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Abstract

The problem of obtaining the maximum a posteriori estimate of a general dis-
crete random field (i.e. a random field defined using a finite anddiscrete set of
labels) is known to beNP-hard. However, due to its central importance in many
applications, several approximate algorithms have been proposed in the litera-
ture. In this paper, we present an analysis of three such algorithms based on
convex relaxations: (i)LP-S: the linear programming (LP) relaxation proposed by
Schlesinger [25] for a special case and independently in [4,17, 31] for the general
case; (ii)QP-RL: the quadratic programming (QP) relaxation by Ravikumar and
Lafferty [22]; and (iii) SOCP-MS: the second order cone programming (SOCP) re-
laxation first proposed by Muramatsu and Suzuki [20] for two label problems and
later extended in [18] for a general label set.
We show that theSOCP-MS and theQP-RL relaxations are equivalent. Further-
more, we prove that despite the flexibility in the form of the constraints/objective
function offered byQP andSOCP, theLP-S relaxationstrictly dominates(i.e. pro-
vides a better approximation than)QP-RL and SOCP-MS. We generalize these
results by defining a large class ofSOCP(and equivalentQP) relaxations which is
dominated by theLP-S relaxation. Based on these results we propose some novel
SOCPrelaxations which strictly dominate the previous approaches.

1 Introduction

Discrete random fields are a powerful tool to obtain a probabilistic formulation for various applica-
tions in Computer Vision and related areas [3, 5]. Hence, developing accurate and efficient algo-
rithms for performing inference on a given discrete random field is of fundamental importance. In
this work, we will focus on the problem of maximum a posteriori (MAP) estimation.MAP estimation
is a key step in obtaining the solutions to many applicationssuch as stereo, image stitching and
segmentation [29]. Furthermore, it is closely related to many important Combinatorial Optimization
problems such asMAXCUT [8], multi-way cut [6], metric labelling [3, 14] and 0-extension [3, 12].

Given dataD, a discrete random field models the distribution (i.e. either the joint or the con-
ditional probability) of a labelling for a set of random variables. Each of these variablesv =
{v0, v1, · · · , vn−1} can take a label from a discrete setl = {l0, l1, · · · , lh−1}. A particular labelling
of variablesv is specified by a functionf whose domain corresponds to the indices of the random
variables and whose range is the index of the label set, i.e.

f : {0, 1, · · · , n − 1} → {0, 1, · · · , h − 1}. (1)

In other words, random variableva takes labellf(a). For convenience, we assume the model to be
a conditional random field (CRF) while noting that all the results of this paper also apply toMarkov
random fields (MRF).

A CRF specifies a neighbourhood relationshipE between the random variables, i.e.(a, b) ∈ E if,
and only if,va andvb are neighbouring random variables. Within this framework,the conditional
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probability of a labellingf given dataD is specified as

Pr(f |D, θ) =
1

Z(θ)
exp(−Q(f ;D, θ). (2)

Hereθ represents the parameters of theCRF andZ(θ) is a normalization constant which ensures
that the probability sums to one (also known as the partitionfunction). The energyQ(f ;D, θ) is
given by

Q(f ;D, θ) =
∑

va∈v

θ1
a;f(a) +

∑

(a,b)∈E

θ2
ab;f(a)f(b). (3)

The termθ1
a;f(a) is called a unary potential since its value depends on the labelling of one random

variable at a time. Similarly,θ2
ab;f(a)f(b) is called a pairwise potential as it depends on a pair of

random variables. For simplicity, we assume thatθ2
ab;f(a)f(b) = w(a, b)d(f(a), f(b)) wherew(a, b)

is the weight that indicates the strength of the pairwise relationship between variablesva andvb,
with w(a, b) = 0 if (a, b) /∈ E , andd(·, ·) is a distance function on the labels1. As will be seen later,
this formulation of the pairwise potentials would allow us to concisely describe our results.

We note that a subclass of this problem wherew(a, b) ≥ 0 and the distance functiond(·, ·) is a
semi-metric or a metric has been well-studied in the literature [3, 4, 14]. However, we will focus on
the generalMAP estimation problem. In other words, unless explicitly stated, we do not place any
restriction on the form of the unary and pairwise potentials.

The problem ofMAP estimation is well known to beNP-hard in general. Since it plays a central
role in several applications, many approximate algorithmshave been proposed in the literature. In
this work, we analyze three such algorithms which are based on convex relaxations. Specifically,
we consider: (i)LP-S, the linear programming (LP) relaxation of [4, 17, 25, 31]; (ii)QP-RL, the
quadratic programming (QP) relaxation of [22]; and (iii)SOCP-MS, the second order cone program-
ming (SOCP) relaxation of [18, 20]. In order to provide an outline of these relaxations, we formulate
the problem ofMAP estimation as an Integer Program (IP).

1.1 Integer Programming Formulation

We define a binary variable vectorx of lengthnh. We denote the element ofx at indexa · h + i as
xa;i whereva ∈ v andli ∈ l. These elementsxa;i specify a labellingf such that

xa;i =

{

1 if f(a) = i,
−1 otherwise. (4)

We say that the variablexa;i belongs tovariableva since it defines which labelva does (or does not)
take. LetX = xx⊤. We refer to the(a · h + i, b · h + j)th element of the matrixX asXab;ij where
va, vb ∈ v andli, lj ∈ l. Clearly the sum of the unary potentials for a labelling specified by (x,X)
is given by

∑

va,li

θ1
a;i

(1 + xa;i)

2
. (5)

Similarly the sum of the pairwise potentials for a labelling(x,X) is given by

∑

(a,b)∈E,li,lj

θ2
ab;ij

(1 + xa;i)

2

(1 + xb;j)

2
=

∑

(a,b)∈E,li,lj

θ2
ab;ij

(1 + xa;i + xb;j + Xab;ij)

4
. (6)

1The pairwise potentials for anyCRF can be represented in the formθ2
ab;ij = w(a, b)d(i, j). This can be

achieved by using a larger set of labelsl̂ = {l0;0, · · · , l0;h1
, · · · , ln−1;h1

} such that the unary potential ofva

taking labellb;i is θ1
a;i if a = b and∞ otherwise. In other words, a variableva can only take labels from the set

{la;0, · · · , la;h−1} since all other labels will result in an energy value of∞. The pairwise potential for variables
va andvb taking labelsla;i andlb;j respectively can then be represented in the formw(a, b)d(a; i, b; j) where
w(a, b) = 1 andd(a; i, b; j) = θ2

ab;ij . Note that using a larger set of labelsl̂ will increase the time complexity
of MAP estimation algorithms, but does not effect the analysis presented in this paper.
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Hence, the followingIP finds the labelling with the minimum energy, i.e. it is equivalent to theMAP
estimation problem:

IP: x∗ = arg minx

∑

va,li
θ1

a;i
(1+xa;i)

2 +
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ {−1, 1}nh, (7)
∑

li∈l
xa;i = 2 − h, (8)

X = xx⊤. (9)

Constraints (7) and (9) specify that the variablesx andX are binary such thatXab;ij = xa;ixb;j .
We will refer to them as theinteger constraints. Constraint (8), which specifies that each variable
should be assigned only one label, is known as theuniqueness constraint. Note that one uniqueness
constraint is specified for each variableva. Solving the aboveIP is in generalNP-hard. It is therefore
common practice to obtain an approximate solution using convex relaxations. We describe four such
convex relaxations below.

1.2 Linear Programming Relaxation

The LP relaxation, proposed by Schlesinger [25] for a special case(where the pairwise potentials
specify a hard constraint, i.e. they are either 0 or∞) and independently in [4, 17, 31] for the general
case, is given as follows:

LP-S: x∗ = argminx

∑

va,li
θ1

a;i
(1+xa;i)

2 +
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (10)
∑

li∈l
xa;i = 2 − h, (11)

∑

lj∈l
Xab;ij = (2 − h)xa;i, (12)

Xab;ij = Xba;ji, (13)

1 + xa;i + xb;j + Xab;ij ≥ 0. (14)

In the above relaxation, which we callLP-S, only those elementsXab;ij of X are used for which
(a, b) ∈ E andli, lj ∈ l. Unlike theIP, the feasibility region of the above problem is relaxed such
that the variablesxa;i andXab;ij lie in the interval[−1, 1]. Further, the constraint (9) is replaced by
equation (12) which is called themarginalization constraint[31]. One marginalization constraint
is specified for each(a, b) ∈ E and li ∈ l. Constraint (13) specifies thatX is symmetric. Con-
straint (14) ensures thatθ2

ab;ij is multiplied by a number between0 and1 in the objective function.
These constraints (13) and (14) are defined for all(a, b) ∈ E andli, lj ∈ l. The formulation of the
LP-S relaxation presented here uses a slightly different notation to the ones described in [15, 31].
However, it can easily be shown that the two formulations areequivalent by using the variablesy
andY instead ofx andX such thatya;i =

1+xa;i

2 , Yab;ij =
1+xa;i+xb;j+Xab;ij

4 . Note that the above
constraints are not exhaustive, i.e. it is possible to specify other constraints for the problem ofMAP
estimation (as will be seen in the different relaxations described in the subsequent sections).

Properties of theLP-S Relaxation:

• Since theLP-S relaxation specifies a linear program it can be solved in polynomial time. A
labellingf can then be obtained by rounding the (possibly fractional) solution of theLP-S.

• Using the rounding scheme of [14], theLP-S provides a multiplicative bound2 of 2 when
the pairwise potentials form a Potts model [4].

• Using the rounding scheme of [4],LP-S obtains a multiplicative bound of2 +
√

2 for
truncated linear pairwise potentials.

2Consider a set of optimization problemsA and a relaxation scheme defined over this setA. In other
words, for every optimization problemA ∈ A, the relaxation scheme provides a relaxationB ∈ B of A. Let
eA denote the optimal value of the optimization problemA. Further, let̂eA denote the value of the objective
function ofA at the point obtained by rounding the optimal solution of itsrelaxationB. The relaxation scheme
is said to provide a multiplicative bound ofρ for the setA if, and only if, the following condition is satisfied:
E(êA) ≤ ρeA,∀A ∈ A, whereE(·) denotes the expectation of its argument under the rounding scheme
employed.
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• LP-S provides a multiplicative bound of 1 when the energy function Q(·;D, θ) of theCRF
is submodular [26] (also see [11, 24] for the st-MINCUT graph construction for minimizing
submodular energy functions).

• TheLP-S relaxation provides the same optimal solution for all reparameterizationsθ of θ

(i.e. for allθ ≡ θ) [15, 34].

Although theLP-S relaxation can be solved in polynomial time, the state of theart Interior Point
algorithms can only handle up to a few thousand variables andconstraints. In order to overcome
this deficiency several efficient algorithms have been proposed in the literature for approximately
solving the Lagrangian dual ofLP-S [15, 16, 27, 28, 31, 34].

