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Abstract

The locally linear embedding (LLE) is improved by introducing multiple linearly
independent local weight vectors for each neighborhood. We characterize the
reconstruction weights and show the existence of the linearly independent weight
vectors at each neighborhood. The modified locally linear embedding (MLLE)
proposed in this paper is much stable. It can retrieve the ideal embedding if MLLE
is applied on data points sampled from an isometric manifold. MLLE is also
compared with the local tangent space alignment (LTSA). Numerical examples
are given that show the improvement and efficiency of MLLE.

1 Introduction

The problem of nonlinear dimensionality reduction is to find the meaningful low-dimensional struc-
ture hidden in high dimensional data. Recently, there have been advances in developing effective
and efficient algorithms to perform nonlinear dimension reduction which include isometric mapping
Isomap [7], locally linear embedding (LLE) [5] and its variations, manifold charting [2], Hessian
LLE [1] and local tangent space alignment (LTSA) [9]. All these algorithms cover two common
steps: learn the local geometry around each data point and nonlinearly map the high dimensional
data points into a lower dimensional space using the learned local information [3]. The performances
of these algorithms, however, are different both in learning local information and in constructing
global embedding, though each of them solves an eigenvalue problem eventually. The effectiveness
of the local geometry retrieved determines the efficiency of the methods.

This paper will focus on the reconstruction weights that characterize intrinsic geometric properties
of each neighborhood in LLE [5]. LLE has many applications such as image classification, image
recognition, spectra reconstruction and data visualization because of its simple geometric intuitions,
straightforward implementation, and global optimization [6, 11]. It is however also reported that
LLE may be not stable and may produce distorted embedding if the manifold dimension is larger
than one. One of the curses that make LLE fail is that the local geometry exploited by the reconstruc-
tion weights is not well-determined, since the constrained least squares (LS) problem involved for
determining the local weights may be ill-conditioned. A Tikhonov regularization is generally used
for the ill conditions LS problem. However, a regularized solution may be not a good approximation
to the exact solution if the regularization parameter is not suitably selected.

The purpose of this paper is to improve LLE by making use of multiple local weight vectors. We will
show the existence of linearly independent weight vectors that are approximately optimal. The local
geometric structure determined by multiple weight vectors is much stable and hence can be used to
improve the standard LLE. The modified LLE named as MLLE uses multiple weight vectors for each
point in reconstruction of lower dimensional embedding. It can stably retrieve the ideal isometric
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Figure 1: Examples of ‖w(γ) − w∗‖ (solid line) and ‖w(γ) − u‖ (dotted line) for swiss-roll data.

embedding approximately for an isometric manifold. MLLE has properties similar to LTSA both
in measuring linear dependence of neighborhood and in constructing the (sparse) matrix whose
smallest eigenvectors form the wanted lower dimensional embedding. It exploits the tight relations
between LLE/MLLE and LTSA. Numerical examples given in this paper show the improvement and
efficiency of MLLE.

2 The Local Combination Weights

Let {x1, . . . , xN} be a given data set of N points in Rm. LLE constructs locally linear structures
at each point xi by representing xi using its selected neighbor set Ni = {xj , j ∈ Ji}. The optimal
combination weights are determined by solving the constrained least squares problem

min ‖xi −
∑
j∈Ji

wjixj‖, s.t.
∑
j∈Ji

wji = 1. (2.1)

Once all the reconstruction weights {wji, j ∈ Ji}, i = 1, · · · , N , are computed, LLE maps the set
{x1, . . . , xN} to {t1, . . . , tN} in a lower dimensional space Rd (d < m) that preserves the local
combination properties totally,

min
T=[t1,...,tN ]

∑
i

‖ti −
∑
j∈Ji

wjitj‖2, s.t. TT T = I.

The low dimensional embedding T constructed by LLE tightly depends on the local weights. To
formulate the weight vector wi consisting of the local weights wji, j ∈ Ji, let us denote matrix
Gi = [. . . , xj − xi, . . .]j∈Ji

. Using the constraint
∑

j∈Ji
wji = 1, we can write the combination

error as xi −
∑

j∈Ji
wjixj = Giwi and hence (2.1) reads

min ‖Giw‖, s.t. wT 1ki
= 1,

where 1ki
denotes the ki-dimensional vector of all 1’s. Theoretically, a null vector of Gi that is not

orthogonal to 1ki
can be normalized to be a weight vector as required. Otherwise, a weight vector is

given by wi = yi/1T
ki

yi with yi a solution to the linear system GT
i Giy = 1ki

[6]. Indeed, one can
formulate the solution using the singular value decomposition (SVD) of Gi.

