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Abstract

The problem of obtaining the maximum a posteriori estimdta general dis-
crete random field (i.e. a random field defined using a finite dincrete set of
labels) is known to beip-hard. However, due to its central importance in many
applications, several approximate algorithms have beepgsed in the litera-
ture. In this paper, we present an analysis of three suchritidges based on
convex relaxations: (i)P-s: the linear programming.@) relaxation proposed by
Schlesinger [25] for a special case and independently ih]431] for the general
case; (i)QP-RL: the quadratic programmin@§) relaxation by Ravikumar and
Lafferty [22]; and (iii)) socrMs: the second order cone programmisgp re-
laxation first proposed by Muramatsu and Suzuki [20] for talodl problems and
later extended in [18] for a general label set.

We show that thesocrMs and theQpr-RL relaxations are equivalent. Further-
more, we prove that despite the flexibility in the form of tfumstraints/objective
function offered byQp andsocr theLp-s relaxationstrictly dominategi.e. pro-
vides a better approximation thaQp-rRL and socPMS. We generalize these
results by defining a large class bcpr(and equivalen§p) relaxations which is
dominated by theP-s relaxation. Based on these results we propose some novel
socprelaxations which strictly dominate the previous appresch

1 Introduction

Discrete random fields are a powerful tool to obtain a prdisiei formulation for various applica-
tions in Computer Vision and related areas [3, 5]. Henceelging accurate and efficient algo-
rithms for performing inference on a given discrete randaiufis of fundamental importance. In
this work, we will focus on the problem of maximum a posterferaP) estimation. MAP estimation

is a key step in obtaining the solutions to many applicatisush as stereo, image stitching and
segmentation [29]. Furthermore, it is closely related tayrienportant Combinatorial Optimization
problems such agAxcuT [8], multi-way cut [6], metric labelling [3, 14] and 0-extsion [3, 12].

Given dataD, a discrete random field models the distribution (i.e. eittie joint or the con-
ditional probability) of a labelling for a set of random \albies. Each of these variables=
{vg,v1, -, v,—1} can take a label from a discrete $et {lo, 11, --,l,—1}. A particular labelling

of variablesv is specified by a functiorf whose domain corresponds to the indices of the random
variables and whose range is the index of the label set, i.e.

f:{0,1,---,n—1}y - {0,1,---,h — 1}. (1)

In other words, random variable, takes label,). For convenience, we assume the model to be
a conditional random fieldoRF) while noting that all the results of this paper also applarkov
random fields (IRF).

A cRF specifies a neighbourhood relationsiippetween the random variables, i(e,b) € & if,
and only if,v, andwv, are neighbouring random variables. Within this framewdink, conditional



probability of a labellingf given dataD is specified as

Pr(f|D,0) =

1
Z(B) exp(—Q(f,D,G) (2)
Here @ represents the parameters of ttrer and Z(0) is a normalization constant which ensures
that the probability sums to one (also known as the partitimction). The energ@)(f; D, 0) is
given by

QUED.O) =D basyt D Gonsiarrm: ®3)

Vg EV (a,b)e&

The term&i,f(a) is called a unary potential since its value depends on tredliag of one random
variable at a time. Similarlw% ) f () is called a pairwise potential as it depends on a pair of

random variables. For simplicity, we assume ﬂﬁ@t vy = wla,b)d(f(a), f(b)) wherew(a, b)
is the weight that indicates the strength of the palrW|satmhship between variableg andwvy,
with w(a, b) = 0if (a,b) ¢ &, andd(-, ) is a distance function on the lab&l#\s will be seen later,
this formulation of the pairwise potentials would allow nscbncisely describe our results.

We note that a subclass of this problem wher@, b) > 0 and the distance functiog(, -) is a
semi-metric or a metric has been well-studied in the litewa{3, 4, 14]. However, we will focus on
the generaMAP estimation problem. In other words, unless explicitly etiitwe do not place any
restriction on the form of the unary and pairwise potentials

The problem ofwAP estimation is well known to b&pP-hard in general. Since it plays a central
role in several applications, many approximate algorittmage been proposed in the literature. In
this work, we analyze three such algorithms which are basetbovex relaxations. Specifically,
we consider: (i)LP-s, the linear programming.p) relaxation of [4, 17, 25, 31]; (iiRP-RL, the
guadratic programming)P) relaxation of [22]; and (iii)soCP-MS, the second order cone program-
ming (soch relaxation of [18, 20]. In order to provide an outline of seaelaxations, we formulate
the problem ofvAP estimation as an Integer Prograrp)(

1.1 Integer Programming Formulation

We define a binary variable vectgrof lengthnh. We denote the element gfat indexa - h + ¢ as
xq;; Wherev, € v andi; € 1. These elements,; specify a labellingf such that

_ { 1 if ) f(a) = i, (4)

Lasi —1 otherwise.

We say that the variable,.; belongs tosariablev, since it defines which label, does (or does not)
take. LetX = xx . We refer to thda - h +i,b - h + j)*" element of the matriX asX,;.;; where
va, Up € v andl;,l; € 1. Clearly the sum of the unary potentials for a labelling it by (x, X)
is given by

1 (1 7
Similarly the sum of the pairwise potentials for a labelling X) is given by
(1+mq;) (14 wb;j) (14 20y + Th;j + Xab;ij)
Z Gab 317 2 2 = Z Gab 3iJ 4 . (6)
(a,b)EE Lyl (a,b)E€E Lisl;

1The pairwise potentials for anyRF can be represented in the foﬁﬁlb;ij = w(a,b)d(i, 7). This can be

achieved by using a larger set of labkls: {lo;0,**,loshy» -+, ln—1;n, } SUCh that the unary potential of
taking labell,.; is %.; if a = b andoo otherwise. In other words, a variahlg can only take labels from the set
{la;0, -, la:n—1} Since all other labels will result in an energy valuesof The pairwise potential for variables
v, anduy taking labeld,;; andi,,; respectively can then be represented in the farfa, b)d(a; ¢, b; j) where

w(a,b) = 1andd(a; i, b; j) = 02,.,,. Note that using a larger set of labéhwill increase the time complexity
of MAP estimation algorithms, but does not effect the analysiseured in this paper.



Hence, the followingp finds the labelling with the minimum energy, i.e. it is equér to themapP
estimation problem:

IP: X" =argming )., ; 0}, Saxt D 4 D (abyee o, aviii e R
s.t. x € {—1,1}" (7)
>oe1%asi =2 = h, (8)
X =xx'. 9)

Constraints (7) and (9) specify that the variabteand X are binary such thak.,;; = %a;i%s;.

We will refer to them as thenteger constraints Constraint (8), which specifies that each variable
should be assigned only one label, is known aaithigueness constrainiote that one uniqueness
constraint is specified for each variablg Solving the abover is in generaNp-hard. Itis therefore
common practice to obtain an approximate solution usingeorelaxations. We describe four such
convex relaxations below.

1.2 Linear Programming Relaxation

The LP relaxation, proposed by Schlesinger [25] for a special ¢atere the pairwise potentials
specify a hard constraint, i.e. they are either @@rand independently in [4, 17, 31] for the general
case, is given as follows:

o ol (1+wa i) 2 (+zg;i+apj+Xabiij)
LP-S: x* = = arg mlnx ZU,, l; a + Z(a b)e&,lil; gab;ij 4

s.t. c[-1 1]”h,X € [—1, 1|nhxnh (10)
Seiai =2~ h, (11)

2ot e1 Xabij = (2 = h)@asi, (12)

Xabiij = Xpayji (13)

1+ 2ay + o5 + Xapyj > 0. (14)

In the above relaxation, which we calb-s, only those elementX,;,;; of X are used for which
(a,b) € € andl;,l; € 1. Unlike theip, the feasibility region of the above problem is relaxed such
that the variables,,; and X,; lie in the interval—1, 1]. Further, the constraint (9) is replaced by
equation (12) which is called thmarginalization constrainf31]. One marginalization constraint
is specified for eaclfa,b) € £ andi; € 1. Constraint (13) specifies tha is symmetric. Con-
straint (14) ensures thaﬁb;” is multiplied by a number betweénand1 in the objective function.
These constraints (13) and (14) are defined fofalb) € £ andl;,l; € 1. The formulation of the
LP-S relaxation presented here uses a slightly different ranét the ones described in [15, 31].
However, it can easily be shown that the two formulationseyaivalent by using the variablgs
andY instead of andX such that,; = 2% Y, ;; = et X Note that the above
constraints are not exhaustive, i.e. it is pOSSIble to $pether constralnts for the problem wifap
estimation (as will be seen in the different relaxationsdbgd in the subsequent sections).

Properties of theLP-s Relaxation:

e Since theLP-srelaxation specifies a linear program it can be solved inromtyial time. A
labelling f can then be obtained by rounding the (possibly fractior@i)tsn of theLp-s.

¢ Using the rounding scheme of [14], the-s provides a multiplicative bourfcbf 2 when
the pairwise potentials form a Potts model [4].

e Using the rounding scheme of [4]p-s obtains a multiplicative bound df 4 /2 for
truncated linear pairwise potentials.

2Consider a set of optimization problers and a relaxation scheme defined over this.detIn other
words, for every optimization problem € A, the relaxation scheme provides a relaxatoa 5 of A. Let
e” denote the optimal value of the optimization problemFurther, letz* denote the value of the objective
function of A at the point obtained by rounding the optimal solution ofdisxations. The relaxation scheme
is said to prowde a multiplicative bound pffor the setA if, and only if, the following condition is satisfied:
E(&") < pe*, YA € A, where E(-) denotes the expectation of its argument under the roundihgnse
employed.



e LP-s provides a multiplicative bound of 1 when the energy functilf-; D, ) of theCcRF
is submodular [26] (also see [11, 24] for thematnCcuT graph construction for minimizing
submodular energy functions).

e TheLpP-s relaxation provides the same optimal solution for all rapaeterizationd of 0
(i.e. for all@ = 0) [15, 34].

