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Abstract

In previous studies, quadratic modelling of natural images has resulted in cell
models that react strongly to edges and bars. Here we apply quadratic Indepen-
dent Component Analysis to natural image patches, and show that up to a small
approximation error, the estimated components are computing conjunctions of
two linear features. These conjunctive features appear to represent not only edges
and bars, but also inherently two-dimensional stimuli, such as corners. In addi-
tion, we show that for many of the components, the underlying linear features
have essentially V1 simple cell receptive field characteristics. Our results indicate
that the development of the V2 cells preferring angles and corners may be partly
explainable by the principle of unsupervised sparse coding of natural images.

1 Introduction

Sparse coding of natural images has led to models that resemble the receptive fields in the primate
primary visual cortex area V1 (see e.g. [1, 2, 3]). An ongoing research effort is in trying to under-
stand and model the computational principles in visual areas following V1, commonly thought to
provide representations for more complicated stimuli. For example, it has recently been shown that
in the Macaque monkey, the V2 area following V1 contains neurons responding favourably to angles
and corners, but not necessarily to their constituent edges if presented alone [4, 5]. This behaviour
can not be easily attained with linear models [6].

In this paper we estimate quadratic models for natural images using Independent Component Anal-
ysis (ICA). The used quadratic functions are a natural extension to linear functions (i.e. lT x), and
give the value of a single feature or component as

s = xT Hx + lT x, (1)

where the matrix H specifies weights for second-order interactions between the input variables in
stimulus x. This class of functions is equivalent to second-order polynomials of the input, and
can compute linear combinations of squared responses of linear models (see e.g. [7]). Another well-
known interpretation of components in a quadratic model is as outputs of two-layer neural networks,
which is based on an eigenvalue decomposition and will be discussed below.

Estimating a quadratic model for natural images with ICA, we report here the emergence of receptive
field models that respond strongly only if the stimulus contains two features that are in a correct
spatial arrangement. With a heavy dimensionality reduction, the conjuncted features are mostly
collinear (i.e. prefer edges or bars), but with a smaller reduction, additional components emerge
that appear to prefer more complex stimuli such as angles or corners. We show that in both cases,



the emerging components approximately operate by computing products between the outputs of two
linear submodels that have V1 simple cell characteristics.

The rest of this paper is organized as follows. In section 2 we describe the quadratic ICA in detail.
Section 3 outlines the dataset and the preprocessing we used, and section 4 describes the results.
Finally, section 5 concludes with discussion and future work.

2 Quadratic ICA

Let x ∈ Rn be a vectorized grayscale input image patch. A basic form of linear ICA assumes that
each data point is generated as

x = As, (2)

where A is a linear mixing matrix and s the vector of unknown source signals or independent
components. The dimension of s is assumed to be equal to the dimension of x, possibly after
the x have been reduced by PCA to a smaller dimension. ICA estimation tries to recover s and
the parameter matrix W = A−1. If the independent components are sparse, this is equivalent to
performing sparse coding (for an account of ICA, see e.g. [8]).

It has been proposed that ICA for quadratic models can be performed by first making a quadratic
basis expansion on each x and then applying standard linear ICA [9]. Let the new data vectors
z ∈ Rn(n+1)/2+n in quadratic space be

z = Φ([x1, x2, ..., xn]) = [x2
1, x1x2, ..., x

2
2, x2x3, ..., x

2
n, x1, x2, ..., xn], (3)

that is, Φ(x) generates all the monomials for a second-order polynomial of x, except for the constant
term. Such a dimension expansion is also implicit in kernel methods, where a second-order polyno-
mial kernel would be used instead of Φ. Here we work with the more traditional input transformation
for simplicity.