1.3 Quadratic Programming Relaxation

We now describe theQP relaxation for theMAP estimationIP which was proposed by Ravikumar
and Lafferty [22]. To this end, it would be convenient to reformulate the objective function of theIP

using a vector of unary potentials of lengthnh (denoted byθ̂1) and a matrix of pairwise potentials

of sizenh × nh (denoted byθ̂2). The element of the unary potential vector at index(a · h + i) is
defined as

θ̂1
a;i = θ1

a;i −
∑

vc∈v

∑

lk∈l

|θ2
ac;ik|, (15)

whereva ∈ v andli ∈ l. The(a · h + i, b · h + j)th element of the pairwise potential matrix̂θ2 is
defined such that

θ̂2
ab;ij =

{ ∑

vc∈v

∑

lk∈l
|θ2

ac;ik|, if a = b, i = j,
θ2

ab;ij otherwise,
(16)

whereva, vb ∈ v andli, lj ∈ l. In other words, the potentials are modified by defining a pairwise po-
tential θ̂2

aa;ii and subtracting the value of that potential from the corresponding unary potentialθ1
a;i.

The advantage of this reformulation is that the matrixθ̂
2

is guaranteed to be positive semidefinite,

i.e. θ̂
2 � 0. Using the fact that forxa;i ∈ {−1, 1},

(

1 + xa;i

2

)2

=
1 + xa;i

2
, (17)

it can be shown that the following is equivalent to theMAP estimation problem [22]:

QP-RL: x∗ = argminx

(

1+x

2

)⊤
θ̂

1
+
(

1+x

2

)⊤
θ̂

2 (
1+x

2

)

, (18)

s.t.
∑

li∈l
xa;i = 2 − h, ∀va ∈ v, (19)

x ∈ {−1, 1}nh, (20)

where1 is a vector of appropriate dimensions whose elements are allequal to1. By relaxing
the feasibility region of the above problem tox ∈ [−1, 1]nh, the resultingQP can be solved in

polynomial time sincêθ
2 � 0 (i.e. the relaxation of theQP (18)-(20) is convex). We call the above

relaxationQP-RL. Note that in [22], theQP-RL relaxation was described using the variabley = 1+x

2 .
However, the above formulation can easily be shown to be equivalent to the one presented in [22].

Ravikumar and Lafferty [22] proposed a rounding scheme forQP-RL (different from the ones
used in [4, 14]) that provides an additive bound3 of S

4 for the MAP estimation problem, where
S =

∑

(a,b)∈E

∑

li,lj∈l
|θ2

ab;ij | (i.e. S is the sum of the absolute values of all pairwise poten-

tials) [22]. Under their rounding scheme, this bound can be shown to be tight4 using a random

3A relaxation scheme defined over the set of optimization problemsA is said to provide an additive bound
of σ for A if, and only if, the following holds true:E(êA) ≤ eA + σ, ∀A ∈ A. HereeA is the optimal value of
A andêA is the value obtained by rounding the solution ofB.

4The multiplicative bound specified by a relaxation scheme defined over the set of optimization problemsA
is said to betight if, and only if, there exists anA ∈ A such thatE(êA) = ρeA. Similarly, the additive bound
specified by a relaxation scheme defined overA is said to be tight if, and only if, there exists anA ∈ A such
thatE(êA) = eA + σ.
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field defined over two random variables which specifies uniform unary potentials and Ising model
pairwise potentials. Further, they also proposed an efficient iterative procedure for solving theQP-
RL relaxation approximately. However, unlikeLP-S, no multiplicative bounds have been established
for theQP-RL formulation for special cases of theMAP estimation problem.

1.4 Semidefinite Programming Relaxation

TheSDPrelaxation of theMAP estimation problem replaces the non-convex constraintX = xx⊤ by
the convex semidefinite constraintX− xx⊤ � 0 [7, 8, 19] which can be expressed as

(

1 x⊤

x X

)

� 0, (21)

using Schur’s complement [2]. Further, likeLP-S, it relaxes the integer constraints by allowing the
variablesxa;i andXab;ij to lie in the interval[−1, 1] with Xaa;ii = 1 for all va ∈ v, li ∈ l. Note
that the value ofXaa;ii is derived using the fact thatXaa;ii = x2

a;i. Sincexa;i can only take the
values−1 or 1 in the MAP estimationIP, it follows thatXaa;ii = 1. TheSDP relaxation is a well-
studied approach which provides accurate solutions for theMAP estimation problem (e.g. see [33]).
However, due to its computational inefficiency, it is not practically useful for large scale problems
with nh > 1000. See however [21, 23, 30].

1.5 Second Order Cone Programming Relaxation

We now describe theSOCP relaxation that was proposed by Muramatsu and Suzuki [20] for the
MAXCUT problem (i.e.MAP estimation withh = 2) and later extended for a general label set [18].
This relaxation, which we callSOCP-MS, is based on the technique of Kim and Kojima [13]. For
completeness we first describe the general technique of [13]and later show howSOCP-MS can be
derived using it.

SOCPRelaxations: Kim and Kojima [13] observed that theSDP constraintX − xx⊤ � 0 can
be further relaxed to second order cone (SOC) constraints. Their technique uses the fact that the
Frobenius inner product of two semidefinite matrices is non-negative. For example, consider the
inner product of a fixed matrixC = UU⊤ � 0 with X−xx⊤ (which, by theSDPconstraint, is also
positive semidefinite). This inner product can be expressedas anSOCconstraint as follows:

C • (X − xx⊤) ≥ 0, (22)

⇒ ‖(U)⊤x‖2 ≤ C • X. (23)

Hence, by using a set of matricesS = {Ck|Ck = Uk(Uk)⊤ � 0, k = 1, 2, . . . , nC}, the SDP
constraint can be further relaxed tonC SOCconstraints, i.e.

⇒ ‖(Uk)⊤x‖2 ≤ Ck • X, k = 1, · · · , nC . (24)

It can be shown that, for the above set ofSOC constraints to be equivalent to theSDP constraint,
nC = ∞. However, in practice, we can only specify a finite set ofSOC constraints. Each of these
constraints may involve some or all variablesxa;i andXab;ij . For example, ifCk

ab;ij = 0, then the
kth SOCconstraint will not involveXab;ij (since its coefficient will be 0).

The SOCP-MS Relaxation: Consider a pair of neighbouring variablesva andvb, i.e. (a, b) ∈ E ,
and a pair of labelsli andlj. These two pairs define the following variables:xa;i, xb;j , Xaa;ii =
Xbb;jj = 1 andXab;ij = Xba;ji (sinceX is symmetric). For each such pair of variables and labels,
the SOCP-MS relaxation specifies twoSOC constraints which involve only the above variables [18,
20]. In order to specify the exact form of theseSOCconstraints, we need the following definitions.

Using the variablesva andvb (where(a, b) ∈ E) and labelsli and lj , we define the submatrices
x(a,b,i,j) andX(a,b,i,j) of x andX respectively as:

x(a,b,i,j) =

(

xa;i

xb;j

)

,X(a,b,i,j) =

(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

. (25)

TheSOCP-MS relaxation specifiesSOCconstraints of the form:

‖(Uk
MS)⊤x(a,b,i,j)‖2 ≤ Ck

MS • X(a,b,i,j), (26)
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for all pairs of neighbouring variables(a, b) ∈ E and labelsli, lj ∈ l. To this end, it uses the
following two matrices:

C1
MS =

(

1 1
1 1

)

,C2
MS =

(

1 −1
−1 1

)

. (27)

In other wordsSOCP-MS specifies a total of2|E|h2 SOC constraints. Note that both the matri-
cesC1

MS andC2
MS defined above are positive semidefinite, and hence can be written asC1

MS =
U1

MS(U1
MS)⊤ andC1

MS = U1
MS(U1

MS)⊤ where

U1
MS =

(

0 1
0 1

)

andU2
MS =

(

0 −1
0 1

)

, (28)

Substituting these matrices in inequality (26) we see that the constraints defined by theSOCP-MS
relaxation are given by

‖(U1
MS)⊤x(a,b,i,j)‖2 ≤ C1

MS • X(a,b,i,j),

‖(U2
MS)⊤x(a,b,i,j)‖2 ≤ C2

MS • X(a,b,i,j), (29)

⇒
∣

∣

∣

∣

∣

∣

∣

∣

(

0 0
1 1

)(

xa;i

xb;j

)∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 1
1 1

)

•
(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

,

∣

∣

∣

∣

∣

∣

∣

∣

(

0 0
−1 1

)(

xa;i

xb;j

)∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 −1
−1 1

)

•
(

Xaa;ii Xab;ij

Xba;ji Xbb;jj

)

, (30)

⇒ (xa;i + xb;j)
2 ≤ Xaa;ii + Xbb;jj + Xab;ij + Xba;ji,

(xa;i − xb;j)
2 ≤ Xaa;ii + Xbb;jj − Xab;ij − Xba;ji, (31)

⇒ (xa;i + xb;j)
2 ≤ 2 + 2Xab;ij ,

(xa;i − xb;j)
2 ≤ 2 − 2Xab;ij . (32)

The last expression is obtained using the fact thatX is symmetric andXaa;ii = 1, for all va ∈ v and
li ∈ l. Hence, in theSOCP-MS formulation, theMAP estimationIP is relaxed to

SOCP-MS: x∗ = argminx

∑

va,li
θ1

a;i
(1+xa;i)

2 +
∑

(a,b)∈E,li,lj
θ2

ab;ij
(1+xa;i+xb;j+Xab;ij)

4

s.t. x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (33)
∑

li∈l
xa;i = 2 − h, (34)

(xa;i − xb;j)
2 ≤ 2 − 2Xab;ij, (35)

(xa;i + xb;j)
2 ≤ 2 + 2Xab;ij, (36)

Xab;ij = Xba;ji. (37)

We refer the reader to [18, 20] for details. TheSOCP-MS relaxation yields the supremum and infi-
mum for the elements of the matrixX using constraints (35) and (36) respectively, i.e.

(xa;i + xb;j)
2

2
− 1 ≤ Xab;ij ≤ 1 − (xa;i − xb;j)

2

2
. (38)

These constraints are specified for all(a, b) ∈ E and li, lj ∈ l. When the objective function of
SOCP-MS is minimized, one of the two inequalities would be satisfied as an equality. This can be
proved by assuming that the value for the vectorx has been fixed. Hence, the elements of the matrix
X should take values such that it minimizes the objective function subject to the constraints (35) and
(36). Clearly, the objective function would be minimized whenXab;ij equals either its supremum
or infimum value, depending on the sign of the corresponding pairwise potentialθ2

ab;ij , i.e.