Theorem 2.1 Let G be a given matrix of k column vectors. Denote by y0 the orthogonal projection
of 1k onto the null space of G and y1 = (GT G)+1k.1 Then the vector

w∗ =
y∗

1T
k y∗ , y∗ =

{
y0, y0 �= 0
y1, y0 = 0 (2.2)

is an optimal solution to min1T
k

w=1 ‖Gw‖.

The problem of solving min1T w=1 ‖Gw‖ is not stable if GT G is singular (has zero eigenvalues) or
nearly singular (has relative small eigenvalues). To regularize the problem, it is suggested in [5] to
solve the regularized linear system replaced

(GT G + γ‖G‖2
F I)y = 1k, w = y/1T

k y (2.3)

1(·)+ denotes the Moore-Penrose generalized inverse of a matrix.
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Figure 2: A 2D data set (◦-points) and computed coordinates (dot points) by LLE using different
sets of optimal weight vectors (left two panels) or regularization weight vectors (right panel).

with a small positive γ. Let y(γ) be the unique solution to the regularized linear system. One can
prove that w(γ) = y(γ)/1T

k y(γ) converges to w∗ as γ → 0. However, the convergence behavior of
w(γ) is quite uncertain for small γ > 0. In fact, if y0 �= 0 is small, then w(γ) tends to u = y1

1T y1
at

first and then turns to the limit value w∗ = y0
1T y0

eventually. Note that u and w∗ are orthogonal each
other. In Figure 1, we plot three examples of the error curves ‖w(γ)−w∗‖ (solid line) and ‖w(γ)−u‖
(dotted line) with different values of ‖y0‖ for the swiss-roll data. The left two panels show the
metaphase phenomenon clearly, where ‖y0‖ ≈ 0. Therefore, w∗ can not be well approximated by
w(γ) if γ is not small enough. This partially explains the instability of LLE.

Other factor that results in the instability of LLE is that the learned linear structure by using single
weight vector at each point is brittle. LLE may give a wrong embedding even if all weight vector is
well approximated in a high accuracy. It is imaginable if Gi is rank reducible since multiple optimal
weight vectors exist in that case. Figure 2 shows a small example of N = 20 two-dimensional points
for which LLE fails even if exact optimal weight vectors are used. We plot three sets of computed 2D
embeddings T (j) (within an optimal affine transformation to the ideal X) by LLE with k = 4 using
two sets of exact optimal weight vectors and one set of weight vectors that solve the regularized
equations, respectively. The errors ‖X − Y (j)‖ = minc,L ‖X − (c1T + LT (j))‖ between the ideal
set X and the computed sets within optimal affine transformation are large in the example.

The uncertainty of w(γ) with small γ occurs because of existence of small singular values of G.
Fortunately, it also implies the existence of multiple almost optimal weight vectors simultaneously.
Indeed, if G has s ≤ k small singular values, then there are s approximately optimal weight vectors
that are linear independent on each others. The following theorem characterizes construction of the
approximately optimal weight vectors w(�) using the matrix V of left singular vectors correspond-
ing to the s smallest singular values and bounds the combination errors ‖Gw(�)‖ in terms of the
minimum of ‖Gw‖ and the largest one of the s smallest singular values.

Theorem 2.2 Let G ∈ Rm×k and σ1(G) ≥ . . . ≥ σk(G) be the singular values of G. Denote

w(�) = (1 − α)w∗ + V H(:, �), � = 1, · · · , s,
where V is the eigenvector matrix of G corresponding to the s smallest right singular values, α =
1√
s
‖V T 1k‖, and H is a Householder matrix that satisfies HV T 1k = α1s.Then

‖Gw(�)‖ ≤ ‖Gw∗‖ + σk−s+1(G). (2.4)

The Householder matrix is symmetric and orthogonal. It is given by H = I − 2hhT with vector
h ∈ Rs defined as follows. Let h0 = α1s − V T 1k. If h0 = 0, then h = 0. Otherwise, h = h0

‖h0‖ .

Note that ‖w∗‖ can be very large when G is approximately singular. In that case, (1 − α)w∗ domi-
nates w(�) and hence w(1), . . . , w(s) are almost same and numerically linear dependent each others.
Equivalently, W = [w(1), . . . , w(s)] has large condition number cond(W ) = σmax(W )

σmin(W ) . For numer-
ical stability, we replace w∗ by a regularized weight vector w(γ) like in LLE. This modification
is quite practical in application and, more importantly, it can reinforce the numerically linear inde-
pendence of {w(�)}. In our experiment, the construction of the {w(�)} is stable with respect to the
choice of γ. We show an estimation of the condition number cond(W ) for the modified W below.



