
Cross-Validation Optimization for Large Scale
Hierarchical Classification Kernel Methods

Matthias W. Seeger
Max Planck Institute for Biological Cybernetics

P.O. Box 2169, 72012 T̈ubingen, Germany
seeger@tuebingen.mpg.de

Abstract

We propose a highly efficient framework for kernel multi-class models with a
large and structured set of classes. Kernel parameters are learned automatically
by maximizing the cross-validation log likelihood, and predictive probabilities are
estimated. We demonstrate our approach on large scale text classification tasks
with hierarchical class structure, achieving state-of-the-art results in an order of
magnitude less time than previous work.

1 Introduction

In many real-world statistical problems, we would like to fit a model with a large number of depen-
dent variables to a training sample with very many cases. For example, in multi-way classification
problems with a structured label space, modern applications demand predictions on thousands of
classes, and very large datasets become available. Ifn andC denote dataset size and number of
classes respectively, nonparametric kernel methods like SVMs or Gaussian processes typically scale
superlinearly innC, if dependencies between the latent class functions are properly represented.
Furthermore, most large scale kernel methods proposed so far refrain from solving the problem of
learning hyperparameters (kernel or loss function parameters). The user has to run cross-validation
schemes, which require frequent human interaction and are not suitable for learning more than a few
hyperparameters.

In this paper, we propose a general framework for learning in probabilistic kernel classification
models. While the basic model is standard, a major feature of our approach is the high computational
efficiency with which the primary fitting (for fixed hyperparameters) is done, allowing us to deal
with hundreds of classes and thousands of datapoints within a few minutes. The primary fitting
scales linearly inC, and depends onn mainly via a fixed number ofmatrix-vector multiplications
(MVM) with n × n kernel matrices. In many situations, these MVM primitives can be computed
very efficiently, as will be demonstrated. Furthermore, we optimize hyperparametersautomatically
by minimizing the cross-validation log likelihood, making use of our primary fitting technology as
inner loop in order to compute the CV criterion and its gradient. Our approach can be used to learn
a large number of hyperparameters and does not need user interaction.

Our framework is generally applicable to structured label spaces, which we demonstrate here for
hierarchical classificationof text documents. The hierarchy is represented through an ANOVA
setup. While theC latent class functions are fully dependenta priori, the scaling of our method
stays within a factor of two compared to unstructured classification. We test our framework on the
same tasks treated in [1], achieving comparable results in at least an order of magnitude less time.
Our method estimates predictive probabilities for each test point, which can allow better predictions
w.r.t. loss functions different from zero-one.

The primary fitting method is given in Section 2, the extension to hierarchical classification in Sec-
tion 3. Hyperparameter learning is discussed in Section 4. Computational details are provided in

Section 5. We present experimental results in Section 6. Our highly efficient implementation is
publicly available, as projectklr in theLHOTSE1 toolbox for adaptive statistical models.

2 Penalized Multiple Logistic Regression

Our problem is to predicty ∈ {1, . . . , C} from x ∈ X , given some i.i.d. dataD = {(xi,yi) | i =
1, . . . , n}. We use zero-one coding,i.e. yi ∈ {0, 1}C , 1

T yi = 1. We elpoy themultiple lo-
gistic regression model, consisting ofC latent (unobserved) class functionsuc feeding into the
multiple logistic (or softmax) likelihoodP (yi,c = 1|xi,ui) = euc(xi)/(

∑

c′ euc′ (xi)). We write
uc = fc + bc for intercept parametersbc ∈ R and functionsfc living in a reproducing ker-
nel Hilbert space (RKHS) with kernelK(c), and consider thepenalized negative log likelihood
Φ = −

∑n
i=1 log P (yi|ui) + (1/2)

∑C
c=1 ‖fc‖

2
c + (1/2)σ−2‖b‖2, which we minimize for primary

fitting. ‖ · ‖c is the RKHS norm for kernelK(c). Details on such setups can be found in [4].

Our notation fornC vectors2 (and matrices) uses the orderingy = (y1,1, y2,1, . . . , yn,1, y1,2, . . .).
We setu = (uc(xi)) ∈ R

nC . ⊗ denotes the Kronecker product,1 is the vector of all ones. Selection
indexesI are applied toi only: yI = (yi,c)i∈I,c ∈ R

|I|C .