Although theLP-s relaxation can be solved in polynomial time, the state ofattdnterior Point
algorithms can only handle up to a few thousand variablescandtraints. In order to overcome
this deficiency several efficient algorithms have been psedan the literature for approximately
solving the Lagrangian dual aP-s[15, 16, 27, 28, 31, 34].

1.3 Quadratic Programming Relaxation

We now describe thep relaxation for themap estimationip which was proposed by Ravikumar
and Lafferty [22]. To this end, it would be convenient to mafwilate the objective function of the

using a vector of unary potentials of length (denoted b)él) and a matrix of pairwise potentials
of sizenh x nh (denoted byp?). The element of the unary potential vector at index z + i) is

defined as .
9(11;1' = 9(1L,z - Z Z |9(2w;ik|7 (15)

VeEV L EL

wherev, € vandl; € 1. The(a - h +1i,b- h + j)t" element of the pairwise potential maté% is
defined such that

2 _ ZUCEV Zl €1 |9¢27,c;ik|7 if a = b’ i = j’

Oabiij = { 02, otherwise, (16)
wherev,, vy € v andl;,l; € 1. In other words, the potentials are modified by defining ava# po-
tential62 ... and subtracting the value of that potential from the comesiing unary potentiwl}l;i.

aa;it

ab;ij

The advantage of this reformulation is that the ma@ﬁxis guaranteed to be positive semidefinite,
i.e.6” = 0. Using the fact that for,,; € {—1,1},

2
1+ Tasi 1+ Lasi
2) = ’ 17
(Fhe) =, a7)
it can be shown that the following is equivalent to thep estimation problem [22]:
QP-RL: X" = argminy (12) 9 + (12)7 97 (%), (18)
s.t. Zl,;el Zayi =2 —h,Vu, €V, (29)
x € {-1,1}"" (20)

where1l is a vector of appropriate dimensions whose elements aregathl tol. By relaxing
the feasibility region of the above problem o€ [—1,1]™", the resultingQp can be solved in

polynomial time sinc& > 0 (i.e. the relaxation of thep (18)-(20) is convex). We call the above
relaxationQpP-RL. Note thatin [22], thedpP-RL relaxation was described using the variaple 1#
However, the above formulation can easily be shown to bevatgiit to the one presented in [22].

Ravikumar and Lafferty [22] proposed a rounding schemedsirL (different from the ones

used in [4, 14]) that provides an additive bodraf % for the MAP estimation problem, where
S = Yapyee 2t ye1 |0a;] (e. S is the sum of the absolute values of all pairwise poten-
tials) [22]. Under their rounding scheme, this bound can t@am to be tight using a random

3A relaxation scheme defined over the set of optimization lprob A is said to provide an additive bound
of o for A if, and only if, the following holds trueE(é*) < e? + o, VA € A. Heree” is the optimal value of
A andé” is the value obtained by rounding the solutiorsof

“The multiplicative bound specified by a relaxation schenfmdd over the set of optimization problemds
is said to betight if, and only if, there exists an € A such thatE(éA) = peA. Similarly, the additive bound
specified by a relaxation scheme defined ades said to be tight if, and only if, there exists anc .4 such
thatE(é4) = e + 0.



field defined over two random variables which specifies unifanary potentials and Ising model
pairwise potentials. Further, they also proposed an efffigierative procedure for solving thege-

RL relaxation approximately. However, unlike-s, no multiplicative bounds have been established
for the QP-RL formulation for special cases of theap estimation problem.

1.4 Semidefinite Programming Relaxation

Thesbprrelaxation of thewAP estimation problem replaces the non-convex constdaiat xx ' by
the convex semidefinite constrat— xx " > 0[7, 8, 19] which can be expressed as

(x % )=0 1)

using Schur’'s complement [2]. Further, like-s, it relaxes the integer constraints by allowing the
variablesr,;; and X,;,;; to lie in the intervall—1, 1] with X,,,; = 1 for all v, € v,l; € 1. Note
that the value ofX ,,;; is derived using the fact that,.,; = x2.;. Sincex,,; can only take the
values—1 or 1 in the MAP estimationip, it follows that X,,.;; = 1. Thesbprrelaxation is a well-
studied approach which provides accurate solutions fomtkre estimation problem (e.g. see [33]).
However, due to its computational inefficiency, it is notgir@ally useful for large scale problems
with nh > 1000. See however [21, 23, 30].

1.5 Second Order Cone Programming Relaxation

We now describe theocprelaxation that was proposed by Muramatsu and Suzuki [20iHe
MAXCUT problem (i.e MAP estimation with, = 2) and later extended for a general label set [18].
This relaxation, which we cabocrMs, is based on the technique of Kim and Kojima [13]. For
completeness we first describe the general technique ofgfi@]ater show hovocrMs can be
derived using it.

socpRelaxations: Kim and Kojima [13] observed that th&Pp constraintX — xx' > 0 can
be further relaxed to second order cos®¢) constraints. Their technique uses the fact that the
Frobenius inner product of two semidefinite matrices is negative. For example, consider the
inner product of a fixed matri€ = UU T > 0 with X —xx " (which, by thesppconstraint, is also
positive semidefinite). This inner product can be expreaseahsoc constraint as follows:
Ce(X—xx")>0, (22)
= |(U)"x|? < CeX. (23)
Hence, by using a set of matric€s= {C*|C* = U*(U*)T = 0,k = 1,2,...,n¢}, thespp
constraint can be further relaxedrigr socconstraints, i.e.
= ||(Uk)Tx||2 S Ck.Xvk: 17"‘,7LC- (24)

It can be shown that, for the above setsafc constraints to be equivalent to tis®pP constraint,
nc = oo. However, in practice, we can only specify a finite sesofc constraints. Each of these
constraints may involve some or all variables; and X,.;;. For example, iiC* . =0, then the

ab;ij
k" socconstraint will not involveX ,;.;; (since its coefficient will be 0).

The sockMs Relaxation: Consider a pair of neighbouring variablesand v, i.e. (a,b) € &,

and a pair of label$; and/;. These two pairs define the following variables;;, zv.j, Xaa;i =
Xov;j; = 1 andXqpi; = Xoayji (SinceX is symmetric). For each such pair of variables and labels,
the socrMs relaxation specifies tweoc constraints which involve only the above variables [18,
20]. In order to specify the exact form of thesec constraints, we need the following definitions.

Using the variables, andv, (where(a,b) € £) and labeld; andi;, we define the submatrices
x(a:0:4.7) andX(a:b4.9) of x andX respectively as:

(@big) — [ Tasi | x(abig) _ KXaasii  Xabsij 2
x ( Ty ) ( Xoagi  Xovyjj ) (23)

ThesocPrMs relaxation specifiesoc constraints of the form:
1(Uhs5) Tx(®05D2 < Cfyg @ X009, (26)



for all pairs of neighbouring variables, b) € £ and labeld;,i; € 1. To this end, it uses the

following two matrices:
11 1 -1
C}ws:<1 1)70?\/[5:<_1 1 ) (27)

In other wordssocrMs specifies a total of|€]|h? soc constraints. Note that both the matri-
cesC},s andC?%,, defined above are positive semidefinite, and hence can beenvesC},, =
Ujys(Ulys) " andCyyg = Ujy5(Ujys) " where

0 1 0 -1
U}ws:(o 1)a”dU?ws:<0 1 ), (28)

Substituting these matrices in inequality (26) we see thmatconstraints defined by tlscpMs
relaxation are given by

[(Ulyg) Tx(@bid)]|2 < Cl g @ X (@009

||(U%JS)TX(""b’i’j) [* < C?ws o X(a:b:t0), (29)
0 0 Tasi 2 11 Xaaiii Xabsij
= ’ = o ’ ’ R
11 Tpj 11 Xbazji  Xobijj
2
0 0 Lasi _ 1 -1 Xaa;ii Xab;ij
H( -1 1)<xbu' ) _< -1 1 >°<Xba;ﬂ Xobijj > (30)
= (:L'a;i + :L'b;j)2 < Xaa;ii + Xbb;jj + Xab;ij + Xba;jiy
(:L'a;i - :L'b;j)2 < Xaa;ii + Xbb;jj - Xab;ij - Xba;jiy (31)
= (Tasi + Tp:5)% < 2+ 2X by,
(Tazi — b))% <2 — 2Xgpiy- (32)

The last expression is obtained using the fact et symmetric and¥,,;; = 1, forall v, € v and
l; € 1. Hence, in thesocrMs formulation, thewAP estimationip is relaxed to

SOCPMS: x* = arg miny Zva,li 0;7‘ (1+;a;i)

(I4zq;i+apj+Xabij)
) 1

2
+ 2 (avyes s, Yaviis

s.t. x € [-1,1]"" X € [—1,1]nhxnh (33)
Zl,;el Tayi =2—h, (34)

(Tasi — Tbyj)% < 2 — 2Xapiiys (35)

(Tasi + Tb35)% < 24 2Xapii, (36)

Xaviij = Xbayji- (37)

We refer the reader to [18, 20] for details. TeecrMs relaxation yields the supremum and infi-
mum for the elements of the matrX using constraints (35) and (36) respectively, i.e.

(Tazi + xb;j)Q (Tazi — xb;j)Q
2 2 ’

These constraints are specified for @l b) € £ andl;,l; € 1. When the objective function of
SOCPMS is minimized, one of the two inequalities would be satisfiscaa equality. This can be
proved by assuming that the value for the vegtbas been fixed. Hence, the elements of the matrix
X should take values such that it minimizes the objectivetioncsubject to the constraints (35) and
(36). Clearly, the objective function would be minimizedevhX,;.;; equals either its supremum

—1< Xopag 1= (38)

or infimum value, depending on the sign of the correspondaigyise potentiaﬂgb;ij, i.e.
(wa;'i+wb:.i)2 -1 if 2
X(I.b;ij = (Qr . .)2 | . oab;lj > 0) (39)
1 — === otherwise.