Xab;ij =

{

(xa;i+xb;j)
2

2 − 1 if θ2
ab;ij > 0,

1 − (xa;i−xb;j)
2

2 otherwise.
(39)

Similar to theLP-S andQP-RL relaxations defined above, theSOCP-MS relaxation can also be solved
in polynomial time. To the best our knowledge, no bounds havebeen established for theSOCP-MS
relaxation in earlier work. Furthermore, no previous specialized algorithms exist for solvingSOCP-
MS (or indeed any otherSOCPrelaxation) efficiently.
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2 Comparing Relaxations

In order to compare the relaxations described above, we require the following definitions. We say
that a relaxationA dominatesthe relaxationB (alternatively,B is dominated byA) if and only if

min
(x,X)∈F(A)

e(x,X; θ) ≥ min
(x,X)∈F(B)

e(x,X; θ), ∀θ, (40)

whereF(A) andF(B) are the feasibility regions of the relaxationsA andB respectively. The term
e(x,X; θ) denotes the value of the objective function at(x,X) (i.e. the energy of the possibly
fractional labelling(x,X)) for theMAP estimation problem defined over theCRF with parameterθ.
Thus the optimal value of the dominating relaxationA is always greater than or equal to the optimal
value of relaxationB. We note here that the concept of domination has been used previously in [4]
(to compareLP-S with the linear programming relaxation in [14]).

RelaxationsA andB are said to beequivalentif A dominatesB andB dominatesA, i.e. their optimal
values are equal to each other for allCRFs. A relaxationA is said tostrictly dominaterelaxation
B if A dominatesB but B does not dominateA. In other words there exists at least oneCRF with
parameterθ such that

min
(x,X)∈F(A)

e(x,X; θ) > min
(x,X)∈F(B)

e(x,X; θ). (41)

Note that, by definition, the optimal value of any relaxationwould always be less than or equal to
the energy of the optimal (i.e. theMAP) labelling. Hence, the optimal value of a strictly dominating
relaxationA is closer to the optimal value of theMAP estimationIP compared to that of relaxation
B. In other words,A provides a tighter lower bound forMAP estimation thanB.

We now describe two special cases of domination which are used extensively in the remainder of
this paper.

Case I:Consider two relaxationsA andB which share a common objective function. For example,
the objective functions of theLP-S and theSOCP-MS relaxations described in the previous section
have the same form. Further, letA andB differ in the constraints that they specify such thatF(A) ⊆
F(B), i.e. the feasibility region ofA is a subset of the feasibility region ofB.

Given two such relaxations, we claim thatA dominatesB. This can be proved by contradiction. To
this end, we assume thatA does not dominateB. Therefore, by definition of domination, there exists
at least one parameterθ for which B provides a greater value of the objective function thanA. Let
an optimal solution ofA be(xA,XA). Similarly, let(xB,XB) be an optimal solution ofB. By our
assumption, the following holds true:

e(xA,XA; θ) < e(xB,XB; θ). (42)

However, sinceF(A) ⊆ F(B) it follows that(xA,XA) ∈ F(B). Hence, from equation (42), we see
that(xB ,XB) cannot be an optimal solution ofB. This proves our claim.

We can also consider a case whereF(A) ⊂ F(B), i.e. the feasibility region ofA is a strict subset of
the feasibility region ofB. Using the above argument we see thatA dominatesB. Further, assume
that there exists a parameterθ such that the intersection of the set of all optimal solutions of A and
the set of all optimal solutions ofB is null. In other words if(xB ,XB) is an optimal solution ofB
then(xB ,XB) /∈ F(A). Clearly, if such a parameterθ exists thenA strictly dominatesB.

Case II:Consider two relaxationsA andB such that they share a common objective function. Further,
let the constraints ofB be a subset of the constraints ofA. We claim thatA dominatesB. This follows
from the fact thatF(A) ⊆ F(B) and the argument used in Case I above.

2.1 Our Results

We prove thatLP-S strictly dominatesSOCP-MS (see section 3). Further, in section 4, we show that
QP-RL is equivalent toSOCP-MS. This implies thatLP-S strictly dominates theQP-RL relaxation.
In section 5 we generalize the above results by proving that alarge class ofSOCP(and equivalent
QP) relaxations is dominated byLP-S. Based on these results, we propose a novel set of constraints
which result inSOCPrelaxations that dominateLP-S, QP-RL andSOCP-MS. These relaxations intro-
duceSOCconstraints on cycles and cliques formed by the neighbourhood relationship of theCRF.
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3 LP-S vs. SOCP-MS

We now show that for theMAP estimation problem the linear constraints ofLP-S, i.e.

x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (43)
∑

li∈l
xa;i = 2 − h, (44)

∑

lj∈l
Xab;ij = (2 − h)xa;i, (45)

Xab;ij = Xba;ji, (46)

1 + xa;i + xb;j + Xab;ij ≥ 0. (47)

are stronger than theSOCP-MS constraints, i.e.

x ∈ [−1, 1]nh,X ∈ [−1, 1]nh×nh, (48)
∑

li∈l
xa;i = 2 − h, (49)

(xa;i − xb;j)
2 ≤ 2 − 2Xab;ij , (50)

(xa;i + xb;j)
2 ≤ 2 + 2Xab;ij , (51)

Xab;ij = Xba;ji. (52)

In other words the feasibility region ofLP-S is a strict subset of the feasibility region ofSOCP-MS
(i.e.F(LP-S) ⊂ F(SOCP-MS)). This in turn would allow us to prove the following theorem.

Theorem 1: TheLP-S relaxation strictly dominates theSOCP-MS relaxation.

Proof: The LP-S and theSOCP-MS relaxations differ only in the way they relax the non-convex
constraintX = xx⊤. While LP-S relaxesX = xx⊤ using the marginalization constraint (45),
SOCP-MS relaxes it to constraints (50) and (51). TheSOCP-MS constraints provide the supremum
and infimum ofXab;ij as

(xa;i + xb;j)
2

2
− 1 ≤ Xab;ij ≤ 1 − (xa;i − xb;j)

2

2
. (53)

Consider a pair of neighbouring variablesva andvb and a pair of labelsli andlj . Recall thatSOCP-
MS specifies the constraints (50) and (51) for all such pairs of random variables and labels, i.e. for
all xa;i, xb;j , Xab;ij such that(a, b) ∈ E andli, lj ∈ l. In order to prove this theorem we use the
following two lemmas.

Lemma 3.1: If xa;i, xb;j andXab;ij satisfy theLP-S constraints, i.e. constraints (43)-(47), then

|xa;i − xb;j | ≤ 1 − Xab;ij . (54)

The above result holds true for all(a, b) ∈ E andli, lj ∈ l.

Proof: From theLP-S constraints, we get

1 + xa;i

2
=
∑

lk∈l

1 + xa;i + xb;k + Xab;ik

4
,

1 + xb;j

2
=
∑

lk∈l

1 + xa;k + xb;j + Xab;kj

4
. (55)

Therefore,

|xa;i − xb;j | = 2
∣

∣

∣

1+xa;i

2 − 1+xb;j

2

∣

∣

∣ ,

= 2
∣

∣

∣

(

1+xa;i

2 − 1+xa;i+xb;j+Xab;ij

4

)

−
(

1+xb;j

2 − 1+xa;i+xb;j+Xab;ij

4

)∣

∣

∣ ,

≤ 2
(

1+xa;i

2 − 1+xa;i+xb;j+Xab;ij

4

)

+ 2
(

1+xb;j

2 − 1+xa;i+xb;j+Xab;ij

4

)

,

= 1 − Xab;ij . (56)

Note that the inequality holds since both the expressions inthe parantheses, i.e.
(

1 + xa;i

2
− 1 + xa;i + xb;j + Xab;ij

4

)

,

(

1 + xb;j

2
− 1 + xa;i + xb;j + Xab;ij

4

)

, (57)
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are non-negative, as follows from equations (47) and (55).

Using the above lemma, we get

(xa;i − xb;j)
2 ≤ (1 − Xab;ij)(1 − Xab;ij), (58)

⇒ (xa;i − xb;j)
2 ≤ 2(1 − Xab;ij), (59)

⇒ (xa;i − xb;j)
2 ≤ 2 − 2Xab;ij . (60)

Inequality (59) is obtained using the fact that−1 ≤ Xab;ij ≤ 1 and hence,1 − Xab;ij ≤ 2. Using
inequality (58), we see that the necessary condition for theequality to hold true is(1 − Xab;ij)(1 −
Xab;ij) = 2 − 2Xab;ij , i.e. Xab;ij = −1. Note that inequality (60) is equivalent to theSOCP-MS
constraint (50). ThusLP-S provides a smaller supremum ofXab;ij whenXab;ij > −1.

Lemma 3.2: If xa;i, xb;j andXab;ij satisfy theLP-S constraints then

|xa;i + xb;j | ≤ 1 + Xab;ij . (61)

This holds true for all(a, b) ∈ E andli, lj ∈ l.

Proof: According to constraint (47),

−(xa;i + xb;j) ≤ 1 + Xab;ij . (62)

Using Lemma 3.1, we get the following set of inequalities:

|xa;i − xb;k| ≤ 1 − Xab;ik, lk ∈ l, k 6= j (63)

Adding the above set of inequalities, we get
∑

lk∈l,k 6=j |xa;i − xb;j | ≤
∑

lk∈l,k 6=j(1 − Xab;ik), (64)

⇒ ∑

lk∈l,k 6=j(xa;i − xb;k) ≤∑lk∈l,k 6=j(1 − Xab;ik), (65)

⇒ (h − 1)xa;i −
∑

lk∈l,k 6=j xb;k ≤ (h − 1) −∑lk∈l,k 6=j Xab;ik, (66)

⇒ (h − 1)xa;i + (h − 2) + xb;j ≤ (h − 1) + (h − 2)xa;i + Xab;ij . (67)

The last step is obtained using constraints (44) and (45), i.e.
∑

lk∈l

xb;k = (2 − h),
∑

lk∈l

Xab;ik = (2 − h)xa;i. (68)

Rearranging the terms, we get
(xa;i + xb;j) ≤ 1 + Xab;ij . (69)

Thus, according to inequalities (62) and (69)

|xa;i + xb;j | ≤ 1 + Xab;ij . (70)

Using the above lemma, we obtain

(xa;i + xb;j)
2 ≤ (1 + Xab;ij)(1 + Xab;ij), (71)

⇒ (xa;i + xb;j)
2 ≤ 2 + 2Xab;ij . (72)

where the necessary condition for the equality to hold true is1 + Xab;ij = 2 (i.e.Xab;ij = 1). Note
that the above constraint is equivalent to theSOCP-MS constraint (51). Together with inequality (60),
this proves that theLP-S relaxation provides smaller supremum and larger infimum of the elements
of the matrixX than theSOCP-MS relaxation. Thus,F(LP-S) ⊂ F(SOCP-MS).

One can also construct a parameterθ for which the set of all optimal solutions ofSOCP-MS do not
lie in the feasibility region ofLP-S. In other words the optimal solutions ofSOCP-MS belong to the
non-empty setF(SOCP-MS)−F(LP-S). Using the argument of Case I in section 2, this implies that
LP-S strictly dominatesSOCP-MS.