Since the likelihood depends on thefc only throughfc(xi), every minimizer ofΦ must be a kernel
expansion:fc =

∑

i αi,cK
(c)(·,xi) (representer theorem, see [4]). Plugging this in, the regularizer

becomes(1/2)αT Kα + (1/2)σ−2‖b‖2. K(c) = (K(c)(xi,xj))i,j ∈ R
n,n, K = diag(K(c))c

is block-diagonal. We refer to this setup asflat classificationmodel. Thebc may be eliminated as
b = σ2(I ⊗ 1

T)α. Thus, ifK̃ = K + σ2(I ⊗ 1)(I ⊗ 1
T), thenΦ becomes

Φ = Φlh +
1

2
αT K̃α, Φlh = −yT u + 1

T l, li = log 1
T exp(ui), u = K̃α. (1)

Φ is strictly convex inα (because the likelihood is log-concave), so it has a unique minimum point
α̂. The corresponding kernel expansions areûc =

∑

i α̂i,c(K
(c)(·,xi) + σ2). Estimates of the

conditional probability on test pointsx∗ are obtained by plugginĝuc(x∗) into the likelihood.

We note that this setup can also be seen as MAP approximation to a Bayesian model, where thefc

are given independent Gaussian process priors,e.g.[7]. It is also related to the multi-class SVM [2],
where− log P (yi|ui) is replaced by the margin loss−uyi

(xi) + maxc{uc(xi) + 1 − δc,yi
}. The

negative log multiple logistic likelihood has similar properties, but is smooth as a function ofu, and
the primary fitting ofα does not require constrained convex optimization.

We minimizeΦ using theNewton-Raphson(NR) algorithm, the details are provided in Section 5.
The complexity of our fitting algorithm is dominated byk1(k2 + 2) matrix-vector multiplications
with K , wherek1 is the number of NR iterations,k2 the number oflinear conjugate gradient(LCG)
steps for computing each Newton direction. Since NR is a second-order convergent method,k1 can
be chosen small.k2 determines the quality of each Newton direction, for both fairly small values
are sufficient (see Section 6.2).

3 Hierarchical Classification

So far we dealt with flat classification, the classes being independenta priori, with block-diagonal
kernel matrixK . However, if the label set has a known structure3, we can benefit from representing
it in the model. Here we focus onhierarchical classification, the label set{1, . . . , C} being the leaf
nodes of a tree. Classes with lower common ancestor should be more closely related. In this Section,
we propose a model for this setup and show how it can be dealt with in our framework with minor
modifications and minor extra cost.

In flat classification, the latent class functionsuc are modelled asa priori independent, in that the
regularizer (which plays the role of a log prior) is a sum of individual terms for eachuc, without any

1Seewww.kyb.tuebingen.mpg.de/bs/people/seeger/lhotse/.
2In Matlab, reshape(y,n,C) would give the matrix(yi,c) ∈ R

n,C .
3Learning an unknown label set structure may be achieved by expectation maximization techniques, but this

is subject to future work.

interaction terms.Analysis of variance(ANOVA) models go beyond this independent design, they
have previously been applied to text classification by [1]. Let{0, . . . , P} be the nodes of the tree,0
being the root, and the numbers are assigned breadth first (1,2, . . . are the root’s children). The tree
is determined byP andnp, p = 0, . . . , P , the number of children of nodep. LetL be the set of leaf
nodes,|L| = C. Assign apair of latent functionsup, ŭp to each node, except the root. Theŭp are
assumeda priori independent, as in flat classification.up is the sum of̆up′ , p′ running over the nodes
(includingp) on the path from the root top. The class functions to be fed into the likelihood are the
uL(c) of the leafs. This setup represents similarities conditioned on the hierarchy. For example, if
leafsL(c), L(c′) have the common parentp, thenuL(c) = up + ŭL(c), uL(c′) = up + ŭL(c′), so
the class functionssharethe effectup. Since regularization forces all independent effectsŭp′ to be
smooth, the classesc, c′ are urged to behave similarlya priori.

Let u = (up(xi))i,p, ŭ = (ŭp(xi))i,p ∈ R
nP . The vectors are related asu = (Φ ⊗ I)ŭ, Φ ∈

{0, 1}P,P . Importantly,Φ has a simple structure which allows MVM withΦ or ΦT to be computed
easily inO(P), without having to compute or storeΦ explicitly. MVM with Φ is described in
Algorithm 1, and MVM withΦ

T works in a similar manner [8].