From now on, assume that ICA has been performed on the transformed data z. Then the columns
wi of WT make up the quadratic components (cell models, polynomial filters) of the model. As the
coefficients in wi are weights for a second-order polynomial, it is straightforward to decompose the
response si of each quadratic component to x as

si = wT
i z = xT Hix + lTi x, (4)

where Hi is a symmetric square matrix corresponding to the weights given to all the cross-terms
and li weights the first- order monomials. It is well known that the Hi can be represented in another
form by eigenvalue decomposition, leading to the expression

si =
n∑

j=1

αj(vT
j x)2 + lTi x, (5)

where αj are the decreasingly sorted eigenvalues of Hi and vj the corresponding eigenvectors. In
some cases the representation of eq. 5 can help to understand the model, since the individual eigen-
vectors can be interpreted as linear receptive fields. A quadratic function in this form is illustrated
on the left in figure 1.

However, for our model estimated with quadratic ICA, many of the eigenvectors vj did not resemble
V1 simple cell receptive fields. Here we propose another decomposition which leads to a simple
network computation based on linear receptive fields similar to those of V1 simple cells. Assume
that the two eigenvalues of Hi which are largest in absolute value have opposite signs; we will refer
to these as the dominant eigenvalues and denote them by α1 and αn. This assumption will turn out
to hold empirically for our estimated models. Now, including just the two corresponding dominant
eigenvectors and ignoring the linear term, we denote

v+ = (
√
|α1|v1 +

√
|αn|vn), v− = (

√
|α1|v1 −

√
|αn|vn), (6)
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Figure 1: Quadratic components as networks. Using the eigenvalue decomposition, quadratic forms
can be interpreted as networks. Left, the computation of a single component w, where the vi are the
eigenvectors and the αi the eigenvalues of the matrix H. Right, its product approximation, which is
possible if the variance is concentrated on just two eigenvectors with eigenvalues of opposite signs.
This turns out to be the case for natural images.

and by using simple arithmetic we obtain a product approximation for eq. 5 as

ŝi = α1(vT
1 x)2 + αn(vT

nx)2 = (vT
+x)(vT

−x). (7)

This approximation is shown as a network on the right in figure 1, and will be justified later by
its relatively small empirical error for our models. Providing that the approximation is good, the
intuition is that the component is essentially computing the product of the responses of two linear
filters, analogous to a logical AND operation, or a conjunction. We will empirically show that the
vectors v+ and v− have resemblance to V1 simple cell receptive fields for our model even if the
respective two dominant eigenvectors have more complicated shapes.

3 Materials and methods

In our experiments we used the natural image dataset provided by van Hateren and van der Schaaf
[2]. This dataset contains over 4000 grayscale images representing natural scenes, each image hav-
ing a resolution of 1024×1536. The intensity distribution over this image set has a very long right tail
related to variation in the overall image contrast and intensity [2, 10]. In addition, it is known that the
high frequencies in natural images contain sampling artifacts due to rectangular sampling, and that
the spectral characteristics are not uniform across frequencies, causing difficulties for gradient-based
estimation methods [1]. To alleviate these problems for ICA, we adopt a two-phase preprocessing
for the raw images, following [1, 2]. This processing can be considered a very simple model of the
physiological pathway containing the retina and the lateral geniculate nucleus (LGN).

First, we address the problem of heavy contrast variation and the long-tailed intensity distribution
by taking a natural logarithm of the input images, effectively compressing their dynamic range. This
preprocessing is similar to what happens in the first stages of natural visual systems, and has been
previously suggested for the current dataset [2]. Next, to correct for the spectral imbalances in the
data, we use the whitening filter proposed by Olshausen and Field [1]. This whitening filter cuts the
highest frequencies, and balances the frequency distribution otherwise by dampening the dominant
low frequencies. We use the filter with the same parameters as in [1]. The whitening filter has band-
pass characteristics and hence resembles the center-surround behaviour of LGN cells. In practice,
the filtering approximately decorrelates the data.