Similar to theLP-s andQP-RL relaxations defined above, tsecrMs relaxation can also be solved
in polynomial time. To the best our knowledge, no bounds lmeen established for theocrms
relaxation in earlier work. Furthermore, no previous spkzed algorithms exist for solvingocp
Ms (or indeed any othesocPprelaxation) efficiently.



2 Comparing Relaxations

In order to compare the relaxations described above, weareethe following definitions. We say
that a relaxatiorn dominateghe relaxatiors (alternativelys is dominated by) if and only if

min  e(x,X;0)> min _e(x,X;0),V0, (40)

(x.X)eF(A) (x.X)eF(B)

whereZF(A) and F(B) are the feasibility regions of the relaxationsandg respectively. The term
e(x,X; 0) denotes the value of the objective function(at X) (i.e. the energy of the possibly
fractional labelling(x, X)) for themap estimation problem defined over tb&F with paramete8.
Thus the optimal value of the dominating relaxatiois always greater than or equal to the optimal
value of relaxatiorB. We note here that the concept of domination has been usewpséy in [4]
(to comparea.p-s with the linear programming relaxation in [14]).

Relaxationsr andB are said to bequivalenif A dominates ands dominates, i.e. their optimal
values are equal to each other for akkrs. A relaxationa is said tostrictly dominaterelaxation
B if A dominatess but B does not dominate. In other words there exists at least oower with
paramete#d such that

min  e(x,X;0) > min _ e(x,X;0). (41)

(x,X)EF(A) (x,X)eF(B)

Note that, by definition, the optimal value of any relaxatwould always be less than or equal to
the energy of the optimal (i.e. theapr) labelling. Hence, the optimal value of a strictly dominati
relaxationA is closer to the optimal value of theap estimationip compared to that of relaxation
B. In other wordsa provides a tighter lower bound farap estimation thars.

We now describe two special cases of domination which ard esgensively in the remainder of
this paper.

Case |:Consider two relaxations ands which share a common objective function. For example,
the objective functions of ther-s and thesocrMs relaxations described in the previous section
have the same form. Further, ketands differ in the constraints that they specify such thgin) C
F(B), i.e. the feasibility region of is a subset of the feasibility region Bf

Given two such relaxations, we claim thratdominatess. This can be proved by contradiction. To
this end, we assume thatdoes not dominate. Therefore, by definition of domination, there exists
at least one paramet@rfor which B provides a greater value of the objective function than_et

an optimal solution oA be (x4, X 4). Similarly, let(xz, X ) be an optimal solution af. By our
assumption, the following holds true:

e(xA,XA;B) <6(XB,XB;0). (42)

However, sinceF (A) C F(B) it follows that(x 4, X 4) € F(B). Hence, from equation (42), we see
that(xp, X 5) cannot be an optimal solution ef This proves our claim.

We can also consider a case whétg) C F(B), i.e. the feasibility region oA is a strict subset of
the feasibility region oB. Using the above argument we see thatominatess. Further, assume
that there exists a parametesuch that the intersection of the set of all optimal solugioha and
the set of all optimal solutions @& is null. In other words ifxp, X ) is an optimal solution oB
then(xp,Xp) ¢ F(A). Clearly, if such a parametérexists them strictly dominates.

Case Il:Consider two relaxations ands such that they share a common objective function. Further,
let the constraints af be a subset of the constraintscaf\We claim thatr dominates. This follows
from the fact thatF(a) C F(B) and the argument used in Case | above.

2.1 Our Results

We prove that.p-s strictly dominatesocr-mMs (see section 3). Further, in section 4, we show that
QP-RL is equivalent tasocrMs. This implies thatp-s strictly dominates th&@pP-RL relaxation.

In section 5 we generalize the above results by proving thatge class osocp(and equivalent
QP) relaxations is dominated hyr-s. Based on these results, we propose a novel set of constraint
which result insocprelaxations that dominater-s, QP-RL andsoCckrMs. These relaxations intro-
ducesocconstraints on cycles and cliques formed by the neighbaghelationship of therF.



3 LP-Svs. SOCP-MS

We now show that for th&AP estimation problem the linear constraintsLets, i.e.

x € [-1,1]"" X € [1, 1]rhxnh, (43)

de1Tai =2 —h, (44)

leel Xabij = (2 = h)Zasis (45)

Xaviij = Xbasjis (46)

1+ 245 + x5 + Xab;ij > 0. 47
are stronger than th@oCcrP-Ms constraints, i.e.

x € [-1,1]"" X € [-1,1]nhxnh (48)

de1Tai =2 —h, (49)

(Tazi — 2p5)* < 2 —2Xapsij, (50)

(Tasi + Tp5)* < 242X b0, (51)

Xabiij = Xbasji- (52)

In other words the feasibility region afP-s is a strict subset of the feasibility region sbcrms
(i.e. F(LpP-s) C F(socpms)). Thisin turn would allow us to prove the following theorem.

Theorem 1: TheLP-s relaxation strictly dominates treocr-Ms relaxation.

Proof: TheLp-s and thesocrMs relaxations differ only in the way they relax the non-convex
constraintX = xx'. While LP-s relaxesX = xx' using the marginalization constraint (45),
SOCPMS relaxes it to constraints (50) and (51). TeecrMs constraints provide the supremum
and infimum ofX;.;; as

(zasi + xb;j)Q (Tasi — xb;j)Q
2 2 ’
Consider a pair of neighbouring variablesandv, and a pair of labels and/;. Recall thatsocr
Ms specifies the constraints (50) and (51) for all such pairanéflom variables and labels, i.e. for
all 4.3, 2,5, Xabsj SUch that(a,b) € € andl;,l; € 1. In order to prove this theorem we use the
following two lemmas.

-1< Xab;ij <1- (53)

Lemma 3.1:1f x4, 21;; and X ,;; satisfy theLP-s constraints, i.e. constraints (43)-(47), then
|Za;s — @y <1 — Xapgij- (54)

The above result holds true for &ll, b) € £ andl;,l; € 1.

Proof: From theLP-s constraints, we get

1+ Tasi Z 1+ Lasi + Thik + Xa,b;ik

2 4 ’
lp€l
1+xb;' l—l—x;k—l—xb;'—i—Xb;k»
i oy A Sk T T Sk, (55)
€l
Therefore,
xa;i - fEb;j| = 2 ‘—1+;a;i - 1+;b;j )
—9 ’ (1+wa;i . 1+wa;i+wb;j+Xa,b;7:j) _ (1+wh;_;‘ _ I4maitme i+ Xabij )‘
- 2 4 2 4 )
<9 (1+;a;i _ 1+$a;i+$Z:j+Xa,b;ij) +2 (H;b:j _ 1+$a:i+mz;j+xab;u) ,
=1— Xapj- (56)
Note that the inequality holds since both the expressiottsaparantheses, i.e.
14+ 2es 14 e + Ty + Xapyij 14+ o 14 xey +xpy + Xapg
) - 4 ) 2 - 4 ) (57)
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are non-negative, as follows from equations (47) and (55)
Using the above lemma, we get

(xa;i - xb;j)z S (1 - Xa,b;ij)(l - Xa,b;ij)7 (58)
= (xa;i - xb;j)Q < 2(1 - Xab;ij)a (59)
= (Tazi — 1;5)? < 2 — 2Xapsij- (60)

Inequality (59) is obtained using the fact that < X,;,;; < 1 and hencel — X;.;; < 2. Using
inequality (58), we see that the necessary condition foethality to hold true i$1 — X455 ) (1 —
Xabiij) = 2 — 2Xap,i5, 1.8, Xapsj = —1. Note that inequality (60) is equivalent to ts®@CP-Ms
constraint (50). ThusP-s provides a smaller supremum &t,.;; whenXq.;; > —1.

Lemma 3.2:If x4, 21;; and X 4,,;; satisfy theLP-s constraints then

|Zass + x| < 14 Xapsij- (61)
This holds true for alla, b) € £ andi;, [; € 1.
Proof: According to constraint (47),

—(@as + 2y5) < 14+ Xabij- (62)
Using Lemma 3.1, we get the following set of inequalities:
|Ta;i — Zok| <1 — Xapsin, Ik € Lk # j (63)
Adding the above set of inequalities, we get
Dotelis [Tasi — Togl < D200, 1z (1 — Xavsin), (64)
= Zlkel,k;ﬁj(xaﬂ — Tpk) < Zlkel,k;éj(l — Xabsik); (65)
= (b= Daai = Xy gy Tok < (h=1) = 320, 1 sy Xabiins (66)
= (h—Dzgi+(h—2)+azp; < (h—1)+ (h—2)xa; + Xabsij- (67)
The last step is obtained using constraints (44) and (45), i.
D k= 2=h), Y Xapik = (2= h)Tay. (68)
Ip€l lp€l

Rearranging the terms, we get

(g + xvy5) < 14+ Xapsij- (69)
Thus, according to inequalities (62) and (69)
|Ta;i + @by] <1+ Xavsij- 1 (70)
Using the above lemma, we obtain
(xa;i + xb;j)Q S (1 + Xa,b;ij)(l + Xa,b;ij)7 (71)
= (Tazi + b))% < 2+ 2Xgpiy- (72)

where the necessary condition for the equality to hold tsuef X,p,;; = 2 (i.e. X455 = 1). Note
that the above constraint is equivalent to s P-MS constraint (51). Together with inequality (60),
this proves that thep-s relaxation provides smaller supremum and larger infimunhefalements
of the matrixX than thesocpwms relaxation. ThusfF(Lp-s) C F(SOCPMS).