Theorem 2.3 Let W = (1 − α)w(γ)1T
s + V H . Then cond(W ) ≤ (1 +

√
k(1 − α)‖w(γ)‖)2.

3 MLLE: Modified locally linear embedding

It is justifiable to learn the local structure by multiple optimal weight vectors at each point, rather
than a single one. Though the exact optimal weight vector may be unique, multiple approximately
optimal weight vectors exist by Theorem 2.2. We will use these weight vectors to determine an
improved and more stable embedding. Below we show the details of the modified locally linear
embedding using multiple local weight vectors.

Consider the neighbor set of xi with ki neighbors. Assume that the first ri singular values of Gi are
large compared with the remaining si = ki − ri singular values. (We will discuss how to choose it
later.) Let w

(1)
i , . . . , w

(si)
i be si ≤ k linearly independent weight vectors,

w
(�)
i = (1 − αi)wi(γ) + ViHi(:, �), � = 1, · · · , si.

Here wi(γ) is the regularized solution defined in (2.2) with G = Gi, Vi is the matrix of Gi cor-
responding to the si smallest right singular values, αi = 1√

si
‖vi‖ with vi = V T

i 1ki
, and Hi is a

Householder matrix that satisfies HiV
T
i 1ki

= αi1si
.

We look for a d-dimensional embedding {t1, . . . , tN}, that minimizes the embedding cost function

E(T ) =
N∑

i=1

si∑
�=1

‖ti −
∑
j∈Ji

w
(�)
ji tj‖2 (3.5)

with the constraint TTT = I . Denote by Wi = (1 − αi)wi(γ)1T
si

+ ViHi the local weight matrix
and let Ŵi ∈ RN×si be the embedded matrix of Wi into the N -dimensional space such that

Ŵi(Ji, :) = Wi, Ŵ (i, :) = −1T
si

, Ŵ (j, :) = 0, j /∈ Ii = Ji ∪ {i}.
The cost function (3.5) can be rewritten as

E(T ) =
∑

i

‖TŴi‖2
F = Tr(T

∑
i

ŴiŴ
T
i TT ) = Tr(TΦTT ), (3.6)

where Φ =
∑

i ŴiŴ
T
i . The minimizer of E(T ) is given by the matrix T = [u2, . . . , ud+1]T of the

d eigenvectors of Φ corresponding to the 2nd to d + 1st smallest eigenvalues.

3.1 Determination of number si of approximation optimal weight vectors

Obviously, si should be selected such that σki−si+1(Gi) is relatively small. In general, if the
data points are sampled from a d-dimensional manifold and the neighbor set is well selected, then
σd(Gi) � σd+1(Gi). So si can be any integer satisfying si ≤ ki − d, and si = ki − d is the
best choice. However because of noise and that the neighborhood is possibly not well selected,
σd+1(Gi) may be not relatively small. It makes sense to choose si as large as possible if the ratio
λ

(i)
ki−si+1+···+λ

(i)
ki

λ
(i)
1 +···+λ

(i)
ki−si

is small, where λ
(i)
j = σ2

j (Gi) are the eigenvalues of GT
i Gi. There is a trade

between the number of weight vectors and the approximation to ‖Giw
∗
i ‖. We suggest

si = max
�

{
� ≤ ki − d,

∑ki

j=ki−�+1 λ
(i)
j∑ki−�

j=1 λ
(i)
j

< η

}
, (3.7)

for a given η < 1 that is a threshold error. Here d can be over estimated to be d′ > d.

Obviously, si depends on the parameter η monotonically. The smaller η is, the smaller si is, and
of course, the smaller the combination errors for the weight vectors used are. We use an adaptive
strategy to set η as follows. Let ρi =

∑ki

j=d+1 λ
(i)
j /

∑d
j=1 λ

(i)
j , i = 1, . . . , N , and reorder {ρi}

as ρπ1 ≤ . . . ≤ ρπN
. Then we set η to be the middle term of {ρi}, η = ρπ�N/2� , where �N/2 is

the nearest integer of N/2 towards infinity. In general, if the manifold near xi is float or has small



curvatures and the neighbors are well selected, ρi is smaller than η and si = k − d. For those
neighbor sets with large local curvatures, ρi > η and si < ki − d. So less number of weight vectors
are used in constructing the local linear structures and the combination errors decrease.

We summarize the Modified Locally linear Embedding (MLLE) algorithm as follows.

Algorithm MLLE (Modified Locally linear Embedding).