Note that the above theorem does not apply to the variation ofSOCP-MS described in [18, 20] which
includetriangular inequalities[1]. However, since triangular inequalities are linear constraints,LP-
S can be extended to include them. The resultingLP relaxation would strictly dominate theSOCP-MS
relaxation with triangular inequalities.
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4 QP-RL vs. SOCP-MS

We now prove thatQP-RL andSOCP-MS are equivalent (i.e. their optimal values are equal forMAP
estimation problems defined over allCRFs). Specifically, we consider a vectorx which lies in the
feasibility regions of theQP-RL andSOCP-MS relaxations, i.e.x ∈ [−1, 1]nh. For this vector, we
show that the values of the objective functions of theQP-RL and SOCP-MS relaxations are equal.
This would imply that ifx∗ is an optimal solution ofQP-RL for someCRF with parameterθ then
there exists an optimal solution(x∗,X∗) of theSOCP-MS relaxation. Further, ifeQ andeS are the
optimal values of the objective functions obtained using the QP-RL andSOCP-MS relaxation, then
eQ = eS .

Theorem 2: TheQP-RL relaxation and theSOCP-MS relaxation are equivalent.

Proof: Recall that theQP-RL relaxation is defined as follows:

QP-RL: x∗ = argminx

(

1+x

2

)⊤
θ̂

1
+
(

1+x

2

)⊤
θ̂

2 (
1+x

2

)

, (73)

s.t.
∑

li∈l
xa;i = 2 − h, ∀va ∈ v, (74)

x ∈ {−1, 1}nh, (75)

where the unary potential vectorθ̂
1

and the pairwise potential matrix̂θ
2 � 0 are defined as

θ̂1
a;i = θ1

a;i −
∑

vc∈v

∑

lk∈l

|θ2
ac;ik|, (76)

θ̂2
ab;ij =

{ ∑

vc∈v

∑

lk∈l
|θ2

ac;ik|, if a = b, i = j,
θ2

ab;ij otherwise.
(77)

Here, the termsθ1
a;i andθ2

ac;ik are the (original) unary potentials and pairwise potentials for the given
CRF. Consider a feasible solutionx of theQP-RL and theSOCP-MS relaxations. Further, letX be the
solution obtained when minimizing the objective function of the SOCP-MS relaxation whilst keeping
x fixed. We prove that the value of the objective functions for both relaxations at the above feasible
solution is the same by equating the coefficient ofθ1

a;i andθ2
ab;ij for all va ∈ v, (a, b) ∈ E and

li, lj ∈ l in both formulations. Using equation (76), we see thatθ1
a;i is multiplied by 1+xa;i

2 in the

objective function of theQP-RL. Similarly, θ1
a;i is multiplied by 1+xa;i

2 in the SOCP-MS relaxation.
Therefore the coefficients ofθ1

a;i in both relaxations are equal for allva ∈ v andli ∈ l.

We now consider the pairwise potentials, i.e.θ2
ab;ij and show that their coefficients are the same

when obtaining the minimum of the objective function. We consider the following two cases.

Case I:Let θ2
ab;ij = θ2

ba;ji ≥ 0. Using equation (77) we see that, in theQP-RL relaxation,θ2
ab;ij +

θ2
ba;ji is multiplied by the following term:

(

1 + xa;i

2

)2

+

(

1 + xb;j

2

)2

+ 2

(

1 + xa;i

2

)(

1 + xb;j

2

)

− 1 + xa;i

2
− 1 + xb;j

2
. (78)

In the case ofSOCP-MS relaxation, sinceθ2
ab;ij ≥ 0, the minimum of the objective function is

obtained by using the minimum value thatXab;ij would take given theSOCconstraints. SinceX is
symmetric, we see thatθ2

ab;ij + θ2
ba;ji is multiplied by the following term:

1+xa;i+xb;j+inf{Xab;ij}
2 (79)

=
1+xa;i+xb;j+(xa;i+xb;j)

2/2−1
2 , (80)

where the infimum ofXab;ij is defined by constraint (51) in theSOCP-MS relaxation. It can easily
be verified that the terms (78) and (80) are equal.

Case II: Now consider the case whereθ2
ab;ij = θ2

ba;ji < 0. In the QP-RL relaxation, the term
θ2

ab;ij + θ2
ba;ji is multiplied by

1 + xa;i

2
+

1 + xb;j

2
+ 2

(

1 + xa;i

2

)(

1 + xb;j

2

)

−
(

1 + xa;i

2

)2

−
(

1 + xb;j

2

)2

. (81)
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In order to obtain the minimum of the objective function, theSOCP-MS relaxation uses the maximum
value thatXab;ij would take given theSOCconstraints. Thus,θ2

ab;ij + θ2
ba;ji is multiplied by

1+xa;i+xb;j+sup{Xab;ij}
2 (82)

=
1+xa;i+xb;j+1−(xa;i−xb;j)

2/2
2 , (83)

where the supremum ofXab;ij is defined by constraint (50). Again, the terms (81) and (83) can be
shown to be equivalent.

Theorems 1 and 2 prove that theLP-S relaxation strictly dominates theQP-RL andSOCP-MS relax-
ations. A natural question that now arises is whether the additive bound ofQP-RL (proved in [22])
is applicable to theLP-S andSOCP-MS relaxations. Our next theorem answers this question in an
affirmative. To this end, we use the rounding scheme proposedin [22] to obtain the labellingf for
all the random variables of the givenCRF. This rounding scheme is summarized below:

• Pick a variableva which has not been assigned a label.

• Assign the labelli to va (i.e. f(a) = i) with probability1+xa;i

2 .

• Continue till all variables have been assigned a label.

Recall that
∑h−1

i=0
1+xa;i

2 = 1 for all va ∈ v. Hence, onceva is picked it is guaranteed to be assigned
a label. In other words the above rounding scheme terminatesaftern = |v| steps. To the best of our
knowledge, this additive bound was previously known only for theQP-RL relaxation [22].

Theorem 3: For the above rounding scheme,LP-S andSOCP-MS provide the same additive bound
as theQP-RL relaxation of [22], i.e.S4 whereS =

∑

(a,b)∈E

∑

li,lj∈l
|θ2

ab;ij | (i.e. the sum of the
absolute values of all pairwise potentials). Furthermore,this bound is tight.

Proof: TheQP-RL andSOCP-MS relaxations are equivalent. Thus the above theorem holds true for
SOCP-MS. We now consider theLP-S relaxation of [4, 17, 25, 31]. We denote the energy of the
optimal labelling ase∗. Recall thateL denotes the optimal value of theLP-S which is obtained using
possibly fractional variables(x∗,X∗). Clearly,eL ≤ e∗. The energy of the labellinĝx, obtained
after rounding the solution of theLP-S relaxation, is represented by the termêL,

Using the above notation, we now show that theLP-S relaxation provides an additive bound ofS
4 for

the above rounding scheme. We first consider the unary potentials and observe that

E

(

θ1
a;i

(

1 + x̂a;i

2

))

= θ1
a;i

(

1 + x∗
a;i

2

)

, (84)

whereE(·) denotes the expectation of its argument under the above rounding scheme. Similarly, for
the pairwise potentials,

E

(

θ2
ab;ij

(

1 + x̂a;i

2

)(

1 + x̂b;j

2

))

= θ2
ab;ij

(

1 + x∗
a;i + x∗

b;ij + x∗
a;ix

∗
b;j

4

)

. (85)

We analyze the following two cases:

(i) θ2
ab;ij ≥ 0: Using the fact thatX∗

ab;ij ≥ |x∗
a;i + x∗

b;j | − 1 (see Lemma 3.2), we get

1 + x∗
a;i + x∗

b;j + x∗
a;ix

∗
b;j − (1 + x∗

a;i + x∗
b;j + X∗

ab;ij)

= x∗
a;ix

∗
b;j − X∗

ab;ij

≤ x∗
a;ix

∗
b;j + 1 − |x∗

a;i + x∗
b;j |

≤ 1, (86)
where the equality holds whenx∗

a;i = x∗
b;j = 0. Therefore,

E

(

θ2
ab;ij

(

1 + x̂a;i

2

)(

1 + x̂b;j

2

))

≤ θ2
ab;ij

(1 + x∗
a;i + x∗

b;ij + X∗
ab;ij)

4
+

|θ2
ab;ij |
4

. (87)

(ii) θ2
ab;ij < 0: Using the fact thatX∗

ab;ij ≤ 1 − |x∗
a;i − x∗

b;j | (see Lemma 3.1), we get

1 + x∗
a;i + x∗

b;j + x∗
a;ix

∗
b;j − (1 + x∗

a;i + x∗
b;j + X∗

ab;ij)

≥ x∗
a;ix

∗
b;j − 1 + |x∗

a;i − x∗
b;j |

≥ −1, (88)
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(a) (b)

Figure 1:An exampleCRF for proving the tightness of theLP-S additive bound ofS4 . (a) The two
random variablesva andvb are shown as unfilled circles. Their two putative labels are shown as
branches (i.e. the horizontal lines) of the trellises (i.e.the vertical lines). The value of the unary
potentialθ1

a;i is shown next to theith branch of the trellis on top ofva. The pairwise potentialθ2
ab;ij

is shown next to the connection between theith andjth branches of the trellises on top ofva andvb

respectively. Note that the unary potentials are uniform while the pairwise potentials form an Ising
model. (b) An optimal solution of theLP-S relaxation for theCRF shown in (a). This solution is
shown in red to differentiate it from the potentials shown in(a). The values of the variablesxa;i are
shown next to theith branch of the trellis ofva. Note that all variablesxa;i have been assigned to0.
The values of the variablesXab;ij are shown next to the connection between theith andjth branch
of the trellises ofva andvb. Note thatXab;ij = −1 if θ2

ab;ij > 0 andXab;ij = 1 otherwise.

where the equality holds whenx∗
a;i = x∗

b;j = 0. Therefore,

E

(

θ2
ab;ij

(

1 + x̂a;i

2

)(

1 + x̂b;j

2

))

≤ θ2
ab;ij

(1 + x∗
a;i + x∗

b;ij + X∗
ab;ij)

4
+

|θ2
ab;ij |
4

. (89)

Summing the expectation of the unary and pairwise potentials for allva ∈ v, (a, b) ∈ E andli, lj ∈ l,
we get

e∗ ≤ E(êL) ≤ eL +
S

4
≤ e∗ +

S

4
, (90)

which proves the additive bound forLP-S.

This additive bound can indeed be shown to be tight by using the following simple example. Con-
sider an instance of theMAP estimation problem for aCRF defined on two variablesv = {va, vb}
each of which can take one of two labels from the setl = {l0, l1}. Let the unary and pairwise
potentials be as defined in Fig. 1(a), i.e. the unary potentials are uniform and the pairwise potentials
follow the Ising model.