One can also construct a parameldor which the set of all optimal solutions sfocrMs do not

lie in the feasibility region of.P-s. In other words the optimal solutions sbcrP-Ms belong to the
non-empty sef (socrMs) — F(LP-S). Using the argument of Case | in section 2, this implies that
LP-s strictly dominatesocrms. |

Note that the above theorem does not apply to the variatismaiMs described in [18, 20] which
includetriangular inequalitieq1]. However, since triangular inequalities are linear stoaints L p-
scan be extended to include them. The resultingelaxation would strictly dominate treoCP-MS
relaxation with triangular inequalities.



4 QP-RLvs. SOCP-MS

We now prove thapP-RL andsoCPMS are equivalent (i.e. their optimal values are equahMapP
estimation problems defined over alkrs). Specifically, we consider a vecterwhich lies in the
feasibility regions of thepp-RL and socr-Ms relaxations, i.ex € [—1,1]"*". For this vector, we
show that the values of the objective functions of feeRL and SOCP-MS relaxations are equal.
This would imply that ifx* is an optimal solution o§P-RL for someCRF with paramete® then
there exists an optimal solutidix*, X*) of the socpMs relaxation. Further, it? ande® are the

optimal values of the objective functions obtained usirggiR-rRL andsoCPMS relaxation, then
Q _ S
ev =e".

Theorem 2: TheQp-RL relaxation and theocrMs relaxation are equivalent.
Proof: Recall that theyP-RL relaxation is defined as follows:

QP-RL:  x* = argminy (122)7 ' + (11x)7 97 (1x) (73)
s.t. Zl,;el Zayi =2 —h,Vu, €V, (74)
x € {-1,1}"" (75)

. o1 . . ~2 ,
where the unary potential vectr and the pairwise potential matrék > 0 are defined as

= 91 Z Z |9ac zk|7 (76)
VeEV L EL

n2 ZUCEV Zl . €1 |9(2w'ik|7 if a = b’ i= j’
Oasis = { glf i otherwise. (77)
Here, the termé1 and@ic ., are the (original) unary potentials and pairwise potesfial the given
CRF. Consider a feaS|bIe solutionof theQP-RL and thesocpMs relaxations. Further, I&X be the
solution obtained when minimizing the objective functidiree socP-Ms relaxation whilst keeping
x fixed. We prove that the value of the objective functions fothtrelaxations at the above feasible
solution is the same by equating the coefficientff and Habl forall v, € v, (a,b) € £ and

l;,1; € 1in both formulations. Using equation (76), we see ﬂj'p,t is multiplied by”r“ ‘in the
objective function of th&pP-RL. S|m|IarIy,91 is multiplied by”m‘“ in the sockMs relaxation.
Therefore the coefficients @f,; in both relaxations are equal for all € v andi; € 1.

We now consider the pairwise potentials, Héb and show that their coefficients are the same
when obtaining the minimum of the objective functlon. We sider the following two cases.

Case l:Let 62, . i = =02, i = 0. Using equation (77) we see that, in the-RL relaxation 02, it
0;,.;; is multiplied by the following term:

2 2
1+ Ty 1+ @y, Tt @\ (T4a;\ 1+aa  1+m,
> i 2 i i _ v J 7

In the case okocPMs relaxation, sinced?, 5 = 0, the minimum of the objective function is
obtained by using the minimum value thﬁgb .;; would take given thesocconstraints. SincX is

symmetric, we see thaf, ;. + 6;,.,; is multiplied by the following term:

1+zaitop; Hinf{ Xap,; }
a;t ]2 J (79)

1+Ia:i+wb:_‘+($a:i+5Eb;_')2/271
j 5 j (80)

)

where the infimum ofX,,;; is defined by constraint (51) in treoCcrP-Ms relaxation. It can easily
be verified that the terms (78) and (80) are equal.

Case II: Now consider the case wheég, .. = 67,.;
02455 + ;i 1S multiplied by

2 2
14+ zai  1+ap; 1+ Zay 1+ xp,; 1+ e, 1+ xp
’ ) 2 ) > _ ) _ > . 1
> T2 ( 2 ) ( 2 2 2 (81)
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In order to obtain the minimum of the objective function, #wcrMs relaxation uses the maximum
value thatX,;,;; would take given thsocconstraints. Thugl?, .. + 67,.;; is multiplied by

1+xar§1+xb13+sllp{xab:13} (82)

1+rm+rbj+12(rai—m) /2 (83)

where the supremum of ,;,;; is defined by constraint (50). Agaln the terms (81) and (&8) lwe
shown to be equivalent. |

Theorems 1 and 2 prove that the-s relaxation strictly dominates ther-RL andSOCP-MS relax-
ations. A natural question that now arises is whether thémedound ofQpP-RL (proved in [22])

is applicable to thep-s andsocrms relaxations. Our next theorem answers this question in an
affirmative. To this end, we use the rounding scheme propiosi22] to obtain the labelling’ for

all the random variables of the givemF. This rounding scheme is summarized below:

e Pick a variabley, which has not been assigned a label.

o Assign the label; to v, (i.e. f(a) = i) with probability’ 2=
e Continue till all variables have been assigned a label.

Recall thatzh ! ”;”“ = 1forallv, € v. Hence, once, is picked it is guaranteed to be assigned
alabel. In other words the above rounding scheme termidtes. = |v| steps. To the best of our
knowledge, this additive bound was previously known onhytfe QP-RL relaxation [22].

Theorem 3: For the above roundm% scheme-s andsocrMs provide the same additive bound
as theQp-RL relaxation of [22], i.e.3 whereS = 37, ) \ce 32 1 c1 105,51 (i-e. the sum of the

absolute values of all pairwise potentlals). Furthermtiris,bound is tight.

Proof: TheQp-RL andsocPMs relaxations are equivalent. Thus the above theorem hald<dr
sockMS. We now consider thep-s relaxation of [4, 17, 25, 31]. We denote the energy of the
optimal labelling ag*. Recall that” denotes the optimal value of tne-s which is obtained using
possibly fractional variablegc*, X*). Clearly,e < e*. The energy of the labelling, obtained
after rounding the solution of the-s relaxation, is represented by the te¢fm

Using the above notation, we now show thattires relaxation provides an additive bound%ﬂ‘or
the above rounding scheme. We first consider the unary paleand observe that

- 142,
E (9}” (Hil» — gL ( x) , (84)
’ 2 ’ 2

whereFE(-) denotes the expectation of its argument under the abovelimgischeme. Similarly, for
the pairwise potentials,

1+ jja;i 1+ i‘b;" 1+ a’:,v + Q’Z,z + x:;ixz; j
(0(1sz( 2 ) ( 2 J)) 9(1171)( 4] . . (85)

We analyze the following two cases:
(i) 62,.;; > 0: Using the fact tha& .,
1+xa;i+xb;j+w:iwzj (1+a’al+xbg+Xasz)

> |zy; + a3, — 1 (see Lemma 3.2), we get

= xa sz H X:;b B¥]
< x:;ixb;j +1- | (L;i + Q’Z,J|
< 1, (86)
where the equality holds wherj,; = =} ; = 0. Therefore,
1+='L'a;i 1+xbg 1+xaz+xbu+Xasz) |03b;ij|
<9ab ij < 9 ) ( )> = (Lb 31 4 + 4 . (87)
(ii) 62, .i; < 0:Using the fact thaf(, ;. <1 — |z}, — zj ;| (see Lemma 3.1), we get
1+xa;i+xb;j+x0,;ixbj (1+xﬂ7+xbj+X(Lb7J)
2 Thty — L4 |G, — oyl
> —1, (88)
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1 1 0 0
1 0 1 0 0
(a) (b)

Figure 1: An examplecrF for proving the tightness of ther-s additive bound oé. (a) The two
random variables), andv, are shown as unfilled circles. Their two putative labels dreven as
branches (i.e. the horizontal lines) of the trellises (tree vertical lines). The value of the unary
potential&}m is shown next to th&” branch of the trellis on top af,. The pairwise potentiaﬂgb;lj
is shown next to the connection betweenithend j** branches of the trellises on top af andwv,
respectively. Note that the unary potentials are unifornilevtine pairwise potentials form an Ising
model. (b) An optimal solution of theP-s relaxation for thecrRF shown in (a). This solution is
shown in red to differentiate it from the potentials showiah The values of the variables; are
shown next to thé” branch of the trellis of,. Note that all variables:,..; have been assigned o
The values of the variables,;,.;; are shown next to the connection betweenith@nd j** branch

of the trellises o, andv,. Note thatX,;.;; = —1if 67,.,; > 0 and X,,;; = 1 otherwise.

where the equallity holds wherf ; = z;., = 0. Therefore,

14 20\ (14 2b; (T, +ap, + X5 102
2 5 3] 2 ) %] abjr]y abjr]
E <9ab;ij ( 2 ) ( 2 )) < aab;ij 4 + 4 . (89)

Summing the expectation of the unary and pairwise poterfiabllv, € v, (a,b) € £andl;, [; €1,
we get

e*SE(éL)SeL—i-%Se*—i-Z, (90)

which proves the additive bound fop-s.

This additive bound can indeed be shown to be tight by usiaddhowing simple example. Con-
sider an instance of theap estimation problem for @RF defined on two variables = {v,, vy}
each of which can take one of two labels from thelset {iy,l;}. Let the unary and pairwise
potentials be as defined in Fig. 1(a), i.e. the unary potisrdai@ uniform and the pairwise potentials
follow the Ising model.