1. For each i = 1, · · · , N ,

1.1 Determine a neighbor set Ni = {xj , j ∈ Ji} of xi, i /∈ Ji.
1.2 Compute the regularized solution wi(γ) by (2.3) with a small γ > 0.

1.3 Compute the eigenvalues λ
(i)
1 , . . . , λ

(i)
ki

and eigenvectors v
(i)
1 , . . . , v

(i)
ki

of GT
i Gi. Set

ρi =
∑ki

j=d+1 λ
(i)
j /

∑d
j=1 λ

(i)
j .

2. Sort {ρi} to be {ρπi
} in increasing order and set η = ρπ�N/2� .

3. For each i = 1, · · · , N ,

3.1 Set si by (3.7) and set Vi = [v(i)
ki−si+1, . . . , v

(i)
ki

], αi = ‖1T
ki

Vi‖.

3.2 Construct Φ by using Wi = wi(γ)1T
si

+ Vi.

4. Compute the d + 1 smallest eigenvectors of Φ and pick up the eigenvector matrix corre-
sponding to the 2nd to d + 1st smallest eigenvalues, and set T = [u2, . . . , ud+1]T .

The computational cost of MLLE is almost the same as that of LLE. The additional flops of MLLE
for computing the eigendecomposition of GT

i Gi is O(k3
i ) and totally O(k3N) with k = maxi ki.

Note that the most computationally expensive steps in both LLE and MLLE are the neighborhood
selection and the computation of the d + 1 eigenvectors of the alignment matrix Φ corresponding to
small eigenvalues. They cost O(mN2) and O(dN2), respectively. Because k � N , the additional
cost of MLLE is ignorable.

4 An analysis of MLLE for isometric manifolds

Consider the application of MLLE on an isometric manifold M = f(Ω) with open set Ω ⊂ Rd and
smooth function f . Assume that {xi} are sampled from M, xi = f(τi), i = 1, . . . , N . We have

‖xi −
∑
j∈Ji

wjixj‖ = ‖τi −
∑
j∈Ji

wjiτj‖ + O(ε2
i ), (4.8)

due to the isometry of f . If ki > d, then the optimal reconstruction error of τi should be zero.
So we have that ‖xi −

∑
j∈Ji

w∗
jixj‖ = O(ε2

i ). For the approximately optimal weight vectors

w
(�)
i , we have ‖xi −

∑
j∈Ji

w
(�)
ji xj‖ ≈ σki−si+1(Gi) + O(ε2

i ). Inversely, if follows from (4.8) that

‖τi −
∑

j∈Ji
w

(�)
ji τj‖ ≈ σki−si+1(Gi) + O(ε2

i ). Therefore, denoting T ∗ = [τ1, . . . , τN ], we have

E(T ∗) =
N∑

i=1

si∑
�=1

‖
∑
j∈Ji

w
(�)
ji τj − τi‖2 ≤

N∑
i=1

siσ
2
ki−si+1(Gi) + O(max

i
ε2
i ).

For the orthogonalized U of T ∗, i.e., T ∗ = LU and UUT = I , since L = T ∗UT ∈ Rd×d, we have
that σd(L) = σd(T ∗) and E(U) ≤ E(T ∗)/σ2

d(T ∗). Note that σ2
ki−si+1(Gi) is very small generally.

So E(U) is always small and approximately achieves the minimum. Roughly speaking, MLLE can
retrieve the isometric embedding.

5 Comparison to LTSA

MLLE has similar properties similar to those of LTSA. In this section, we compare MLLE and
LTSA in the linear dependence of neighbors and alignment matrices. For simplicity, we assume that
ri = d, i.e., ki − d weight vectors are used in MLLE for each neighbor set.



5.1 Linear dependence of neighbors.

The total combination error

εMLLE(Ni) =
ki−d∑
�=1

‖
∑
j∈Ji

w
(�)
ji xj − xi‖2 = ‖GiWi‖2

F

of xi can be a measure of the linear dependence of the neighborhood Ni. To compare it with the
measure of linear dependence defined by LTSA, we denote by x̄i = 1

|Ii|
∑

j∈Ii
xj the mean of

members in the whole neighbors of xi including xi itself, and X̄i = [. . . , xj − x̄i, . . .]j∈Ii
. It can

be verified that GiWi = X̄iW̃i with W̃i = Ŵi(Ii, :). So εMLLE(Ni) = ‖X̄iW̃i‖2
F .