After preprocessing each image as a whole, we sampled 300, 000 small image patches from the
images, each patch having a resolution of 9×9. Then we subtracted the local DC-component (mean
intensity) from each patch. These patches then formed the data we used to estimate the quadratic
ICA model. The model fitting was done by transforming the data to the quadratic space using eq.
3, followed by linear ICA. For ICA, we used the FastICA algorithm [11] with tanh nonlinearity
and symmetric estimation of the components. The input dimension in the quadratic space was



Figure 2: The quadratic ICA components when the model size is very small (81 components).
Each quadruple displays the two dominant eigenvectors v1 and vn (top row), and the corresponding
vectors v+ and v− (bottom row). Light and dark areas correspond to positive and negative weights,
respectively. The components have been sorted by collinearity of the conjuncted features.

81 ∗ (81 + 1)/2 + 81 = 3402. We used PCA to drop the dimension by selecting the 400 most
dominant principal axes, covering approximately 50% of the summed eigenvalues. This resulted in
estimation of 400 independent components (or second-order polynomial filters). We also performed
additional experiments with 81 and 1024 dominant principal axes, corresponding to 18% and 80%
coverage. Due to space constraints, we are unable to discuss the 1024 component model, other than
to briefly mention that it conformed to the main results presented in this paper.

To ensure replicable research, the source codes performing the experiments described in this paper
have been made publicly available1.

4 Results

In general, interpreting quadratic models can be difficult, and several strategies have been proposed
in the literature (see e.g. [12]). However, in the current work the estimated components turned out to
be fairly simple (up to a small approximation error, as shown later), and as discussed in section 2, it
will be illustrative to display the estimated components in terms of their two dominant eigenvectors
v1 and vn of H, and the respective vectors v+ and v− (see eq. 6). Since either pair of the two
vectors can be used to compute the approximate component response to any stimuli using eq. 7, the
analysis of the components can be based on the vectors v+ and v− if preferred.

Figure 2 shows the quadratic ICA components when a small model was estimated with only 81
components. If we ignore the linear term as in eq. 7, the dominant eigenvectors shown at the top
row of each quadruple are equal to the two unit-norm stimuli that the component reacts most highly
to (e.g. [12]). Note that the reaction to the eigenvector vn (top right) will be highly negative. On the

1http://www.cs.helsinki.fi/u/jtlindgr/stuff/



Figure 3: Quadratic ICA components picked from 10 bootstrap iterations with 400 components
estimated on each run. All 4000 components were ordered by collinearity of the conjuncted features,
and a small sample of each tail is shown. The presentation is the same as in Figure 2. Top, some
components that prefer conjunctions of two collinear features. Bottom, components that conjunct
two highly orthogonal features. The latter components become more apparent if the model size is
large. Clear Gabor-like V1 characteristics can be seen in both cases in the vectors v+ and v−, even
if the corresponding eigenvectors are more complex.

other hand, both vectors v+ and v− must respond to a stimuli with a non-zero value if the component
is to respond strongly. In the case of this small model size, many of the conjuncted features v+ and
v− are collinear, and respond strongly to edge- or bar-like stimuli. The feature conjunctions that
are not collinear remain more unstructured and appear to react highly to blob-like stimuli. However,
both component types are quite different from ordinary linear detectors for edges, bars and blobs,
since their conjunctive nature makes them much more selective.

In the following, we will limit the discussion to larger models consisting of 400 components (unless
mentioned otherwise). With the higher dimensionality allowed, the diversity of the emerging com-
ponents increased. Figure 3 shows quadratic ICA components picked from 10 experiments repeated
with different subsets of the input patches and different random seeds. Now, in addition to collinear
conjunctions (on the top in the image), we also get components that conjunct more orthogonal stim-
uli (on the bottom). The latter components appear to respond favourably to intuitive visual concepts
such as angles and corners. In this case, the benefits of the decomposition to vectors v+ and v−
becomes more apparent, as many of the receptive field models retain their resemblance to Gabor-like
filters (as in e.g. [1, 2, 8]) even if the corresponding eigenvectors become more complicated.

Next we will validate the above characterization by showing that the approximation of eq. 7 holds
up to a generally small error.