An optimal solution of the.P-s relaxation is given in Fig. 1(b). Clearly; = 2 (e.qg. for the labelling
f={0,0borf={1,1})while E(¢l) =2+ 2 = ¢ + % Thus the additive bounds obtained for
theLpP-s, QP-RL andsocPkMs algorithms are the same. In fact, one can construct arijttarge
CRFs (i.e.CRF defined over a large number of variables) with uniform unasteptials and Ising
model pairwise potentials for which the bound can be shovisettight. |

The above bound was proved for the case of binary variablesh(i= 2) in [10] using a slightly
different rounding scheme. Our result can be viewed as argkregion of this for any arbitrary
number of labels. We note here that better bounds can benebtédr some special cases of the
MAP estimation problem using ther-s relaxation together with more clever rounding schemes
(such as those described in [4, 14]).

5 QP and SOCP Relaxations over Trees and Cycles

We now generalize the results of Theorem 1 by defining a lal@gs ofsocprelaxations which
is dominated by P-s. Specifically, we consider theocprelaxations which relax the non-convex
constrainfX = xx " using a set of second order cors) constraints of the form

(UM x| < C*eX k=1, ,nc (91)
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whereC* = U*(U*)T = 0,forallk = 1,---,nc. In order to make the proofs of the subsequent
theorems easier, we make two assumptions. However, thesthsavould hold true even without
these assumptions as discussed below.

Assumption 1. We assume that the integer constraints
x € {_1,+1}nh7X c {_17_|_1}nh><nh, (92)

are relaxed to
x € [-1,+1]"" X € [-1, +1]">xnh, (93)

with X = 1, for allv, € v,{; € 1. The constraints (93) provide the convex hull for all therp®i
defined by the integer constraints (92). Recall that the eoiwll of a set of points is the smallest
convex set which contains all the points. We now discuss hevabove assumption is not restrictive
with respect to the results that follow. Lete a relaxation which contains constraints (93). Further,
let B be a relaxation which differs from only in the way it relaxes the integer constraints. Then
by definition of convex hullF(A) C F(B). In other wordss dominates (see Case | in section 2).
Hence, ifa is dominated by thep-s relaxation, then.p-s would also dominate.

Assumption 2: We assume that the set of constraints (91) contains all theticnts specified
in the socrMs relaxation. Recall that for a given pair of neighbouringdam variables, i.e.
(a,b) € €, and a pair of labelg, [; € 1, socrMs specifiessocconstraints using two matrices (say
C! andC?) which are 0 everywhere except for the followiagk 2 submatrices:

< C;a;ii C;b;ij ) _ ( 11 > ( Cga;ii Cgb;ij > _ < 1 -1 ) (94)
Cl}a;ji C}}b;jj 1 ’ Cga;ji Cl?b;jj -1 1 .

In the case where a given relaxatiardoes not contain theocr-Ms constraints, we can define a
new relaxatiors. This new relaxatiom is obtained by adding all theocrMs constraints toa.
By definition,B dominatesa (although not necessarily strictly, see Case Il in sectijprH&nce, if

B is dominated by thep-s relaxation then it follows thatP-s would also dominate. Hence, our

assumption about including treoCP-MS constraints is not restrictive for the results presented in
this section.

Note that eactsocPrelaxation belonging to this class would define an equivatgnrelaxation
(similar to the equivalenppP-RL relaxation defined by theocrMs relaxation). Hence, all thesgr
relaxations will also be dominated by the-s relaxation. Before we begin to describe our results
in detail, we need to set up some notation as follows.

5.1 Notation

WO—W (D— @ ®
W)—) (O—( ©® ©

(@) (b) (c)

Figure 2:(a) An examplerFdefined over four variables which form a cycle. Note that theeoved
nodes are not shown for the sake of clarity of the imgbeThe setE* specified by the matri€*
shown in equation (96), i.62% = {(a,b), (b, ¢), (c,d)}. (c) The set/* = {a,b,c,d}. See text for
definitions of these sets.

We consider aisocconstraint which is of the form described in equation (98), i

1(U") Tx|| < C* e X, (95)
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wherek € {1,---,nc}. In order to help the reader understand the notation betenise an
examplecRF shown in Fig. 2(a). Thi<RF is defined over four variablee = {v,, vp, v, v}
(connected to form a cycle of length 4), each of which takéballrom the set = {iy,{, }. For this
CRFwe specify a constraint using a mat@¢ > 0 which is 0 everywhere, except for the following
4 x 4 submatrix:

C(I;Za;OO C%z;oo C(]]zzc;oo Ct}id;oo 2 1 1 0
Cz;va,;oo C(Lb;oo Cz;vc;oo Czlid;oo _[1 211 (96)
Cra:00 Cc'b;oo Cee00 Cc'd;oo L1 21

01 1 2

k k k k
Cda;OO Cdb;OO Cdc;OO Cdd;OO
Using thesoc constraint shown in equation (95) we define the followingset

e The setE* is defined such that, b) € E* if, and only if, it satisfies the following condi-
tions:
(a,b) € &, (97)
;,1; € Isuch thaCl, .. # 0. (98)
Recall that€ specifies the neighbourhood relationship for the gigem. In other words
E* is the subset of the edges in the graphical model ofake such thatC* specifies
constraints for the random variables corresponding toetlealges. For the examptRF

(shown in Fig. 2(a)) andC* matrix (in equation (96)), the set* obtained is shown in
Fig. 2(b).

e The setV’” is defined as € V* if, and only if, there exists &, € v such tha{a,b) € E*.
In other wordsV* is the subset of hidden nodes in the graphical model otthesuch
thatC* specifies constraints for the random variables correspgrtdithose hidden nodes.
Fig. 2(c) shows the sét* for our examplesocconstraint.

e The set7” consists of elements i € 7* which satisfy
acVFk 1l el (99)
b e V¥, 1; €1, suchthaCl, ; # 0. (100)
In other words the séf* consists of the set of indices for the vectavhich are constrained
by inequality (95), i.e. the coefficient of,.; wherea;i € 7" are non-zero in theHs of
inequality (95). Note that in equation (96) the constrasrgpecified using only the labk|
for all the random variables. Thus the sef * is given by
7" = {(a;0), (b;0), (¢;0), (d; 0)}. (101)
For each sef * we define three disjoint subsetsBf x 7 as follows.
e The set7} is defined as

To" = {(as,b; ) [(az i, b;§) € T" x T*, (a,b) € €, (a,b) ¢ B} (102)
Note that by definitiorC,.,; = 0if (a;i,b;5) € 7. Thus7§ indexes the elements of

matrix X which are not constrained by inequality (95) but are presetite set7 * x 7.
For the matrixC* in equation (96), the s&f} is given by

Ty = {(a;0,d;0)} (103)
e The set7}" is defined as
T = {(a;8. b j)l(as3, b j) € T x T*, (a,b) ¢ €} (104)

In other words the sef}* indexes the elements of matrX which are constrained by
inequality (95) but do not belong to any pair of neighbouniagdom variables. Note that
the variablesX,;.;; such tha(a;i,b; j) € 7}* were not present in ther-s relaxation. For
the matrixC* in equation (96), the s&* is given by

T = {(a;0,¢;0), (b;0,d; 0)} (105)
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e The setZ;} is defined as
T = {(a31,b:)|(a:d, by j) € T" x T*, (a,0) € B*}. (106)
In other words the sef,® indexes the elements of matrX which are constrained by
inequality (95) and belong to a pair of neighbouring rand@miables. For the matri€*
in equation (96), the s&t” is given by
7 = {(a;0,5:0), (5;0,;0)(c;0,d; 0)} (107)
Note that7;"|J 7, JT" = T* x T*. For a given set of pairwise potential3, ;; we
define two disjoint sets df;® as follows.
e The set]‘2’3r corresponds to non-negative pairwise potentials, i.e.

7;1 = {(a‘alabu]”(aalab?]) € 7-2k502b;ij 2 0}7 (108)
Thus the sef, indexes the elements of matd& which belong toZ;* and are multiplied
by a non-negative pairwise potential in the objective fiorcof the relaxation.

e The setZ} corresponds to negative pairwise potentials, i.e.
T3 = {(a;1,b;j)|(a57,b; ) € T, Oy < O3, (109)

Thus the sef indexes the elements of mati which belong ta7* and are multiplied
by a negative pairwise potential in the objective functibthe relaxation. Note thak,* =
TF. \UT;.. For the purpose of illustration let us assume that, for tkeneple CRF in
Fig. 2(a),02,.00 > 0 while 67, < 0 and6?,.,, < 0. Then,

TF, = {(a;0,b;0)}, (110)
T = {(b;0,¢;0),(c;0,d;0)}, (111)

We also define a weighted graght = (V*, E*) whose vertices are specified by the 88t and
whose edges are specified by the B&t The weight of an edgéu, b) € E* is given byw(a, b).
Recall thatw(a, b) specifies the strength of the pairwise relationship betweenneighbouring
variablesv, andwv,. Thus, for our exampleoc constraint, the vertices of this graph are given in
Fig. 2(c) while the edges are shown in Fig. 2(b). This graphlmaviewed as a subgraph of the
graphical model representation for the giverr.

Further, we define the submatricels andX% of x andX respectively such that

X = {xaalasi € T}, (112)
XE = {Xapjl(a;d,b;5) € TH x T+, (113)
For our example, these submatrices will be given by
Zas0 Xaa:00 Xaboo Xac;00 Xad;o0
R N I R [ el i S el EE
240 Xaa;00 Xav:oo Xde;00  Xdd;00

Using the above notation, we are now ready to describe oultsdén detail.

5.2 QP and SOCP Relaxations over Trees

We begin by considering those relaxations wherestheconstraints are defined such that the graphs
GF = (V* EF) form trees. For example, the graghf defined by thesoc constraint in equa-
tion (96) forms a tree as shown in Fig. 2(b). We denote sucHaxaton, which specifiesoc
constraints only over trees, lBocrT. Note thatsocrMs (and henceQp-RL) can be considered

a special case of this class of relaxations where the nunfhartices in each tree is equal to two
(since the constraints are defined for(allb) € &).

