-16b describing the asymptotic
case do not seem to be the limiting cases of Equations 30b-30c with computational noise η2 → 0, as
they should. However, numerical simulations show that the two solutions do become approximately
equal. Fortunately, in the noise-dominated limit, η1 → 0, Equations 30b-30c behave appropri-
ately, as they yield µVd → µVd+1 and σ2

Vd
→ ξ0σ

2
Vd+1

(because κ′′1 → 0, and thus µ′V /σ
′
V

2 and

1/σ′V
2 → 0), ie equivalence with a random controller.

4.3 Learning curve

Up to this point, we assumed that the controller had perfect knowledge of the environment, more
precisely its parameters, θ. In this section, we analyse the effects of incomplete information due
to limited experience. The ansatz of our approach is that these effects can be modeled by assum-
ing that the controller does not have access to the true values of actions, for which it would need
perfect knowledge of all transition and reward probabilities, only to their ‘noisy’ versions. This
‘noise’ comes from the fact that action values are based on estimates of transition probabilities, p̂as◦
(Eq. 6b), and mean rewards, µ̂s• (Eq. 6c). These estimates are inherently stochastic themselves as
they are based on stochastic experience (Eqs. 5a-5c). As the final step, we show that the form of
the resulting ‘noise’ in the action values can be well approximated by the form of computational
noise we have already treated in Section 4.2, and so we only need to determine how the amount of
learning experience, expressed by N◦ and N• (defined in Section 2), maps on to the parameters of
effective computational noise, η1 and η2 (Eq. 18b).

For a ‘non-preterminal’ state, s◦, which is at depth d < D − 1, the only source of stochasticity in
action value estimates that is not due to propagated effects of ‘noise’ in the action value estimates
of its successor states is the error in the estimate of transition probabilities. The learning rules of
Equations 4a and 5a result in α̂a

s◦ = α+
∑T
t=1 xt where xt is a vector of binary variables indicating

which state s′ was reached in learning time step t when action a was taken in state s◦. Since
estimated action values are based on estimated transition probabilities p̄as◦ = α̂a

s◦
α0+N◦ (Eq. 6b), we

are interested in the distribution of these estimates after N◦ learning experience with non-terminal
states given the true transition probabilities, P[p̄as◦ | pas◦ , N◦,Θ] (and marginalizing over possible
sequences of xt), and in particular the mean and (co)variance of this distribution

〈p̄as◦b | pas◦ , N◦,Θ〉 =
αb +N◦ · pas◦b
α0 +N◦

(31a)

Var[p̄as◦b | pas◦ , N◦,Θ] =
N◦ · pas◦b (1− pas◦b)

(α0 +N◦)2 (31b)

Cov[p̄as◦b, p̄
a
s◦b′ | pas◦ , N◦,Θ] = −N

◦ · pas◦b pas◦b′
(α0 +N◦)2 (31c)

Estimated action values, Q̂as◦ , are just a linear combination of estimated transition probabilities with
(estimated) successor state values (V̂s′ where s′ ∈ Ss◦ , Eq. 6b), and so the mean and variance of the
distribution of estimated action values, P

[
Q̂as◦ | pas◦ , {V ′s′}s′∈Ss◦ , N

◦,Θ
]
, are

〈
Q̂as◦ | pas◦ , {V ′s′}s′∈Ss◦ , N

◦,Θ
〉

=
∑
b

αb
α0 +N◦

V ′b +
N◦

α0 +N◦︸ ︷︷ ︸
η1

Qas◦︷ ︸︸ ︷∑
b

pas◦bV
′
b (32a)

Var
[
Q̂as◦ | pas◦ , {V ′s′}s′∈Ss◦ , N

◦,Θ
]

=
N◦

(α0 +N◦)2

∑
b

pas◦bV
′2
b −

Qas◦
2︷ ︸︸ ︷∑

b

∑
b′

pas◦bp
a
s◦b′V

′2
b V

′2
b′

(32b)

10

Thus, the mean of the estimated action value (Eq. 32a) is the sum of a constant term, which is
independent of the action, and a term that is proportional to the true action value. When we analysed
the effects of noise in Section 4.2, this was exactly our assumption about the mean of noisy action
values (Eq. 18b), and the constant of proportionality for the action value-dependent term was η1.
(We ignored the constant term because it made no difference to any of the results.) However, the
form of the variance of estimated action values (Eq. 32b) does not seem to be compatible with what
we assumed about noisy action values: rather than being an action-independent constant η2

2 , the term
in the bracket does depend on the action. In order to reconcile this discrepancy, we approximate this
term with its expected value under our generative distribution for tMDPs, and obtain