In LTSA, the linear dependence of Ni is measured by the total errors

εLTSA(Ni) =
∑
j∈Ii

‖xj − x̄i − Qiθ
(i)
j ‖2 = ‖X̄i − QiΘi‖2

F = ‖X̄iṼi‖2
F ,

where Ṽi is the matrix consists of the right singular vectors of X̄i corresponding to ki − d smallest
singular values. The MLLE-measure εMLLE and the LTSA-measure εLTSA of neighborhood linear
dependence are similar,

εMLLE(Ni) = ‖X̄iW̃i‖2
F , ‖X̄iw̃

(�)
i ‖ ≈ min, � ≤ ki − d,

εLTSA(Ni) = ‖X̄iṼi‖2
F = min

ZT Z=I
‖X̄iZ‖2

F .

5.2 Alignment matrices.

Both MLLE and LTSA minimize a trace function of an alignment matrix Φ to obtain an embedding,
minTT T =I trace(TΦTT ). The alignment matrix can be written in the same form

Φ =
N∑

i=1

SiΦiS
T
i ,

where Si is a selection matrix consisting of the columns j ∈ Ii of the large identity matrix of order
N . In LTSA, the local matrix Φi is given by the orthogonal projection, i.e. ΦLTSA

i = ṼiṼ
T
i , see

[10]. For MLLE, ΦMLLE
i = W̃iW̃

T
i . It is interesting that the range space of W̃i span(W̃i) and the

range space span(Ṽi) of Ṽi are tightly close each other if the reconstruction error of xi is small. The
following theorem gives an upper bound of the closeness using the distance dist(W̃i, Ṽi) between
span(W̃i) and span(Ṽi) that denotes the largest angle between the two subspaces. (See [4] for
discussion about distance of subspaces.)

Theorem 5.1 Let Gi = [· · · , xj − xi, · · ·]j∈Ji
. Then dist(W̃i, Ṽi) ≤ ‖GiWi‖

σd(W̃i)σd(X̄i)
.

6 Experimental Results.

In this section, we present several numerical examples to illustrate the performance of MLLE algo-
rithm. The test data sets include simulated date sets and real world examples.

First, we compare Isomap, LLE, LTSA, and MLLE on the Swiss roll with a hole. The data points
generated from a rectangle with a missing rectangle strip punched out of the center and then the
resulting Swiss roll is not convex. We run these four algorithms with k = 10. In the top middle of
Figure 3, we plot the computed coordinates by Isomap, and there is a dilation of the missing region
and a warp on the rest of the embedding. As seen in the top right of Figure 3, there is a strong
distortion on the computed coordinates by LLE. As we have shown in the bottom of Figure 3, LTSA
and MLLE perform well.

We now compare MLLE and LTSA for a 2D manifold with 3 peaks embedded in 3D space. We
generate N = 1225 3D-points xi = [ti, si, h(ti, si)]T , where ti and si are uniformly distributed in
the interval [−1.5, 1.5] and h(t, s) is defined by

h(t, s) = e−10
(
(t−0.5)2+(s−0.5)2

)
− e−10

(
t2+(s+1)2

)
− e−10

(
(1+t)2+s2

)
.
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See the left of Figure 4 for the data points and the generating parameters. It is easy to show that the
manifold parameterized by f(t, s) = [t, s, h(t, s)]T is approximately isometric since the Jacobian
Jf (t, s) is orthonormal approximately. In the right of Figure 4, we plot the computed coordinates
by LTSA and MLLE with k = 12. The deformations of the computed coordinates by LTSA near
the peaks are prominent because the curvature of the 3-peak manifold varies very much. This bias
can be reduced by the modified curvature model of LTSA proposed in [8]. MLLE can recover the
generating parameter perfectly up to an affine transformation.

Next, we consider a data set containing N = 4400 handwritten digits (’2’-’5’) with 1100 examples
of each class. The gray scale images of handwritten numerals are at 16×16 resolution and converted
m = 256 dimensional vectors2. The data points are mapped into a 2-dimensional space using LLE
and MLLE respectively. These experiments are shown in Figure 5. It is clear that MLLE performs
much better than LLE. Most of the digit classes (digits ’2’-’5’ are marked by ’◦’, ’�’, ’�’ and ’�’
respectively) are well clustered in the resulting embedding of MLLE.

Finally, we consider application of MLLE and LLE on the real data set of 698 face images with
variations of two pose parameters (left-right and up-down) and one lighting parameter. The image
size is 64-by-64 pixel, and each image is converted to an m = 4096 dimensional vector. We apply
MLLE with k = 14 and d = 3 on the data set. The first two coordinates of MLLE are plotted in
the middle of Figure 6. We also extract four paths along the boundaries of the set of the first two
coordinates, and display the corresponding images along each path. These components appear to
capture well the pose and lighting variations in a continuous way.
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