We will remove this restriction by allowing the number of tiees in each tree to be arbitrarily large
(i.e. betweenl andn). We consider one such trée = (V, E). Note that for a given relaxation

15



SOCPT, there may be severabcconstraints defined using this trég(or its subtree). Without loss
of generality, we assume that the constraints

I(UF)Tx|| <CFeX k=1, ,ng (115)
are defined on the treg&. In other words,
GFCGk=1,---,n, (116)

whereG* C G implies thatG* is a subtree ofy. In order to make the notation less clutteraa,
will drop the superscript &k from the sets defined in the previous sectiofsince we will consider
only one tre€7 in our analysis).

We will now show thatsocr-T is dominated by theP-s relaxation. This result is independent of
the choice of tree& and matrice<C*. To this end, we define the terea(xr) for a given value of
X7 as

02, ..
_ 1 ab;ij )
e1(xr) = Z oL, + Z ~5 | wasi (117)
(a;3)eT (bsg)eT
Further, for a fixeck we also define the following two terms:

S _ : 0%, . Xopii 118
e (x1) (xT,xT)g?socpn( ,sz;g abiig £ abiis: (118)
a;e,o; 2
L = i 0%, Xopeii 119
€3 (XT) (xT,XTI;lEl.I;(LP-S) Z abyij<>abijs ( )

(a31,b;5)€T2

where F(socrT) and F(LP-S) are the feasibility regions ocrT andLpP-s respectively. We
use the notatiorixr, X7) € F(socrT) loosely to mean that we can obtain a feasible solu-
tion (x,X) of sockT such that the values of the variables; wherea;i € 7 and X,
where (a;i,b;j) € 7 x T are equal to the values specified &y and Xr. The notation
(xr,X7) € F(LP-9) is used similarly. Note that for a givexy the possible values cX, are
constrained such thakr, Xr) € F(socrT) and (xr, Xr) € F(LP-S) (in the case oBOCPT
andLp-s respectively). Hence different valuesof will provide different values ot5 (x) and

e (x7).

The contribution of the tre€&' to the objective function afoCcPT andLP-Sis given by

S

¢¥ = min el(;T) +2 (:T), (120)
L

oL min 61(;@) €3 (ZT) (121)

respectively. Assuming that the tre@slo not overlap, the total value of the objective function \dou
simply be the sum of® (for socrT) or e” (for LP-s) over all trees’y. However, since we use an
arbitrary parametd in our analysis, it follows that the results do not dependhis assumption of
non-overlapping trees. In other words if two trégsandG? share an edgg:, b) € £ then we can
simply consider twavAP estimation problems defined using arbitrary parameerand 8- such
that@, + 8: = 6. We can then add the contribution 6% for the MAP estimation problem with
parametef; to the contribution oiG> for the MAP estimation problem with paramet@s. This
would then provide us with the total contribution 6%, and G for the originalMAP estimation
defined using parametér

Using the above argument it follows that if, for &lland for all@, the following holds true:

abr) | erf(im < abn ezL(fﬂ,vxT € [-1,1]7! (122)
= es(xr) < ek (xr),Vxr € [-1,1]171] (123)

thenLpP-s dominatessocP-T (since this would imply that® < e*, for all G and for all@). This is
the condition that we will use to prove thia-s dominates alsocprelaxations whose constraints
are defined over trees. To this end, we define a veecter {wy, k = 1,---,n,} of non-negative
real numbers such that

D wkClyy = 025, (a3 1,05 §) € T, (124)

ab;ij
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Due to the presence of the matric€% defined in equation (94) (which result in tls@crms
constraints for all(a,b) € £ andl;,l; € 1), such a vectow would always exist for anyrRF
parametef. We denote the matri¥", w,C* by C. Clearly,C = 0, and hence can be written as
C=Uu".
Using the constraintd(U*) Tx||? < C* e X1 together with the the fact that, > 0, we get the
following inequality:

> wrll(UF) Tx|]? < 32, wiCF o X,

= IUTx||* < CeX,
= [[UTx|? < Yoier CamiiXaasii + Xasipsjyers Cabii Xavsis + X (asibijyets Cabiij Xabiij
= UTx|? = X ,ie7 Consii = Z(asipjyens Cabsii Xabis < 2 (aiiibeg)ets Oabiij Xabsiss

(125)
where the last expression is obtained using the fact@hat; = 936;” for all (a;4,b; j) € 7> and
Xqayii = 1 forallv, € vandl; € 1. Note that, in the absence of any other constraint (which is
our assumption), the value ef (xr) after the minimization would be exactly equal to thes of
the inequality given above (since the objective functiontaminges (xr) is being minimized). In
other words,

€2S(XT) = min Z ogb;ina,b;ijv
(a3i,b;5) €T
. T
= min ||U XH2 — Z Caa;n‘ - Z Cab;inab;ij' (126)
ayieT (asi,b;5)€Th

For theLP-s relaxation, from Lemmas 3.1 and 3.2, we obtain the followiatye ofeZ (x7):

| e + 2oy ] — 1 < Xapij <1 — |2azi — Togjl, (127)
= e (xr) =min Y5, cr Oy Xabiis
= 2(asibii)eTas Qavsi (1Tasi + Toi51) = Easipigyers v (1ase — wo51) =
Z(a;i,b;j)ETg |921);1‘5" (128)

We are now ready to prove the following theorem.

Theorem 4: socrprelaxations (and the equivaleqQp relaxations) which define constraints only
using graphg? = (V, E) which form (arbitrarily large) trees are dominated by tires relaxation.

Proof: We begin by assuming thai(s, j) > 0 for all ;,/; € 1 and later drop this constraint on
the distance functidh We will show that for any arbitrary tre€ and any matrixC, the value of
ek (x7) is greater than the value ef (x7) for all x7. This would prove inequality (123) which in
turn would show that thep-s relaxation dominatesocrT (and the equivalergp relaxation which
we callQp-T) whose constraints are defined over trees.

It is assumed that we do not specify any additional condsdor all the variablesX.;; where
(a;1,b;7) € Ty (i.e. for X4.;; not belonging to any of our trees). In other words these b
Xabi; are bounded only by the relaxation of the integer constrast—1 < Xg.;; < +1. Thus
in equation (126) the minimum value of tReis (which is equal to the value ef (x7)) is obtained
by using the following value oK ;.;; where(a;,b; j) € Tq:

- 1 if Capsij >0,
Xabsij = { —1 otherwise. (129)

Substituting these values in equation (126) we get
eg(XT) = ||UTX||2 - Za;ie'f Caasii — Z(a;i,b;j)e?’l |Cabsijls
= e5(x1) = X piet CawsiiTay + 2 (aipjyes CabiiiTaiiT®hij + 2 (avibig)ets DabiijTasiTh
=2 asiet Caasii = 2(asinjyens [Caviil, (130)
®Note that there are no terms correspondinddoi, b; j) € 7To in inequality (125) sinceyp.;; = 0 if
(a;4,b;5) € To. In other words X .s,;; vanishes from the above inequality(if; ¢, b; j) € Zo.

®Recall thatd(-,-) is a distance function on the labels. Together with the wisigl(-, -) defined over

neighbouring random variables, it specifies the pairwigent@ls asﬁgb;ij = w(a,b)d(i, 7).
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where the last expression is obtained using the fact @at= UTU. Consider the term
> (asibij)ets CabiijTasiTe;; Which appears in theHs of the above equation. For this term, clearly
the following holds true

Clabeii
Y Cavijraimng <Y | “2*”|(x§ﬂ+x§;j), (131)
(a;ib;j)ETh (a;ib;j)ETh

since for all(a;7,b;7) € T

Cabsij < |Cabsijl, (132)
Tagity < Lot (133)
Inequality (131) provides us with an upper bound on the vafug (xr) as follows:
e (xr) < Za;ieT Caaniix?z,n: + Z(a;i,b;j)eﬁ ‘CQS;”‘ (33(21;1' + x%;j) + Z(a;i,b;j)eTz H(Qz,b;ijx"rﬂxb;j
- Za;iET Caasii — Z(a;z‘,b;j)eﬁ |Cab;ij|~ (134)
Note that in order to prove inequality (123), i.e.
e5 (xr) < ef (xr), ¥xr € [-1,1)'7], (135)

it would be sufficient to show that} (xr) specified in equation (128) is greater than thes of
inequality (134) (since theHs of inequality (134) is greater thass (x7)). We now simplify the
two infimumseZ (x7) andes (x7) as follows.