An optimal solution of theLP-S relaxation is given in Fig. 1(b). Clearly,e∗ = 2 (e.g. for the labelling
f = {0, 0} or f = {1, 1}) while E(êL) = 2 + 2

4 = e∗ + S
4 . Thus the additive bounds obtained for

the LP-S, QP-RL andSOCP-MS algorithms are the same. In fact, one can construct arbitrarily large
CRFs (i.e.CRF defined over a large number of variables) with uniform unary potentials and Ising
model pairwise potentials for which the bound can be shown tobe tight.

The above bound was proved for the case of binary variables (i.e. h = 2) in [10] using a slightly
different rounding scheme. Our result can be viewed as a generalization of this for any arbitrary
number of labels. We note here that better bounds can be obtained for some special cases of the
MAP estimation problem using theLP-S relaxation together with more clever rounding schemes
(such as those described in [4, 14]).

5 QP and SOCP Relaxations over Trees and Cycles

We now generalize the results of Theorem 1 by defining a large class ofSOCPrelaxations which
is dominated byLP-S. Specifically, we consider theSOCPrelaxations which relax the non-convex
constraintX = xx⊤ using a set of second order cone (SOC) constraints of the form

||(Uk)⊤x|| ≤ Ck • X, k = 1, · · · , nC (91)
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whereCk = Uk(Uk)⊤ � 0, for all k = 1, · · · , nC . In order to make the proofs of the subsequent
theorems easier, we make two assumptions. However, the theorems would hold true even without
these assumptions as discussed below.

Assumption 1: We assume that the integer constraints

x ∈ {−1, +1}nh,X ∈ {−1, +1}nh×nh, (92)

are relaxed to
x ∈ [−1, +1]nh,X ∈ [−1, +1]nh×nh, (93)

with Xaa;ii = 1, for all va ∈ v, li ∈ l. The constraints (93) provide the convex hull for all the points
defined by the integer constraints (92). Recall that the convex hull of a set of points is the smallest
convex set which contains all the points. We now discuss how the above assumption is not restrictive
with respect to the results that follow. LetA be a relaxation which contains constraints (93). Further,
let B be a relaxation which differs fromA only in the way it relaxes the integer constraints. Then
by definition of convex hullF(A) ⊂ F(B). In other wordsA dominatesB (see Case I in section 2).
Hence, ifA is dominated by theLP-S relaxation, thenLP-S would also dominateB.

Assumption 2: We assume that the set of constraints (91) contains all the constraints specified
in the SOCP-MS relaxation. Recall that for a given pair of neighbouring random variables, i.e.
(a, b) ∈ E , and a pair of labelsli, lj ∈ l, SOCP-MS specifiesSOCconstraints using two matrices (say
C1 andC2) which are 0 everywhere except for the following2 × 2 submatrices:

(

C1
aa;ii C1

ab;ij

C1
ba;ji C1

bb;jj

)

=

(

1 1
1 1

)

,

(

C2
aa;ii C2

ab;ij

C2
ba;ji C2

bb;jj

)

=

(

1 −1
−1 1

)

. (94)

In the case where a given relaxationA does not contain theSOCP-MS constraints, we can define a
new relaxationB. This new relaxationB is obtained by adding all theSOCP-MS constraints toA.
By definition,B dominatesA (although not necessarily strictly, see Case II in section 2). Hence, if
B is dominated by theLP-S relaxation then it follows thatLP-S would also dominateA. Hence, our
assumption about including theSOCP-MS constraints is not restrictive for the results presented in
this section.

Note that eachSOCP relaxation belonging to this class would define an equivalent QP relaxation
(similar to the equivalentQP-RL relaxation defined by theSOCP-MS relaxation). Hence, all theseQP
relaxations will also be dominated by theLP-S relaxation. Before we begin to describe our results
in detail, we need to set up some notation as follows.

5.1 Notation

(a) (b) (c)

Figure 2:(a) An exampleCRFdefined over four variables which form a cycle. Note that the observed
nodes are not shown for the sake of clarity of the image.(b) The setEk specified by the matrixCk

shown in equation (96), i.e.Ek = {(a, b), (b, c), (c, d)}. (c) The setV k = {a, b, c, d}. See text for
definitions of these sets.

We consider anSOCconstraint which is of the form described in equation (91), i.e.

||(Uk)⊤x|| ≤ Ck • X, (95)
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wherek ∈ {1, · · · , nC}. In order to help the reader understand the notation better,we use an
exampleCRF shown in Fig. 2(a). ThisCRF is defined over four variablesv = {va, vb, vc, vd}
(connected to form a cycle of length 4), each of which take a label from the setl = {l0, l1}. For this
CRF we specify a constraint using a matrixCk � 0 which is 0 everywhere, except for the following
4 × 4 submatrix:









Ck
aa;00 Ck

ab;00 Ck
ac;00 Ck

ad;00

Ck
ba;00 Ck

bb;00 Ck
bc;00 Ck

bd;00

Ck
ca;00 Ck

cb;00 Ck
cc;00 Ck

cd;00

Ck
da;00 Ck

db;00 Ck
dc;00 Ck

dd;00









=







2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2






(96)

Using theSOCconstraint shown in equation (95) we define the following sets:

• The setEk is defined such that(a, b) ∈ Ek if, and only if, it satisfies the following condi-
tions:

(a, b) ∈ E , (97)

∃li, lj ∈ l such thatCk
ab;ij 6= 0. (98)

Recall thatE specifies the neighbourhood relationship for the givenCRF. In other words
Ek is the subset of the edges in the graphical model of theCRF such thatCk specifies
constraints for the random variables corresponding to those edges. For the exampleCRF
(shown in Fig. 2(a)) andCk matrix (in equation (96)), the setEk obtained is shown in
Fig. 2(b).

• The setV k is defined asa ∈ V k if, and only if, there exists avb ∈ v such that(a, b) ∈ Ek.
In other wordsV k is the subset of hidden nodes in the graphical model of theCRF such
thatCk specifies constraints for the random variables corresponding to those hidden nodes.
Fig. 2(c) shows the setV k for our exampleSOCconstraint.

• The setT k consists of elementsa; i ∈ T k which satisfy

a ∈ V k, li ∈ l, (99)

∃b ∈ V k, lj ∈ l, such thatCk
ab;ij 6= 0. (100)

In other words the setT k consists of the set of indices for the vectorx which are constrained
by inequality (95), i.e. the coefficient ofxa;i wherea; i ∈ T k are non-zero in theLHS of
inequality (95). Note that in equation (96) the constraint is specified using only the labell0
for all the random variablesv. Thus the setT k is given by

T k = {(a; 0), (b; 0), (c; 0), (d; 0)}. (101)

For each setT k we define three disjoint subsets ofT k × T k as follows.

• The setT k
0 is defined as

T k
0 = {(a; i, b; j)|(a; i, b; j) ∈ T k × T k, (a, b) ∈ E , (a, b) /∈ Ek}. (102)

Note that by definitionCk
ab;ij = 0 if (a; i, b; j) ∈ T k

0 . ThusT k
0 indexes the elements of

matrixX which are not constrained by inequality (95) but are presentin the setT k × T k.
For the matrixCk in equation (96), the setT k

0 is given by

T k
0 = {(a; 0, d; 0)} (103)

• The setT k
1 is defined as

T k
1 = {(a; i, b; j)|(a; i, b; j) ∈ T k × T k, (a, b) /∈ E}. (104)

In other words the setT k
1 indexes the elements of matrixX which are constrained by

inequality (95) but do not belong to any pair of neighbouringrandom variables. Note that
the variablesXab;ij such that(a; i, b; j) ∈ T k

1 were not present in theLP-S relaxation. For
the matrixCk in equation (96), the setT k

1 is given by

T k
1 = {(a; 0, c; 0), (b; 0, d; 0)} (105)
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• The setT k
2 is defined as

T k
2 = {(a; i, b; j)|(a; i, b; j) ∈ T k × T k, (a, b) ∈ Ek}. (106)

In other words the setT k
2 indexes the elements of matrixX which are constrained by

inequality (95) and belong to a pair of neighbouring random variables. For the matrixCk

in equation (96), the setT k
1 is given by

T k
2 = {(a; 0, b; 0), (b; 0, c; 0)(c; 0, d; 0)} (107)

Note thatT k
0

⋃

T k
1

⋃

T k
2 = T k × T k. For a given set of pairwise potentialsθ2

ab;ij we
define two disjoint sets ofT k

2 as follows.

• The setT k
2+ corresponds to non-negative pairwise potentials, i.e.

T k
2+ = {(a; i, b; j)|(a; i, b; j) ∈ T k

2 , θ2
ab;ij ≥ 0}, (108)

Thus the setT k
2+ indexes the elements of matrixX which belong toT k

2 and are multiplied
by a non-negative pairwise potential in the objective function of the relaxation.

• The setT k
2− corresponds to negative pairwise potentials, i.e.

T k
2− = {(a; i, b; j)|(a; i, b; j) ∈ T k

2 , θ2
ab;ij < 0}, (109)

Thus the setT k
2− indexes the elements of matrixX which belong toT k

2 and are multiplied
by a negative pairwise potential in the objective function of the relaxation. Note thatT k

2 =
T k

2+

⋃ T k
2−. For the purpose of illustration let us assume that, for the exampleCRF in

Fig. 2(a),θ2
ab;00 ≥ 0 while θ2

bc;00 < 0 andθ2
cd;00 < 0. Then,

T k
2+ = {(a; 0, b; 0)}, (110)

T k
2− = {(b; 0, c; 0), (c; 0, d; 0)}, (111)

We also define a weighted graphGk = (V k, Ek) whose vertices are specified by the setV k and
whose edges are specified by the setEk. The weight of an edge(a, b) ∈ Ek is given byw(a, b).
Recall thatw(a, b) specifies the strength of the pairwise relationship betweentwo neighbouring
variablesva andvb. Thus, for our exampleSOC constraint, the vertices of this graph are given in
Fig. 2(c) while the edges are shown in Fig. 2(b). This graph can be viewed as a subgraph of the
graphical model representation for the givenCRF.

Further, we define the submatricesxk
T andXk

T of x andX respectively such that

xk
T = {xa;i|a; i ∈ T k}, (112)

Xk
T = {Xab;ij|(a; i, b; j) ∈ T k × T k}. (113)

For our example, these submatrices will be given by

xk
T =







xa;0

xb;0

xc;0

xd;0






,Xk

T =







Xaa;00 Xab;00 Xac;00 Xad;00

Xba;00 Xbb;00 Xbc;00 Xbd;00

Xca;00 Xcb;00 Xcc;00 Xcd;00

Xda;00 Xdb;00 Xdc;00 Xdd;00






. (114)

Using the above notation, we are now ready to describe our results in detail.