Var
[
Q̂as◦ | pas◦ , {V ′s′}s′∈Ss◦ , N

◦,Θ
]
'
〈

Var
[
Q̂a
]
| N◦,Θ

〉
=

N◦

(α0 +N◦)2 (1− ξ0)σ2
Vd+1︸ ︷︷ ︸

η2
2

(32c)

Numerical simulation shows that the inaccuracy introduced by this approximation is tolerable. Fur-
thermore, although we did not explicitly allow for depth-dependence of η2 (such as that in the last
σ2
Vd+1

term of Eq. 32c) when treating the case of noisy action values, it makes no changes to the
results derived therein. We also note that, conveniently, the evolution of η1 and η2 with learning (ie
as a function of N◦) follows intuition: the former grows from 0 to 1, while the latter starts at 0 (be-
cause all estimates are concentrated on the prior parameters), then attains positive values, but returns
ultimately again to 0 (as all estimates become increasingly concentrated on the corresponding true
action values).

The case of ‘preterminal’ states, s�, those that are at depth d = D−1, is slightly more complicated.
Since we want to lump all the estimation noise into noisy action values, this is where we need to
take into account the uncertainty that the controller has during learning about the mean reward prob-
abilities of its terminal states, r̄s• . The learning rules for this estimate (Eqs. 4b-4c, and 5b-5c) yield

µ̂s• =
1
σ2
r̄
µr̄+

P
t rt

1
σ2
r̄

+N•
, after N• learning experience with terminal states, where rt is the reward har-

vested in this state in learning time step t. Thus, the posterior for this estimate, P[µ̂s• | r̄s• , N•,Θ]
(after marginalizing over possible experienced reward sequences), happens to be truly normal and
its mean and variance are

〈µ̂s• | r̄s• , N•,Θ〉 =
1
σ2
r̄
µr̄ +N• r̄s•

1
σ2
r̄

+N•
(33a)

Var[µ̂s• | r̄s• , N•,Θ] =
N•(

1
σ2
r̄

+N•
)2 (33b)

The noise due to uncertainty about terminal state mean rewards (Eqs. 33a-33b) needs to be combined
with that due to stochastic transition probability estimates at preterminal states (Eqs 31a-31c) in
order to obtain an expression for the mean and variance of action value estimates of preterminal
states

〈
Q̂as� | p

a
s� , {r̄s•}s•∈Ss� , N

◦, N•,Θ
〉

=
1
σ2
r̄
µr̄

1
σ2
r̄

+N•
+

N•

1
σ2
r̄

+N•

∑
b

αb
α0 +N◦

r̄b +

+
N◦

α0 +N◦
N•

1
σ2
r̄

+N•︸ ︷︷ ︸
η1

Qas◦︷ ︸︸ ︷∑
b

pas�b r̄b (34a)

11

Var
[
Q̂as� | p

a
s� , {r̄s•}s•∈Ss� , N

◦, N•,Θ
]
'

'
〈

Var
[
Q̂as�

]
| N◦, N•,Θ

〉
=

N•(
1
σ2
r̄

+N•
)2

1
α0 +N◦

1
α0 + 1

·

·
[∑

b α
2
b

α0

(
α0 +N◦ + 1−

N◦N•σ2
r̄

α0 +N◦

)
+N◦

(
1 +

α0N
•σ2
r̄

α0 +N◦

)]
= η2

2 (34b)

where we replaced the variance by its expectation under the generative distribution for tMDPs for
the same reason as before. These formulæ again behave as expected intuitively, and numerical
simulations also confirm their validity.

In summary, the performance of the model-based controller at limited experience can be evaluated by
using Equations 34a-34b and 32a, 32c to determine η1 and η2 at the preterminal and non-preterminal
levels. These parameters then can be substituted to the derivation of Section 4.2 (Eqs. 25d-25e,
28d, 29e-29f) (true computational noise can be added to taste) and used to compute the value of
progressively higher levels in the tMDP by proceeding backwards from terminal states to the root
state. The value of the root state yields the expected performance of the controller.

References
[1] Sutton, R.S. & Barto, A.G. Reinforcement Learning (MIT Press, 1998).
[2] Kearns, M. & Singh, S. Finite-sample convergence rates for Q-learning and indirect algorithms. in Ad-

vances in Neural Information Processing Systems Vol. 11 (eds. Kearns, M.S., Solla, S.A. & Cohn, D.A.),
Vol. 11, 996–1002 (MIT Press, Cambridge, MA, 1999).

[3] Meuleau, N. & Bourgine, P. Exploration of multi-state environments: local measures and back-propagation
of uncertainty. Machine Learning 35, 117–154 (1999).

[4] Owen, D.B. & Steck, G.P. Moments of order statistics from the equicorrelated multivariate normal distri-
bution. Ann Math Stat 33, 1286–1291 (1962).

12