LP-S Infimum: Let z,; = \/|%qa;il(1 — |zay]). From equation (128), we see that the infimum
provided by the_pP-s relaxation is given by

Z(a;i7b;j)e’]'2+ 93b;ij(|xa§i + @) — Z(a;i,b;j)e%_ 9?1b;ij(|xa§i — Ty;]) — Z(a;i,b;j)eTg |9(21b;71j|
- - z:(a;i,b;j)e'fpr |0121b;ij|(1 - |$a;i + xb;j| + x(lﬂxb;j)
- Z(a;i,b;j)e’]’g_ |9(21,b;ij|(1 = @a;i — @vyj| — TaziTh;;)

2 . .
+ Z(aﬂ‘;b?]‘)ETz Hab;ijxa;sz;]

> - Z(a;i,b;j)eTz |9¢216;ij|(1 — ;i) (1 = |zp5]) — 2Z(a;i,b;j)eT2 |0121b;ij|z(l;izb;j +
+ Z(a;i,b;j)eTz sz;ija:a;ixb;j. (136)
The last expression is obtained using the fact that
(1= [zasi + @] + Tazizeiy) < (1= |asal)(L = [235]) + 22052035, (137)
(1 = |asi = @osj| — Tazing) < (1 — [@as) (1 — [2655]) + 22450205 (138)

SOCP Infimum: From inequality (134), we see that the infimum provided bygber T relaxation
is given by

Cabiij
Z(L;iET C"«a?iixz;i + Z(a;i,b;j)e'fl ‘ QS,LJ‘ (x(%.,z + xz,j) + Z(a;i7b;j)€7—é egb;ijxa§ixb§j
- Za;iET Caa;ii - Z(a;i,b;j)e'fl |Ca,b;ij|
wz.,- 7'2
= - Za;iET Caa;ii(]- - xz;i) - Z(a;i,b;j)e’]’l |Cab;ij|(]- - ;,L - gJ)

2 . .
+ 2 (i gy eTs FabijTaiiThy

< — Yasier Caaiii(1 = |7aiil)? = X (asipsyeny [Cabiil (1 = [7asil ) (1 = y51)
—2 Za;ieT Caa;iizi;i -2 Z(a;i,b;j)eﬁ |Cabsijl 2asizns;
+ 2 (i pi)eTs 025 TasiTsj- (139)
The last expression is obtained using
1-— x?” > (1 — |wagi])® + 222, (140)
1= %8 h > (1 o) (1 — ) + 22007 (141)
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Figure 3:(a) An example subgrapfi which forms a tree. The weights of the edges and correspond-
ing elements of the vectar are also shown(b) An example subgrap@i which forms an even cycle
where all weights are positive. The elements afe defined using thg+1, —1} assignments of the
vertices.

In order to prove the theorem, we use the following two lemmas

Lemma 5.1: The following inequality holds true for any matr® > 0:

Za;iET Caasii(1 = [Ta])? + Z(a,;i,b;j)e'z’l |Cabsij|(1 = [2al ) (1 — |py;])
> D asipiyets ansisl (1= 12 ) (1 = |2ass1). (142)

In other words, the first term in threHs of inequality (136) exceeds the sum of the first two terms in
therHS of inequality (139).

Proof: The proof relies on the fact th&@ is positive semidefinite. We construct a veciar =
{mq,a = 1,---,n} wheren is the number of variables. Le{a) denote the parent of a non-root
vertexa of treeG (where the root vertex can be chosen arbitrarily). The vettés defined such

that
0 if a does not belong to treg,
_ 1 if aisthe root vertex of7,
Ma = My I w(a,pla)) >0,

Mpay If w(a,p(a)) <0.
Herew(-, -) are the weights provided for a givelRr. Fig. 3(a) shows an example of a graph which
forms a tree together with the corresponding elementa.ofJsing the vectom, we define a vector
s of lengthnh (whereh = |1]) such thats,; = 0if a;i ¢ 7 ands,;; = mq(1 — |x4;|) Otherwise.
SinceC is positive semidefinite, we get

(143)

s'Cs>0 (144)
= Pt Caaii(1 = [2ai))* + 2 (i pjyers MamsCabiij (1 = |Zazs) (1 = |23;5)
+ Z(a;i,b;j)eTz m“mbegb;zj(l = |zai)(1 = |zp;5) > 0, (145)
= Yt Caaii(1 = [20i))* + X (i pjyers MamsCabiij (1 = |Zazs)(1 = |23;5)
2 Z(a;i,b;j)eTz |9(21b;ij|(1 = |Za;i ) (1 — |py5), (146)
= Yaier Caasii(1 = |Taiil)?® + 2 (ai.pjyeny |Cabiig (1 — |Tazs) (1 — [any1)
2 Z(a;i,b;j)eTQ |9§,b;z'j|(1 —|Za;i) (1 = |zo]). N (147)

Lemma 5.2: The following inequality holds true for any matn > 0:
Z Ca,mzii + Z |Cab;ij|za;izb;j > Z |9§b;ij|zﬂr;izb;j' (148)
a;i€T (a;i,b;j)ETH (a;i,b;5)ET2

In other words the second term in tRais of inequality (136) exceeds the sum of the third and fourth
terms in inequality (139).
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Proof: Similar to Lemma 5.1, we construct a vectoof lengthnh such thats,,; = 0if a;i ¢ T
ands,.; = mqzq;; Otherwise. The proof follows by observing thdtCs > 0. |

Using the above two lemmas, we see that the sum of the firstdwost of inequality (136) ex-
ceed the sum of the first four terms of inequality (139). Ferthhe third and the fifth terms of
inequalities (136) and (139) are the same. Since inequa@§) provides the lower limit af’ (x7)
and inequality (139) provides the upper limit@f(xr), it follows thatel (xr) > e5 (xr) for all
xr € [—1,1]/7!. Using condition (123), this proves the theorem. ]

The proofs of Lemmas 5.1 and 5.2 make use of the fact that fonaighbouring random variables
v, anduy, (i.e. (a,b) € &), the pairwise potennal@QM have the same sign for dll, [; € 1. This
follows from the non-negativity property of the d|stance1cft10n However, Theorem 4 can be
extended to the case where the distance function does nptlddaon-negativity property. To this
end, we define a parame®@which satisfies the following condition:

Q(f;D,8) = Q(f;D,8),Vf. (149)

Such a parametét is called the reparameterization®fi.e. 6 = 0). Note that there exist several
reparameterizations of any parameekVe are interested in a paramefiewhich satisfies

Z |9ablj|_| Z 9bzg| Va b €& (150)

Ii,l5€l I3l €l

It can easily be shown that such a reparameterization aledgts. Specifically, consider the general
form of reparameterization described in [15], i.e.

Ons = O, + Myas, (151)

g = 9(211) sig Mb(lﬂ - Mab;j- (152)

Clearly one can set the values of the terfds,,; and M,,;.; such that equation (150) is satisfied.
Further, the optimal value afP-s for the parametef is equal to its optimal value obtained usifig
For details, we refer the reader to [15]. Using this parantgteve obtain an.p-sinfimum which is
similar in form to the inequality (136) for any distance ftina (i.e. without the positivity constraint
d(i,j) > 0foralll;,l; € 1). ThisLp-sinfimum can then be easily compared to $wcr-T infimum

of inequality (139) (using slight extensions of Lemmas S &.2), thereby proving the results of
Theorem 4 for a general distance function. We omit details.

2
abjij —

As an upshot of the above theorem, we see that the feasitaliipn ofLP-s is always a subset of
the feasibility region oSocprT (for any general set of trees asdc constraints), i.eF(LP-S) C
F(SocPrT). This implies thatF(LP-s) C F(QP-T), whereQP-T is the equivalentyp relaxation
defined bysocrT.

We note that the above theorem can also be proved using thiésre§[32] onmoment constraints
(which imply thatLpP-s provides the exact solution for theap estimation problems defined over
tree-structured random fields). However, the proof preskhéere allows us to generalize the results
of Theorem 4 for certain cycles as follows.

5.3 QP and SOCP Relaxations over Cycles

We now prove that the above result also holds true when thghgkaforms aneven cyclei.e.
cycles with even number of vertices, whose weights are alimegative or all non-positive provided
d(i,j) > 0, foralll;,1; € L.

Theorem 5: Whend(i, j) > 0 for all [;,; € 1, thesocprelaxations which define constraints only
using non-overlapping graplts which form (arbitrarily large) even cycles with all posgior all
negative weights are dominated by ttre s relaxation.

Proof: It is sufficient to show that Lemmas 5.1 and 5.2 hold for a gr@pk (V, E) which forms
an even cycle. We first consider the case wm%ggj > 0. Without loss of generality, we assume
thatV = {1,2,...,t} (wheret is even) such that,: + 1) € Eforall: = 1,---,¢ — 1. Further,
(t,1) € E thereby forming an even cycle. We construct a veotaf sizen such thatn, = —1¢ if

a € V andm, = 0 otherwise. Wherf?, . .i; < 0, we define a vectam such thatn, = 1ifa € V
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andm, = 0 otherwise. Fig. 3(b) shows an example of a gr&plvhich forms an even cycle together
with the corresponding elementswaf. Usingm, we construct a vectar of lengthnh (similar to
the proofs of Lemmas 5.1 and 5.2). Lemmas 5.1 and 5.2 follomfihe fact thas " Cs > 0. We
omit details. |

The above theorem can be proved for cycles of any length wiiemgghts are all negative by a similar
construction. Further, it also holds true foatd cyclegi.e. cycles of odd number of variables) which
have only one positive or only one negative weight. Howeasmill be seen in the next section,
unlike trees it is not possible to extend these results fgrgameral cycle.

6 Some Useful SOC Constraints

We now describe twgocPrelaxations which include all the marginalization conistimspecified
in LP-S. Note that the marginalization constraints can be incagat within thesocprframework
but not in thegp framework.

6.1 The SOCP-C Relaxation

Thesockc relaxation (where denotes cycles) defines second order ca@@e) constraints using
positive semidefinite matrice€ such that the graply (defined in§ 5.1) form cycles. Let the
variables corresponding to vertices of one such cgtlef lengthc be denoted as¢ = {w|b €
{a1,a9,---,ac}}. Further, lellc = {{;]j € {i1,42,---,i.}} € 1¢ be a set of labels for the variables
ve. Thesockc relaxation specifies the following constraints:

e The marginalization constraints, i.e.
> Xapij = (2= h)wai, ¥(a,b) € £,1; €1 (153)
ljel

e A set ofsocconstraints
lUTx|| < CeX, (154)

such that the grapty defined by the above constraint forms a cycle. The magris O
everywhere except the following elements:

Ae if k=1,
Caporinsin = { D.(k,1) otherwise. (155)
HereD. is ac x ¢ matrix which is defined as follows:
1 if k-1 =1
D (k1) = (—1)c! if lk—1ll=c—1 (156)
0 otherwise,

and)\. is the absolute value of the smallest eigenvaluBpf

In other words the submatrix & defined byv- andls has diagonal elements equaltoand off-
diagonal elements equal to the element®of As an example we consider two cases whea 3
andc = 4. In these cases the matiX. is given by
01 1 Yy
D3=< 10 1) andD, = 0 1 , (157)
1 1 0 0

respectively, while\s = 1 and)\, = v/2. Clearly,C = U U = 0 since its only non-zero submatrix
Al + D, (wherel is ac x c identity matrix) is positive semidefinite. This allows usdefine a
valid socconstraint as shown in inequality (154). We choose to defiasdcconstraint (154) for
only those set of label: which satisfy the following:

Z Dc(k7l)92kal;iki], 2 Z Dc(k7l)egkal;jkjl’v{jl’jé’ e ’jC}' (158)
(ak,a1)€E (ak,a1)€E
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Note that this choice is motivated by the fact that the vaeslX,, ,,.;,;, corresponding to these
setsvg andle are assigned trivial values by the-s relaxation in the presence of non-submodular
terms (see example below), i.e.