5.2 QP and SOCP Relaxations over Trees

We begin by considering those relaxations where theSOCconstraints are defined such that the graphs
Gk = (V k, Ek) form trees. For example, the graphGk defined by theSOC constraint in equa-
tion (96) forms a tree as shown in Fig. 2(b). We denote such a relaxation, which specifiesSOC
constraints only over trees, bySOCP-T. Note thatSOCP-MS (and hence,QP-RL) can be considered
a special case of this class of relaxations where the number of vertices in each tree is equal to two
(since the constraints are defined for all(a, b) ∈ E).

We will remove this restriction by allowing the number of vertices in each tree to be arbitrarily large
(i.e. between1 andn). We consider one such treeG = (V, E). Note that for a given relaxation
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SOCP-T, there may be severalSOCconstraints defined using this treeG (or its subtree). Without loss
of generality, we assume that the constraints

||(Uk)⊤x|| ≤ Ck • X, k = 1, · · · , n′
C (115)

are defined on the treeG. In other words,

Gk ⊆ G, k = 1, · · · , n′
C , (116)

whereGk ⊆ G implies thatGk is a subtree ofG. In order to make the notation less cluttered,we
will drop the superscript k from the sets defined in the previous section(since we will consider
only one treeG in our analysis).

We will now show thatSOCP-T is dominated by theLP-S relaxation. This result is independent of
the choice of treesG and matricesCk. To this end, we define the terme1(xT ) for a given value of
xT as

e1(xT ) =
∑

(a;i)∈T



θ1
a;i +

∑

(b;j)∈T

θ2
ab;ij

2



xa;i. (117)

Further, for a fixedxT we also define the following two terms:

eS
2 (xT ) = min

(xT ,XT )∈F(SOCP-T)

∑

(a;i,b;j)∈T2

θ2
ab;ijXab;ij , (118)

eL
2 (xT ) = min

(xT ,XT )∈F(LP-S)

∑

(a;i,b;j)∈T2

θ2
ab;ijXab;ij , (119)

whereF(SOCP-T) andF(LP-S) are the feasibility regions ofSOCP-T and LP-S respectively. We
use the notation(xT ,XT ) ∈ F(SOCP-T) loosely to mean that we can obtain a feasible solu-
tion (x,X) of SOCP-T such that the values of the variablesxa;i where a; i ∈ T and Xab;ij

where (a; i, b; j) ∈ T × T are equal to the values specified byxT and XT . The notation
(xT ,XT ) ∈ F(LP-S) is used similarly. Note that for a givenxT the possible values ofXT are
constrained such that(xT ,XT ) ∈ F(SOCP-T) and(xT ,XT ) ∈ F(LP-S) (in the case ofSOCP-T
andLP-S respectively). Hence different values ofxT will provide different values ofeS

2 (xT ) and
eL
2 (xT ).

The contribution of the treeG to the objective function ofSOCP-T andLP-S is given by

eS = min
xT

e1(xT )

2
+

eS
2 (xT )

4
, (120)

eL = min
xT

e1(xT )

2
+

eL
2 (xT )

4
(121)

respectively. Assuming that the treesG do not overlap, the total value of the objective function would
simply be the sum ofeS (for SOCP-T) or eL (for LP-S) over all treesG. However, since we use an
arbitrary parameterθ in our analysis, it follows that the results do not depend on this assumption of
non-overlapping trees. In other words if two treesG1 andG2 share an edge(a, b) ∈ E then we can
simply consider twoMAP estimation problems defined using arbitrary parametersθ1 andθ2 such
thatθ1 + θ2 = θ. We can then add the contribution ofG1 for the MAP estimation problem with
parameterθ1 to the contribution ofG2 for the MAP estimation problem with parameterθ2. This
would then provide us with the total contribution ofG1 andG2 for the originalMAP estimation
defined using parameterθ.

Using the above argument it follows that if, for allG and for allθ, the following holds true:

e1(xT )
2 +

eS
2 (xT )

4 ≤ e1(xT )
2 +

eL
2 (xT )

4 , ∀xT ∈ [−1, 1]|T | (122)

⇒ eS
2 (xT ) ≤ eL

2 (xT ), ∀xT ∈ [−1, 1]|T |, (123)

thenLP-S dominatesSOCP-T (since this would imply thateS ≤ eL, for all G and for allθ). This is
the condition that we will use to prove thatLP-S dominates allSOCPrelaxations whose constraints
are defined over trees. To this end, we define a vectorω = {ωk, k = 1, · · · , n′

C} of non-negative
real numbers such that

∑

k

ωkCk
ab;ij = θ2

ab;ij , ∀(a; i, b; j) ∈ T2. (124)
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Due to the presence of the matricesCk defined in equation (94) (which result in theSOCP-MS
constraints for all(a, b) ∈ E and li, lj ∈ l), such a vectorω would always exist for anyCRF

parameterθ. We denote the matrix
∑

k ωkC
k by C. Clearly,C � 0, and hence can be written as

C = UU⊤.

Using the constraints||(Uk)⊤x||2 ≤ Ck • XT together with the the fact thatωk ≥ 0, we get the
following inequality5:

∑

k ωk||(Uk)⊤x||2 ≤∑k ωkC
k • X,

⇒ ||U⊤x||2 ≤ C • X,

⇒ ||U⊤x||2 ≤∑a;i∈T Caa;iiXaa;ii +
∑

(a;i,b;j)∈T1
Cab;ijXab;ij +

∑

(a;i,b;j)∈T2
Cab;ijXab;ij

⇒ ‖U⊤x‖2 −∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
Cab;ijXab;ij ≤∑(a;i,b;j)∈T2

θ2
ab;ijXab;ij ,

(125)
where the last expression is obtained using the fact thatCab;ij = θ2

ab;ij for all (a; i, b; j) ∈ T2 and
Xaa;ii = 1 for all va ∈ v andli ∈ l. Note that, in the absence of any other constraint (which is
our assumption), the value ofeS

2 (xT ) after the minimization would be exactly equal to theLHS of
the inequality given above (since the objective function containingeS

2 (xT ) is being minimized). In
other words,

eS
2 (xT ) = min

∑

(a;i,b;j)∈T2

θ2
ab;ijXab;ij ,

= min ‖U⊤x‖2 −
∑

a;i∈T

Caa;ii −
∑

(a;i,b;j)∈T1

Cab;ijXab;ij . (126)

For theLP-S relaxation, from Lemmas 3.1 and 3.2, we obtain the followingvalue ofeL
2 (xT ):

|xa;i + xb;j | − 1 ≤ Xab;ij ≤ 1 − |xa;i − xb;j |, (127)

⇒ eL
2 (xT ) = min

∑

(a;i,b;j)∈T2
θ2

ab;ijXab;ij ,

=
∑

(a;i,b;j)∈T2+
θ2

ab;ij(|xa;i + xb;j |) −
∑

(a;i,b;j)∈T2−
θ2

ab;ij(|xa;i − xb;j |) −
∑

(a;i,b;j)∈T2
|θ2

ab;ij | (128)

We are now ready to prove the following theorem.

Theorem 4: SOCP relaxations (and the equivalentQP relaxations) which define constraints only
using graphsG = (V, E) which form (arbitrarily large) trees are dominated by theLP-S relaxation.

Proof: We begin by assuming thatd(i, j) ≥ 0 for all li, lj ∈ l and later drop this constraint on
the distance function6. We will show that for any arbitrary treeG and any matrixC, the value of
eL
2 (xT ) is greater than the value ofeS

2 (xT ) for all xT . This would prove inequality (123) which in
turn would show that theLP-S relaxation dominatesSOCP-T (and the equivalentQP relaxation which
we callQP-T) whose constraints are defined over trees.

It is assumed that we do not specify any additional constraints for all the variablesXab;ij where
(a; i, b; j) ∈ T1 (i.e. for Xab;ij not belonging to any of our trees). In other words these variables
Xab;ij are bounded only by the relaxation of the integer constraint, i.e.−1 ≤ Xab;ij ≤ +1. Thus
in equation (126) the minimum value of theRHS (which is equal to the value ofeS

2 (xT )) is obtained
by using the following value ofXab;ij where(a; i, b; j) ∈ T1:

Xab;ij =

{

1 if Cab;ij ≥ 0,
−1 otherwise. (129)

Substituting these values in equation (126) we get
eS
2 (xT ) = ||U⊤x||2 −∑a;i∈T Caa;ii −

∑

(a;i,b;j)∈T1
|Cab;ij |,

⇒ eS
2 (xT ) =

∑

a;i∈T Caa;iix
2
a;i +

∑

(a;i,b;j)∈T1
Cab;ijxa;ixb;j +

∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

−∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
|Cab;ij |, (130)

5Note that there are no terms corresponding to(a; i, b; j) ∈ T0 in inequality (125) sinceCab;ij = 0 if
(a; i, b; j) ∈ T0. In other words,Xab;ij vanishes from the above inequality if(a; i, b; j) ∈ T0.

6Recall thatd(·, ·) is a distance function on the labels. Together with the weights w(·, ·) defined over
neighbouring random variables, it specifies the pairwise potentials asθ2

ab;ij = w(a, b)d(i, j).
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where the last expression is obtained using the fact thatC = U⊤U. Consider the term
∑

(a;i,b;j)∈T1
Cab;ijxa;ixb;j which appears in theRHS of the above equation. For this term, clearly

the following holds true

∑

(a;i,b;j)∈T1

Cab;ijxa;ixb;j ≤
∑

(a;i,b;j)∈T1

|Cab;ij |
2

(x2
a;i + x2

b;j), (131)

since for all(a; i, b; j) ∈ T1

Cab;ij ≤ |Cab;ij |, (132)

xa;ixb;j ≤ (x2
a;i+x2

b;j)

2 . (133)

Inequality (131) provides us with an upper bound on the valueof eS
2 (xT ) as follows:

eS
2 (xT ) ≤∑a;i∈T Caa;iix

2
a;i +

∑

(a;i,b;j)∈T1

|Cab;ij |
2 (x2

a;i + x2
b;j) +

∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

−∑a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
|Cab;ij |. (134)

Note that in order to prove inequality (123), i.e.

eS
2 (xT ) ≤ eL

2 (xT ), ∀xT ∈ [−1, 1]|T |, (135)

it would be sufficient to show thateL
2 (xT ) specified in equation (128) is greater than theRHS of

inequality (134) (since theRHS of inequality (134) is greater thaneS
2 (xT )). We now simplify the

two infimumseL
2 (xT ) andeS

2 (xT ) as follows.