First, it turns out that the eigenvalue distributions decay fast for the quadratic forms Hi of the
estimated components. This is illustrated on the left in figure 4, which shows the mean sorted
eigenvalues for the 400 components (for a model of 81 components, the figure was similar). Since
all the eigenvectors have equal norms, the eigenvalues imply the magnitude of the contribution of
its respective eigenvector to the component output value. Due to the fast decay of the eigenvalues,
the two dominant eigenvectors are largely responsible for the component output, providing that the
linear term l is insignificant (for some discussion on the linear term in quadratic models, see [12]).



Figure 4: The conjunctive nature of the components is due to the eigenvalues of the quadratic forms
Hi typically emerging as heavily dominated by just two eigenvectors with opposite-sign eigenval-
ues. This conjunctiveness is further confirmed by the relatively small approximation error caused
by ignoring the non-dominant eigenvectors and the linear term. Left, sorted eigenvalues of Hi av-
eraged over all 400 components for both quadratic ICA and quadratic PCA. It can be seen that the
ICA-based eigenvalue distributions tend to decay faster. Right, the relative mean square error of the
product approximation for the 400 quadratic ICA components. The components have been sorted
by the error of approximation when Gabor functions have been used to model v+ and v−.

Here the quadratic part tended to dominate the component responses, which may be because the
(co)variances were much larger for the quadratic dimensions of the space than for the linear ones.

The above reasoning is supported by analysis of the prediction error of the product approximation.
We examined this by sampling 100, 000 new image patches (not used in the training), and computing
the mean square error of the approximation divided by the variance of the component response, i.e.
err(ŝ) = E[(s−ŝ)2]/V ar(s). This error is shown on the right in figure 4 for all the 400 components.
On average, this relative error was 12% of the respective component variance, ranging from 2% to
57%. Hence, the product approximation appears to capture the behaviour of the components rather
well. The plot also shows the effect of approximating the vectors v+ and v− with Gabor functions,
which are commonly used to model V1 receptive fields. Using Gabor functions, the approximation
error increased, ranging from 8% to 93%, with mean of 34%.

To better understand the obtained error rates, we also fitted linear models to approximate the es-
timated quadratic cells using least-squares regression. This revealed the quadratic components to
have highly nonlinear behaviour. For all components, the error of the linear approximator was over
90%, coming close to the baseline 100% error attained if the empirical mean is used as a (constant)
predictor.

Since the product approximation only covers the two dominant eigenvectors, it is possible that the
rest of the eigenvectors might code for interesting phenomena through further excitatory and in-
hibitory effects. However, the quick decay of the eigenvalues in our estimated model should make
any such effects rather minor. Following the ideas and methods of [12], we explored the possibility
that the nondominant eigenvectors coded for invariances of the component. The only strong invari-
ance we found was insensitivity to (possibly local) input sign changes, which is at least partly a
structural property of the model, originating from taking squares in eq. 5. In particular, we observed
no shift-invariance, consistent with some recent findings in the V2 area of the Macaque monkey [5].
We leave more in-depth exploration of the role of the nondominant eigenvectors as future work.

Finally, we performed some experiments to examine to what extent the method of quadratic ICA
on the one hand, and the natural image input data on the other, are responsible for the reported
results. For example, it could be argued that the quadratic ICA components might be very similar
to the quadratic PCA components. Figure 5 illustrates that this is not trivially so by showing 16
PCA components with large eigenvalues. It can be seen that the PCA components quickly lose
resemblance to Gabor-like filters as the eigenvalues decrease. Also, the conjunctive nature of the
estimated features is not as clear for the PCA-based components. This is shown on the left in



Figure 5: Left, the two top rows show the vectors v+ and v− for the first 8 quadratic PCA com-
ponents. The two bottom rows display the PCA components 41 − 48. It can be seen that the PCA
components quickly lose any resemblance to Gabor-like receptive fields of V1 simple cells. Right,
some typical quadratic ICA components in terms of the vectors v+ and v− when the model was
estimated on white noise. The circular shapes are likely artifacts due to the whitening filter.

figure 4, demonstrating that on the average, the eigenvalues of the quadratic forms decay slower for
the PCA components. If the whole set of PCA components is studied (not shown), it can be seen
that the components appear to change from low-pass filters to high-pass filters as the eigenvalues
decrease. Comparing figure 5 to figure 3, both outputs seem characteristic to the method applied,
the differences resembling those observed when linear ICA and linear PCA are used to code natural
image data.