-1 if 62 >0,

Kawosivin = { 1 otherwise. (159)

In order to avoid this trivial solution, we impose teec constraint (154) on them.

Since marginalization constraints are included ingkecr-C relaxation, the value of the objective
function obtained by solving this relaxation would at lebstequal to the value obtained by the
LP-Srelaxation (i.esocrc dominates P-S, see Case Il in section 2). We can further show that in
the case wherd| = 2 and the constraint (154) is defined over a frustrated éystecr-C strictly
dominates P-S. One such example is given below. Note that if the giger contains no frustrated
cycle, then it can be solved exactly using the method desdtiito[9].

1 1 1 1
1 11 : o1 5 I

(a) (b) (c)

Figure 4:An examplecrr defined over three random variables= {v,, vy, v.} shown as unfilled
circles. Each of these variables can take one of two labels fthe sel = {iy,/;} which are
shown as branches (i.e. the horizontal lines) of trellises the vertical lines) on top of the random
variables. The unary potentials are shown next to the cpwading branches. The pairwise poten-
tials are shown next to the edges connecting the branchegafi¢ighbouring variables. Note that
the pairwise potentials defined fo#, b) and (a, ¢) form a submodular Ising model (if@) and (b)
respectively). The pairwise potentials defined(for:) are non-submodular (ic)).

1 -1
0 S = 0 0 >< 0 0 S L Z 0
0 ] o 0 m] 0 0 : 0
(@) (b) ()

Figure 5: An optimal solution provided by ther-s relaxation for thecrRF shown in Fig. 4. This
solution is shown in red to avoid confusing it with the poigstshown in Fig. 4. The value of
variablex,,; is shown next to th&” branch of the trellis on top of,,. In this optimal solution, all
such variables:,;; are equal to 0. The value of the variabl&,;;; is shown next to the connection
joining thei*" and thej*" branch of the trellises on top of, anduv, respectively. Note thaY .55 =
—1 wheng?, ;. > 0 and X,,;; = 1 otherwise. This provides us with the minimum value of the
objective function ofp-s, i.e. 3.

Example: We consider a frustrated cycle and show thatrc strictly dominates P-s. Specifi-
cally, we consider @RFwith v = {v,, v, v.} andl = {ly, 11 }. The neighbourhood of thisrris
defined such that the variables form a cycle of length 3£i.e. {(a, b), (b, ¢), (¢,a)}. We define a

A cycle is called frustrated if it contains an odd number afitsnbmodular terms.
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0B><0.8 0.><0.3 0204
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@ @ -0.3 @ @ 0.4 @

(@) (b) ()

Figure 6:An optimal solution provided by treocrC relaxation for thecrRF shown in Fig. 4. This
optimal solution provides us with the optimal value3df5 which greater than thep-s optimal
value for the solution shown in Fig. 5. Note that the optinmlison of LP-s does not belong to the
feasibility region olSOCP-C as it violates constraint (160). This example proves $@&tpr C strictly
dominates p-s.

frustrated cycle which consists of all 3 variables of thiir using the unary and pairwise potentials
shown in Fig. 4, i.e. the unary potentials are uniform andghiewise potentials define only one
non-submodular term (between the vertiasdc). Clearly, the energy of the optimal labelling for
the above problem i$. The value of the objective function obtained by solvingithes relaxation

is 3 at an optimal solution shown in Fig. 5.

The LP-s optimal solution is no longer feasible when thecrc relaxation is used. Specifically,
the constraint

(xa;O + Th;1 + :1:0;1)2 < 3+ 2()(ab;OI + Xac;Ol + Xbc;ll) (160)

is violated. In fact, the value of the objective functionahtd using theocrC relaxation is3.75.
Fig. 6 shows an optimal solution of tl®cPr-c relaxation for thecRFin Fig. 4. The above example
can be generalized to a frustrated cycle of any length. Tiuggs thatsocrc strictly dominates
theLpP-srelaxation (and hence, tiggP-RL andsOCP-MS relaxations).

The constraint defined in equation (154) is similar to thee@r) cycle inequality constraints [1]
which are given by

> Dok, D) Xagarsiniy > 2 —c. (161)
k,l

We believe that the feasibility region defined by cycle ing@dies is a strict subset of the feasibility
region defined by equation (154). In other words a relaxati&fined by adding cycle inequalities to
LP-swould strictly dominatesocrc. We are not aware of a formal proof for this. We now describe
thesocrQ relaxation.

6.2 The SOCP-Q Relaxation

In this previous section we saw that-s dominatesocPprelaxations whose constraints are defined
on trees. However, theocprC relaxation, which defines its constraints using cyclegtstrdom-
inatesLP-S. This raises the question whether matri€gsvhich result in more complicated graphs
G, would provide an even better relaxation for thep estimation problem. In this section, we
answer this question in an affirmative. To this end, we defme@cprrelaxation which specifies
constraints such that the resulting graghrom a clique. We denote this relaxation BpCFPQ
(whereq indicates cliques).

The socrQ relaxation contains the marginalization constraint areldycle inequalities (defined
above). In addition, it also definesc constraints on graphS which form a clique. We denote
the variables corresponding to the vertices of cligi@svg = {uv|b € {a1,a92,---,a4}}. Let
lo = {l;|j € {i1,42,---,iq}} be a set of labels for these variables. Given this set of variables
v and labeldg, we define arsoc constraint using a matriC of sizenh x nh which is zero
everywhere except for the elemeits, ,,.;,;, = 1. Clearly,C is a rankl matrix with eigenvalud
and eigenvectan which is zero everywhere except, .;, = 1 wherev,, € vg andl;, € lg. This
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(d) (e) ®

Figure 7:An infeasible solution fosocrQ. The value of the variable,; is shown next to the”
branch of the trellis on top of,. The value ofX,,.;; is shown next to the connection between the
i*" and thej*" branches of the trellises on topaf andu, respectively. It can easily be verified that
these variables satisfy all cycle inequalities. Howeveytdo not belong to the feasibility region of
SOCPQ since they violate constraint (166).

implies thatC > 0, which enables us to obtain the followisgC constraint:
2
<Z xakﬂk) < q+ Z Xak,al,;ikil,'
k k,l

We choose to specify the above constraint only for the sedlwlsly which satisfy the following

condition:
2 2 . .
Z eakazﬂkiz > Z eakal;jkjl’v{jlal727"'
(ak,ar)€E (ak,a1)€E
Again, this choice is motivated by the fact that the variabtg, ,.;,;, corresponding to these sets
vg andlg are assigned trivial values by the-s relaxation in the presence of non-submodular
pairwise potentials.

(162)

2 Ja}- (163)

When the clique contains a frustrated cycle, it can be shbatsbcrQ dominates thep-s relax-
ation (similar tosocr-C). Further, using a counter-example, it can proved thatehsibility region
given by cycle inequalities is not a subset of the feasjbikigion defined by constraint (162). One
such example is given below.

Example: We present an example to prove that the feasibility regivargby cycle inequalities is
not a subset of the feasibility region defined by #wec constraint

2
<Z xﬂrk;ik> < Q+ZXakaz;ikila
k Kl

which is used irsocrQ. Note that it would be sufficient to provide a set of variak{lesX) which
satisfy the cycle inequalities but not constraint (164).

(164)

To this end, we consider@rF defined over the random variabtes= {v,, vy, v., v4} which form a
cligue of size 4 with respect to the neighbourhood relatiims, i.e.

& =A{(a,b),(b,¢),(c,d),(a,d),(a,c), (b,d)}. (165)

Each of these variables takes a label from thd set{i,, [, }. Consider the set of variablés, X)
shown in Fig. 7 which do not belong to the feasibility regidns@cr-Q. It can be easily shown
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that these variables satisfy all the cycle inequalitiegégtber with all the constraints of thee-s
relaxation). Howevel(x, X) defined in Fig. 7 does not belong to the feasibility regiorhefsocr
Q relaxation since it does not satisfy the followiagcconstraint:

2
(Zm,,w) <442 > Xapoo | - (166)

Ve EV (a,b)e&

7 Discussion

We presented an analysis of approximate algorithmsifar estimation which are based on convex
relaxations. The surprising result of our work is that desttie flexibility in the form of the objective
function/constraints offered bgp and SocP, the LP-S relaxation dominates a large class @#f
and socpPrelaxations. It appears that the authors who have preyiaisddsocprelaxations in
the Combinatorial Optimization literature [20] and thoskoahave reportecp relaxation in the
Machine Learning literature [22] were unaware of this resie also proposed two negocP
relaxations ¢ocP-c andsocrQ) and presented some examples to prove that they provideex bet
approximation thamP-s. An interesting direction for future research would be teedmine the best
soc constraints for a givemAP estimation problem (e.g. with truncated linear/quadrpéicwise
potentials).

Acknowledgments: We thank Pradeep Ravikumar and John Lafferty for carefulingpof the
manuscript and for pointing out an error in our descriptibthe socr-ms relaxation.
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