LP-S Infimum: Let za;i =
√

|xa;i|(1 − |xa;i|). From equation (128), we see that the infimum
provided by theLP-S relaxation is given by
∑

(a;i,b;j)∈T2+
θ2

ab;ij(|xa;i + xb;j |) −
∑

(a;i,b;j)∈T2−
θ2

ab;ij(|xa;i − xb;j |) −
∑

(a;i,b;j)∈T2
|θ2

ab;ij |
= −∑(a;i,b;j)∈T2+

|θ2
ab;ij |(1 − |xa;i + xb;j | + xa;ixb;j)

−∑(a;i,b;j)∈T2−
|θ2

ab;ij |(1 − |xa;i − xb;j | − xa;ixb;j)

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

≥ −∑(a;i,b;j)∈T2
|θ2

ab;ij |(1 − |xa;i|)(1 − |xb;j |) − 2
∑

(a;i,b;j)∈T2
|θ2

ab;ij |za;izb;j +

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j . (136)

The last expression is obtained using the fact that

(1 − |xa;i + xb;j | + xa;ixb;j) ≤ (1 − |xa;i|)(1 − |xb;j |) + 2za;izb;j, (137)

(1 − |xa;i − xb;j | − xa;ixb;j) ≤ (1 − |xa;i|)(1 − |xb;j |) + 2za;izb;j . (138)

SOCP Infimum: From inequality (134), we see that the infimum provided by theSOCP-T relaxation
is given by

∑

a;i∈T Caa;iix
2
a;i +

∑

(a;i,b;j)∈T1

|Cab;ij |
2 (x2

a;i + x2
b;j) +

∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

−
∑

a;i∈T Caa;ii −
∑

(a;i,b;j)∈T1
|Cab;ij |

= −∑a;i∈T Caa;ii(1 − x2
a;i) −

∑

(a;i,b;j)∈T1
|Cab;ij |(1 − x2

a;i

2 − x2
b;j

2 )

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j

≤ −∑a;i∈T Caa;ii(1 − |xa;i|)2 −
∑

(a;i,b;j)∈T1
|Cab;ij |(1 − |xa;i|)(1 − |xb;j |)

−2
∑

a;i∈T Caa;iiz
2
a;i − 2

∑

(a;i,b;j)∈T1
|Cab;ij |za;izb;j

+
∑

(a;i,b;j)∈T2
θ2

ab;ijxa;ixb;j . (139)

The last expression is obtained using

1 − x2
a;i ≥ (1 − |xa;i|)2 + 2z2

a;i, (140)

1 − x2
a;i

2 − x2
b;j

2 ≥ (1 − |xa;i|)(1 − |xb;j |) + 2za;izb;j . (141)
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(a) (b)

Figure 3:(a) An example subgraphG which forms a tree. The weights of the edges and correspond-
ing elements of the vectorm are also shown.(b) An example subgraphG which forms an even cycle
where all weights are positive. The elements ofs are defined using the{+1,−1} assignments of the
vertices.

In order to prove the theorem, we use the following two lemmas.

Lemma 5.1: The following inequality holds true for any matrixC � 0:
∑

a;i∈T Caa;ii(1 − |xa;i|)2 +
∑

(a;i,b;j)∈T1
|Cab;ij |(1 − |xa;i|)(1 − |xb;j |)

≥
∑

(a;i,b;j)∈T2
|θ2

ab;ij |(1 − |xa;i|)(1 − |xb;j |). (142)

In other words, the first term in theRHS of inequality (136) exceeds the sum of the first two terms in
theRHS of inequality (139).

Proof: The proof relies on the fact thatC is positive semidefinite. We construct a vectorm =
{ma, a = 1, · · · , n} wheren is the number of variables. Letp(a) denote the parent of a non-root
vertexa of treeG (where the root vertex can be chosen arbitrarily). The vector m is defined such
that

ma =











0 if a does not belong to treeG,
1 if a is the root vertex ofG,

−mp(a) if w(a, p(a)) > 0,
mp(a) if w(a, p(a)) < 0.

(143)

Herew(·, ·) are the weights provided for a givenCRF. Fig. 3(a) shows an example of a graph which
forms a tree together with the corresponding elements ofm. Using the vectorm, we define a vector
s of lengthnh (whereh = |l|) such thatsa;i = 0 if a; i /∈ T andsa;i = ma(1 − |xa;i|) otherwise.
SinceC is positive semidefinite, we get

s⊤Cs ≥ 0 (144)

⇒
∑

a;i∈T Caa;ii(1 − |xa;i|)2 +
∑

(a;i,b;j)∈T1
mambCab;ij(1 − |xa;i|)(1 − |xb;j)

+
∑

(a;i,b;j)∈T2
mambθ

2
ab;ij(1 − |xa;i|)(1 − |xb;j) ≥ 0, (145)

⇒ ∑

a;i∈T Caa;ii(1 − |xa;i|)2 +
∑

(a;i,b;j)∈T1
mambCab;ij(1 − |xa;i|)(1 − |xb;j)

≥∑(a;i,b;j)∈T2
|θ2

ab;ij |(1 − |xa;i|)(1 − |xb;j), (146)

⇒ ∑

a;i∈T Caa;ii(1 − |xa;i|)2 +
∑

(a;i,b;j)∈T1
|Cab;ij |(1 − |xa;i|)(1 − |xb;j |)

≥
∑

(a;i,b;j)∈T2
|θ2

ab;ij |(1 − |xa;i|)(1 − |xb;j |). (147)

Lemma 5.2: The following inequality holds true for any matrixC � 0:
∑

a;i∈T

Caa;iiz
2
a;i +

∑

(a;i,b;j)∈T1

|Cab;ij |za;izb;j ≥
∑

(a;i,b;j)∈T2

|θ2
ab;ij |za;izb;j. (148)

In other words the second term in theRHSof inequality (136) exceeds the sum of the third and fourth
terms in inequality (139).
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Proof: Similar to Lemma 5.1, we construct a vectors of lengthnh such thatsa;i = 0 if a; i /∈ T
andsa;i = maza;i otherwise. The proof follows by observing thats⊤Cs ≥ 0.

Using the above two lemmas, we see that the sum of the first two terms of inequality (136) ex-
ceed the sum of the first four terms of inequality (139). Further, the third and the fifth terms of
inequalities (136) and (139) are the same. Since inequality(136) provides the lower limit ofeL

2 (xT )
and inequality (139) provides the upper limit ofeS

2 (xT ), it follows thateL
2 (xT ) ≥ eS

2 (xT ) for all
xT ∈ [−1, 1]|T |. Using condition (123), this proves the theorem.

The proofs of Lemmas 5.1 and 5.2 make use of the fact that for any neighbouring random variables
va andvb (i.e. (a, b) ∈ E), the pairwise potentialsθ2

ab;ij have the same sign for allli, lj ∈ l. This
follows from the non-negativity property of the distance function. However, Theorem 4 can be
extended to the case where the distance function does not obey the non-negativity property. To this
end, we define a parameterθ which satisfies the following condition:

Q(f ;D, θ) = Q(f ;D, θ), ∀f. (149)

Such a parameterθ is called the reparameterization ofθ (i.e. θ ≡ θ). Note that there exist several
reparameterizations of any parameterθ. We are interested in a parameterθ which satisfies

∑

li,lj∈l

|θ2

ab;ij | = |
∑

li,lj∈l

θ2
ab;ij |, ∀(a, b) ∈ E . (150)

It can easily be shown that such a reparameterization alwaysexists. Specifically, consider the general
form of reparameterization described in [15], i.e.

θ
1

a;i = θ1
a;i + Mba;i, (151)

θ
2

ab;ij = θ2
ab;ij − Mba;i − Mab;j . (152)

Clearly one can set the values of the termsMba;i andMab;j such that equation (150) is satisfied.
Further, the optimal value ofLP-S for the parameterθ is equal to its optimal value obtained usingθ.
For details, we refer the reader to [15]. Using this parameter θ, we obtain anLP-S infimum which is
similar in form to the inequality (136) for any distance function (i.e. without the positivity constraint
d(i, j) ≥ 0 for all li, lj ∈ l). ThisLP-S infimum can then be easily compared to theSOCP-T infimum
of inequality (139) (using slight extensions of Lemmas 5.1 and 5.2), thereby proving the results of
Theorem 4 for a general distance function. We omit details.

As an upshot of the above theorem, we see that the feasibilityregion ofLP-S is always a subset of
the feasibility region ofSOCP-T (for any general set of trees andSOC constraints), i.e.F(LP-S) ⊂
F(SOCP-T). This implies thatF(LP-S) ⊂ F(QP-T), whereQP-T is the equivalentQP relaxation
defined bySOCP-T.

We note that the above theorem can also be proved using the results of [32] onmoment constraints
(which imply thatLP-S provides the exact solution for theMAP estimation problems defined over
tree-structured random fields). However, the proof presented here allows us to generalize the results
of Theorem 4 for certain cycles as follows.

5.3 QP and SOCP Relaxations over Cycles

We now prove that the above result also holds true when the graph G forms aneven cycle, i.e.
cycles with even number of vertices, whose weights are all non-negative or all non-positive provided
d(i, j) ≥ 0, for all li, lj ∈ l.

Theorem 5: Whend(i, j) ≥ 0 for all li, lj ∈ l, theSOCPrelaxations which define constraints only
using non-overlapping graphsG which form (arbitrarily large) even cycles with all positive or all
negative weights are dominated by theLP-S relaxation.

Proof: It is sufficient to show that Lemmas 5.1 and 5.2 hold for a graphG = (V, E) which forms
an even cycle. We first consider the case whereθ2

ab;ij > 0. Without loss of generality, we assume
thatV = {1, 2, . . . , t} (wheret is even) such that(i, i + 1) ∈ E for all i = 1, · · · , t − 1. Further,
(t, 1) ∈ E thereby forming an even cycle. We construct a vectorm of sizen such thatma = −1a if
a ∈ V andma = 0 otherwise. Whenθ2

ab;ij < 0, we define a vectorm such thatma = 1 if a ∈ V
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andma = 0 otherwise. Fig. 3(b) shows an example of a graphG which forms an even cycle together
with the corresponding elements ofm. Usingm, we construct a vectors of lengthnh (similar to
the proofs of Lemmas 5.1 and 5.2). Lemmas 5.1 and 5.2 follow from the fact thats⊤Cs ≥ 0. We
omit details.

The above theorem can be proved for cycles of any length whoseweights are all negative by a similar
construction. Further, it also holds true forodd cycles(i.e. cycles of odd number of variables) which
have only one positive or only one negative weight. However,as will be seen in the next section,
unlike trees it is not possible to extend these results for any general cycle.

6 Some Useful SOC Constraints

We now describe twoSOCPrelaxations which include all the marginalization constraints specified
in LP-S. Note that the marginalization constraints can be incorporated within theSOCPframework
but not in theQP framework.