Under the hierarchical model, the class functionsuL(c) are strongly dependenta priori. We may
represent this prior coupling in our framework by simply plugging in the implied kernel matrixK :

K = (ΦL,· ⊗ I)K̆ (ΦT
L,· ⊗ I), (2)

where the innerK̆ is block-diagonal.K is not sparse and certainly not block-diagonal, but the
important point is that we are still able to do kernel MVMs efficiently: pre- and postmultiplying by
Φ is cheap, and̆K is block-diagonal just as in the flat case.

We note that the step from flat to hierarchical
classification requires minor modifications of
existing code only. If code for representing a
block-diagonalK is available, we can use it
to represent the inner̆K , just replacingC by
P . This simplicity carries through to the hyper-
parameter learning case (see Section 4). The
cost of a kernel MVM is increased by a factor
P/C < 2, which in most hierarchies in prac-
tice is close to1. However, it would be wrong
to claim that hierarchical classification in gen-
eral comes as cheap as flat classification.

Algorithm 1: Matrix-vector multiplication
y = Φx

y ← (). y0 := 0. s := 0.
for p = 0, . . . , P do

if np > 0 (p not a leaf node)then
Let J(p) = {s + 1, . . . , s + np}.
y ← (yT , yp1

T + xT
J(p))

T . s← s + np.
end if

end for

The subtle issue is that the primary fitting becomes more costly, precisely because there is more
coupling between the variables. In the flat case, the Hessian ofΦ is close to block-diagonal. The
LCG algorithm to compute Newton directions converges quickly, because it nearly decomposes into
C independent ones, and fewer NR steps are required (see Section 5). In the hierarchical case,
both LCG and NR need more iterations to attain the same accuracy. In numerical mathematics,
much work has been done to approximately decouple linear systems bypreconditioning. In some
of these strategies, knowledge about the structure of the system matrix (in our case: the hierarchy)
can be used to drive preconditioning. An important point for future research is to find a good
preconditioning strategy for the system of Eq. 5. However, in all our experiments so far the fitting
of the hierarchical model took less than twice the time required for the flat model on the same task.
Some further extensions, such as learning with incomplete label information, are discussed in [8].

4 Hyperparameter Learning

In any model of interest, there will be freehyperparametersh, for example parameters of the ker-
nelsK(c). These were assumed to be fixed in the primary fitting method introduced in Section 2.
In this Section, we describe a scheme for learningh which makes use of the primary fitting algo-
rithm as inner loop. Note that such nested strategies are commonplace in Bayesian Statistics, where
(marginal) inference is typically used as subroutine for parameter learning.

Recall that primary fitting consists of minimizingΦ of Eq. 1 w.r.t.α. If we minimizeΦ w.r.t. h as
well, we run into the problem of overfitting. A common remedy is to minimize the negativecross-

validation log likelihoodΨ instead. Let{Ik} be a partition of{1, . . . , n}, with Jk = {1, . . . , n}\Ik,
and letΦJk

= uT
[Jk]((1/2)α[Jk] − yJk

) + 1
T l[Jk] be the primary criterion on the subsetJk of the

data. Here,u[Jk] = K̃Jk
α[Jk]. Theα[Jk] are independent variables,not part of a commonα. The

CV criterion is

Ψ =
∑

k

ΨIk
, ΨIk

= −yT
Ik

u[Ik] + 1
T l[Ik], u[Ik] = K̃ Ik,Jk

α[Jk], (3)

whereα[Jk] minimizesΦJk
. Since for eachk, we fit and evaluate on disjoint parts ofy , Ψ is

an unbiased estimator of the test negative log likelihood, and minimizingΨ should be robust to
overfitting.

In order to selecth, we pick a fixed partition at random, then do gradient-based minimization ofΨ
w.r.t.h. To this end, we keep the set{α[Jk]} of primary variables, and iterate between re-fitting those
for each foldIk, and computingΨ and∇hΨ. The latter can be determined analytically, requiring
us to solve a linear system with the Hessian matrixI +V T

[Jk]K̃Jk
V [Jk] already encountered during

primary fitting (see Section 5). This means that the same LCG code used to compute Newton
directions there can be applied here in order to compute the gradient ofΨ. The details are given
in Section 5. As for the complexity, suppose there areq folds. The update of theα[Jk] requires
q primary fitting applications, but since they are initialized with the previous valuesα[Jk], they do
converge very rapidly, especially during later outer iterations. ComputingΨ based on theα[Jk]

comes basically for free. The gradient computation decomposes into two parts: accumulation, and
kernel derivative MVMs. The accumulation part requires solvingq systems of size((q − 1)/q)nC,
thusq k3 kernel MVMs on theK̃Jk

if linear conjugate gradients (LCG) is used,k3 being the number
of LCG steps. We also need two buffer matricesE , F of q nC elements each. Note that the
accumulation step isindependentof the number of hyperparameters. The kernel derivative MVM
part consists ofq derivative MVM calls for each independent component ofh, see Section 5.1. As
opposed to the accumulation part, this part consists of a simple large matrix operation and can be
run very efficiently using specialized numerical linear algebra code.