To verify that the emerging component structures are not artifacts of the modelling methodology,
we generated a dataset of artificial images of white noise, having the luminance distribution of the
original dataset, but with no spatial or spectral structure. By repeating the model estimation (includ-
ing preprocessing) on this new dataset, the resulting components did not respond favourably to the
same stimuli as before, and they were no longer clearly conjunctive: the eigenvalue distributions
decayed fast, but tended to have only one dominant eigenvector. Based on these vectors, the com-
ponents could be roughly categorized to two classes. The first class responded to spatial forms of
center-surround filters, possibly caused by the use of the whitening filter. The second class preferred
apparently random configurations of inhibitory and excitatory effects. Some of the components
estimated on random data are displayed on the right in figure 5 in terms of vectors v+ and v−.

5 Discussion

In this paper, we specified a quadratic model for natural images and estimated its parameters with
independent component analysis. We reported the emergence of cell models exhibiting strongly non-
linear behaviour. In particular, we demonstrated that the estimated cells were essentially computing
products between outputs of two linear filters that had V1 simple cell characteristics. Many of these
feature conjunctions preferred two collinear features, and yet others corresponded to combinations
of more orthogonal stimuli, reacting strongly to angles and corners. Our results indicate that sparse
coding of natural images might partially explain the development of angle- or corner-preferring cells
in V2.

There has been some previous work describing quadratic models of natural image data (i.e. [13, 7,
9]). Of these, the ICA-based approaches [13, 9] resemble ours the most. Bartsch and Obermayer
[13] report curvature detecting cells, but the patch size used and the number of components estimated
were very small, making the results inconclusive. Hashimoto [7] sought to replicate complex cell
properties with an algorithm based on Kullback-Leibler divergences, and does not report conjunctive
features or cells with preferences for angles or corners. Instead, most of the estimated quadratic
forms on static image data had only one dominant eigenvector. Our work extends the previous
research by reporting the emergence of conjunctive components that combine responses of V1-like
linear filters.

The differences of our work to the previous research can be due to various reasons. The number of
estimated components (i.e., number of principal components retained) was seen to affect the feature



diversity, and with only 81 components, the conjuncted features were mostly collinear, producing
highly selective edge or bar detectors. Even larger differences to previous work are likely due to
different input preprocessing: it is known that unprocessed image data can cause difficulties to
statistical estimation of linear models [1, 10] and that both the preprocessing and the size of the
used image patches can affect the estimated features [10]. In quadratic modelling, taking products
between the dimensions of the input data can cause additional problems for any methods relying
on non-robust estimation (such as covariance-based PCA) since the quadratic transform has the
strongest boosting effect on outliers and tails of the marginal distributions.

It is worthwhile to note that despite differences to previous work [13, 7, 9], invariances resembling
complex cell behaviour did not emerge with our method either, although the class of quadratic mod-
els contains the classic energy-detector models of complex cells (fitted in e.g. [3]). It could be that
static images and optimization of sparsity alone may not work towards the emergence of invariances,
or equivalently, behaviour resembling logical OR operation, unless the model is further constrained
(for example as in [3]). Optimizing model likelihood can also be preferable to optimizing output
sparseness, but for quadratic ICA it is not clear how to construct a proper probabilistic model.

Finally, an important open question regarding the current work is to what extent the obtained con-
junctive features reflect real structures present in the image data. At the time of writing, we have not
been able to either prove or disprove the possibility that the pairings are an algorithmic artifact in
the following sense: it could be that after the effects of quadratic-space PCA have been accounted
for, the quadratic ICA components are only combinations of two rather randomly selected sparse
components (vT

+x and vT
−x) which are as independent as possible. We are currently investigating

this issue.
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