6.1 The SOCP-C Relaxation

TheSOCP-C relaxation (whereC denotes cycles) defines second order cone (SOC) constraints using
positive semidefinite matricesC such that the graphG (defined in§ 5.1) form cycles. Let the
variables corresponding to vertices of one such cycleG of lengthc be denoted asvC = {vb|b ∈
{a1, a2, · · · , ac}}. Further, letlC = {lj|j ∈ {i1, i2, · · · , ic}} ∈ lc be a set of labels for the variables
vC . TheSOCP-C relaxation specifies the following constraints:

• The marginalization constraints, i.e.
∑

lj∈l

Xab;ij = (2 − h)xa;i, ∀(a, b) ∈ E , li ∈ l. (153)

• A set ofSOCconstraints
||U⊤x|| ≤ C • X, (154)

such that the graphG defined by the above constraint forms a cycle. The matrixC is 0
everywhere except the following elements:

Cak,al,ik,il
=

{

λc if k = l,
Dc(k, l) otherwise. (155)

HereDc is ac × c matrix which is defined as follows:

Dc(k, l) =







1 if |k − l| = 1
(−1)c−1 if |k − l| = c − 1

0 otherwise,
(156)

andλc is the absolute value of the smallest eigenvalue ofDc.

In other words the submatrix ofC defined byvC andlC has diagonal elements equal toλc and off-
diagonal elements equal to the elements ofDc. As an example we consider two cases whenc = 3
andc = 4. In these cases the matrixDc is given by

D3 =

(

0 1 1
1 0 1
1 1 0

)

andD4 =







0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 0 1






, (157)

respectively, whileλ3 = 1 andλ4 =
√

2. Clearly,C = U⊤U � 0 since its only non-zero submatrix
λcI + Dc (whereI is a c × c identity matrix) is positive semidefinite. This allows us todefine a
valid SOCconstraint as shown in inequality (154). We choose to define theSOCconstraint (154) for
only those set of labelslC which satisfy the following:

∑

(ak,al)∈E

Dc(k, l)θ2
akal;ikil

≥
∑

(ak,al)∈E

Dc(k, l)θ2
akal;jkjl

, ∀{j1, j2, · · · , jc}. (158)
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Note that this choice is motivated by the fact that the variablesXakal;ikil
corresponding to these

setsvC andlC are assigned trivial values by theLP-S relaxation in the presence of non-submodular
terms (see example below), i.e.

Xakal;ikil
=

{

−1 if θ2
akal;ikil

≥ 0,
1 otherwise.

(159)

In order to avoid this trivial solution, we impose theSOCconstraint (154) on them.

Since marginalization constraints are included in theSOCP-C relaxation, the value of the objective
function obtained by solving this relaxation would at leastbe equal to the value obtained by the
LP-S relaxation (i.e.SOCP-C dominatesLP-S, see Case II in section 2). We can further show that in
the case where|l| = 2 and the constraint (154) is defined over a frustrated cycle7 SOCP-C strictly
dominatesLP-S. One such example is given below. Note that if the givenCRF contains no frustrated
cycle, then it can be solved exactly using the method described in [9].

(a) (b) (c)

Figure 4:An exampleCRF defined over three random variablesv = {va, vb, vc} shown as unfilled
circles. Each of these variables can take one of two labels from the setl = {l0, l1} which are
shown as branches (i.e. the horizontal lines) of trellises (i.e. the vertical lines) on top of the random
variables. The unary potentials are shown next to the corresponding branches. The pairwise poten-
tials are shown next to the edges connecting the branches of two neighbouring variables. Note that
the pairwise potentials defined for(a, b) and(a, c) form a submodular Ising model (in(a) and (b)
respectively). The pairwise potentials defined for(b, c) are non-submodular (in(c)).

(a) (b) (c)

Figure 5: An optimal solution provided by theLP-S relaxation for theCRF shown in Fig. 4. This
solution is shown in red to avoid confusing it with the potentials shown in Fig. 4. The value of
variablexa;i is shown next to theith branch of the trellis on top ofva. In this optimal solution, all
such variablesxa;i are equal to 0. The value of the variableXab;ij is shown next to the connection
joining theith and thejth branch of the trellises on top ofva andvb respectively. Note thatXab;ij =
−1 whenθ2

ab;ij > 0 andXab;ij = 1 otherwise. This provides us with the minimum value of the
objective function ofLP-S, i.e. 3.

Example: We consider a frustrated cycle and show thatSOCP-C strictly dominatesLP-S. Specifi-
cally, we consider aCRF with v = {va, vb, vc} andl = {l0, l1}. The neighbourhood of thisCRF is
defined such that the variables form a cycle of length 3, i.e.E = {(a, b), (b, c), (c, a)}. We define a

7A cycle is called frustrated if it contains an odd number of non-submodular terms.
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(a) (b) (c)

Figure 6:An optimal solution provided by theSOCP-C relaxation for theCRF shown in Fig. 4. This
optimal solution provides us with the optimal value of3.75 which greater than theLP-S optimal
value for the solution shown in Fig. 5. Note that the optimal solution ofLP-S does not belong to the
feasibility region ofSOCP-C as it violates constraint (160). This example proves thatSOCP-C strictly
dominatesLP-S.

frustrated cycle which consists of all 3 variables of thisCRF using the unary and pairwise potentials
shown in Fig. 4, i.e. the unary potentials are uniform and thepairwise potentials define only one
non-submodular term (between the verticesb andc). Clearly, the energy of the optimal labelling for
the above problem is4. The value of the objective function obtained by solving theLP-S relaxation
is 3 at an optimal solution shown in Fig. 5.

The LP-S optimal solution is no longer feasible when theSOCP-C relaxation is used. Specifically,
the constraint

(xa;0 + xb;1 + xc;1)
2 ≤ 3 + 2(Xab;01 + Xac;01 + Xbc;11) (160)

is violated. In fact, the value of the objective function obtained using theSOCP-C relaxation is3.75.
Fig. 6 shows an optimal solution of theSOCP-C relaxation for theCRF in Fig. 4. The above example
can be generalized to a frustrated cycle of any length. This proves thatSOCP-C strictly dominates
theLP-S relaxation (and hence, theQP-RL andSOCP-MS relaxations).

The constraint defined in equation (154) is similar to the (linear) cycle inequality constraints [1]
which are given by

∑

k,l

Dc(k, l)Xakal;ikil
≥ 2 − c. (161)

We believe that the feasibility region defined by cycle inequalities is a strict subset of the feasibility
region defined by equation (154). In other words a relaxationdefined by adding cycle inequalities to
LP-S would strictly dominateSOCP-C. We are not aware of a formal proof for this. We now describe
theSOCP-Q relaxation.

6.2 The SOCP-Q Relaxation

In this previous section we saw thatLP-S dominatesSOCPrelaxations whose constraints are defined
on trees. However, theSOCP-C relaxation, which defines its constraints using cycles, strictly dom-
inatesLP-S. This raises the question whether matricesC, which result in more complicated graphs
G, would provide an even better relaxation for theMAP estimation problem. In this section, we
answer this question in an affirmative. To this end, we define an SOCPrelaxation which specifies
constraints such that the resulting graphG from a clique. We denote this relaxation bySOCP-Q
(whereQ indicates cliques).

The SOCP-Q relaxation contains the marginalization constraint and the cycle inequalities (defined
above). In addition, it also definesSOC constraints on graphsG which form a clique. We denote
the variables corresponding to the vertices of cliqueG asvQ = {vb|b ∈ {a1, a2, · · · , aq}}. Let
lQ = {lj |j ∈ {i1, i2, · · · , iq}} be a set of labels for these variablesvQ. Given this set of variables
vQ and labelslQ, we define anSOC constraint using a matrixC of sizenh × nh which is zero
everywhere except for the elementsCakal;ikil

= 1. Clearly,C is a rank1 matrix with eigenvalue1
and eigenvectoru which is zero everywhere exceptuak;ik

= 1 wherevak
∈ vQ andlik

∈ lQ. This
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(a) (b) (c)

(d) (e) (f)

Figure 7:An infeasible solution forSOCP-Q. The value of the variablexa;i is shown next to theith

branch of the trellis on top ofva. The value ofXab;ij is shown next to the connection between the
ith and thejth branches of the trellises on top ofvb andvb respectively. It can easily be verified that
these variables satisfy all cycle inequalities. However, they do not belong to the feasibility region of
SOCP-Q since they violate constraint (166).

implies thatC � 0, which enables us to obtain the followingSOCconstraint:
(

∑

k

xak;ik

)2

≤ q +
∑

k,l

Xakal;ikil
. (162)

We choose to specify the above constraint only for the set of labelslQ which satisfy the following
condition:

∑

(ak,al)∈E

θ2
akal;ikil

≥
∑

(ak,al)∈E

θ2
akal;jkjl

, ∀{j1, j2, · · · , jq}. (163)

Again, this choice is motivated by the fact that the variablesXakal;ikil
corresponding to these sets

vQ and lQ are assigned trivial values by theLP-S relaxation in the presence of non-submodular
pairwise potentials.

When the clique contains a frustrated cycle, it can be shown thatSOCP-Q dominates theLP-S relax-
ation (similar toSOCP-C). Further, using a counter-example, it can proved that the feasibility region
given by cycle inequalities is not a subset of the feasibility region defined by constraint (162). One
such example is given below.

Example: We present an example to prove that the feasibility region given by cycle inequalities is
not a subset of the feasibility region defined by theSOCconstraint

(

∑

k

xak;ik

)2

≤ q +
∑

k,l

Xakal;ikil
, (164)

which is used inSOCP-Q. Note that it would be sufficient to provide a set of variables(x,X) which
satisfy the cycle inequalities but not constraint (164).

To this end, we consider aCRF defined over the random variablesv = {va, vb, vc, vd} which form a
clique of size 4 with respect to the neighbourhood relationship E , i.e.

E = {(a, b), (b, c), (c, d), (a, d), (a, c), (b, d)}. (165)

Each of these variables takes a label from the setl = {l0, l1}. Consider the set of variables(x,X)
shown in Fig. 7 which do not belong to the feasibility region of SOCP-Q. It can be easily shown
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that these variables satisfy all the cycle inequalities (together with all the constraints of theLP-S
relaxation). However,(x,X) defined in Fig. 7 does not belong to the feasibility region of theSOCP-
Q relaxation since it does not satisfy the followingSOCconstraint:

(

∑

va∈v

xa;0

)2

≤ 4 + 2





∑

(a,b)∈E

Xab;00



 . (166)

7 Discussion

We presented an analysis of approximate algorithms forMAP estimation which are based on convex
relaxations. The surprising result of our work is that despite the flexibility in the form of the objective
function/constraints offered byQP and SOCP, the LP-S relaxation dominates a large class ofQP
and SOCP relaxations. It appears that the authors who have previously usedSOCP relaxations in
the Combinatorial Optimization literature [20] and those who have reportedQP relaxation in the
Machine Learning literature [22] were unaware of this result. We also proposed two newSOCP
relaxations (SOCP-C andSOCP-Q) and presented some examples to prove that they provide a better
approximation thanLP-S. An interesting direction for future research would be to determine the best
SOC constraints for a givenMAP estimation problem (e.g. with truncated linear/quadraticpairwise
potentials).

Acknowledgments: We thank Pradeep Ravikumar and John Lafferty for careful reading of the
manuscript and for pointing out an error in our description of the SOCP-MS relaxation.
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