As shown in Section 5, the extension of hyperparameter learning to the hierarchical case of Section 3
is simply done by wrapping the accumulation part, the coding and additional memory effort being
minimal. Given a method for computingΨ and∇hΨ, we plug these into a custom optimizer such
as Quasi-Newton in order to learnh.

5 Computational Details

In this Section, we provide details for the general plan laid out above. It is precisely these which
characterize our framework and allow us to apply a standard model to domains beyond its usual
applications, but of interest to Machine Learning.

Recall Section 2. We minimizeΦ by choosing search directionss, and doing line minimizations
alongα + λs, λ > 0. For the latter, we maintain the pair(α,u), u = K̃α. We have:

∇uΦ = π − y + α, π = exp(u − 1⊗ l), i .e. πi,c = P (yi,c = 1|ui). (4)

Given(α,u), Φ and∇uΦ can be computed inO(nC), without requiring MVMs. This suggests to
perform the line search inu along the directioñs = K̃s, the correspondingα can be constructed
from the finalλ. Since kernel MVMs are significantly more expensive than theseO(nC) operations,
the line searches basically come for free!

We choose search directions byNewton-Raphson(NR)4, since the Hessian ofΦ is required anyway
for hyperparameter learning. LetD = diag π , P = (1⊗I)(1T ⊗I), andW = D−DP D. We
have∇∇uΦlh = W , andg = ∇uΦlh = π − y from Eq. 4. The NR system is(I + W K̃)α′ =

W u − g , with the NR direction beings = α′ − α. If V = (I −DP)D1/2, thenW = V V T ,
because(1T ⊗ I)D = I. We see thatα′ = V β (using(1T ⊗ I)g = 0), and we can obtain it from
the equivalentsymmetric system

(

I + V T K̃V
)

β = V T u −D−1/2(π − y), α′ = V β (5)

4Initial experiments with conjugate gradients inα gave very slow convergence, due to poor conditioning,
but experiments with a different dual criterion are in preparation.

(details are in [8]). Note thatP x = (
∑

c′ x(c′))c, so that MVM withV can be done inO(nC).
The NR direction is obtained by solving this system approximately by thelinear conjugate gradients
(LCG) method, requiring a MVM with the system matrix in each iteration, thus a single MVM with
K . Our implementation includes diagonal preconditioning and numerical stability safeguards [8].
The NR system need not be solved to high accuracy (see Section 6.2). Initially,β = D−1/2α,
because thenV β = α if only (1T ⊗ I)α = 0, which is true if the initialα fulfils it.

We now show how to compute the gradient∇hΨ for the CV criterionΨ (Eq. 3). Note that
α[J] is determined by the stationary equationα[J] + g[J] = 0. Taking the derivative gives

dα[J] = −W [J]((dKJ)α[J] + K̃J(dα[J])). We obtain a system fordα[J] which is sym-
metrized as above:(I + V T

[J]K̃JV [J])β = −V T
[J](dKJ)α[J], dα[J] = V [J]β . Also,

dΨI = (π[I] − yI)
T ((dKI,J)α[J] + K̃ I,J(dα[J])). With s = I ·,I(π[I] − yI) − I ·,JV [J](I +

V T
[J]K̃JV [J])

−1V T
[J]K̃J,I(π[I]−yI), we have thatdΨI = (I ·,Jα[J])

T (dK)s. If we collect these

vectors as columns ofE , F ∈ R
nC,q, we have thatdΨ = trET (dK)F . In the hierarchical setup,

we use Eq. 2:Ẽ = (ΦT
L,· ⊗ I)E ∈ R

nP,q, F̃ accordingly, thendΨ = tr Ẽ
T
(dK̆)F̃ . Here, we

build E , F in the buffers allocated for̃E , F̃ , then transform them later in place.

We finally mention some of the computational “tricks”, without which we could not have dealt with
the largest tasks in Section 6.2 (for section B, a singlenC vector requires88M of memory). For
the linear kernel (see Section 5.1), the main primitiveA 7→ XXT A can be coded very efficiently
using a standard sparse matrix format forX . If A is stored row-major (a1,1, a1,2, . . .), the com-
putation becomes faster by a factor of4 to 6 compared to the standard column-major format5. For
hyperparameter learning, we work on subsetsJk and need MVMs withK̃Jk

. “Covariance repre-
sentation shuffling” permutes the representation s.t.K̃Jk

sits in the upper left part, and MVM can
use flat rather than indexed code, which is many times faster. We also share memory blocks of size
nC between LCG, gradient accumulation, line searches, keeping the overall memory requirements
at r nC for a small constantr, and avoiding frequent reallocations.

5.1 Matrix-Vector Multiplication

MVM with K is the bottleneck of our framework, and all efforts should be concentrated on this
primitive. We can tap into much prior work in numerical mathematics. With many classesC, we
may share kernels:K(c) = vcM

(lc), vc > 0 variance parameters,M (l) independent correlation
functions. Our generic implementation stores two symmetric matricesM (l) in an× n buffer.

The linear kernelK(c)(x,x′) = vcx
T x′ is frequently used for text classification (see Section 6.2).

If the data matrixX is sparse, kernel MVM can be done in much less than the genericO(C n2),
typically in O(C n), requiringO(n) storage forX only, even if the dimension ofx is way beyond
n.

If theK(c) are isotropic kernels (depending on‖x−x′‖ only) and thex are low-dimensional, MVM
with K(c) can be approximated using specialized nearest neighbour data structures such asKD trees
[12, 9]. Again, the MVM cost is typicallyO(C n) in this case. For general kernels whose kernel
matrices have a rapidly decaying eigenspectrum, one can approximate MVM by usinglow-rank
matricesinstead of theK(c) [10], whence MVM isO(C nd), d the rank.

In Section 4 we also need MVM with the derivatives(∂/∂hj)K
(c). Note that(∂/∂ log vc)K

(c) =

K(c), reducing to kernel MVM. For isotropic kernels,K(c) = f(A), ai,j = ‖xi − xj‖, so
(∂/∂hj)K

(c) = gj(A). If KD trees are used to approximateA, they can be used equivalently (and
with little additional cost) for computing derivative MVMs.

5The innermost vector operations work on contiguous chunks of memory, rather than strided ones, thus
supporting cacheing or vector functions of the processor.

6 Experiments

In this Section, we provide experimental results for our framework on data from remote sensing, and
on a set of large text classification tasks with very many classes, the latter are hierarchical.

6.1 Flat Classification: Remote Sensing

We use thesatimageremote sensing task from thestatlogrepository.6 This task has been used in
the extensive SVM multi-class study of [5], where it is among the datasets on which the different
methods show the most variance. It hasn = 4435 training,m = 2000 test cases, andC = 6 classes.
We use the isotropicGaussian (RBF)kernel

K(c)(x,x′) = vc exp
(

−
wc

2d
‖x − x′‖2

)

, vc, wc > 0, x,x′ ∈ R
d. (6)

We compare the methodsmc-sep(ours with separate kernels for each class; 12 hyperparameters),
mc-tied(ours with a single shared kernel; 2 hyperparameters),1rest (one-against-rest:C binary
classifiers are trained separately to discriminatec from the rest, they are voted by log probability
upon prediction; 12 hyperparameters). Note that1restis arguably the most efficient method which
can be used for multi-class, because its binary classifiers can be fitted separately and in parallel. Even
if run sequentially,1restrequires less memory by a factor ofC than a joint multi-class method.

We use our5-fold CV criterionΨ for each method. Results here are averaged over ten randomly
drawn5-partitions of the training set (the same partitions are used for the different methods). The
test error (in percent) ofmc-sepis 7.81 vs.8.01 for 1rest. The result formc-sepis state-of-the-art,
for example the best SVM technique tested in [5] attained7.65, and SVM one-against-rest attained
8.30 in this study. Note that while1restalso may choose 12 independent kernel parameters, it does
not make good use of this possibility, as opposed tomc-sep.mc-tiedhas test error8.37, suggesting
that tying kernels leads to significant degradation. ROC curves for the different methods are given
in [8], showing thatmc-sepalso profits from estimating the predictive probabilities in a better way.

6.2 Hierarchical Classification: Patent Text Classification

We use the WIPO-alpha collection7 previously studied in [1], where patents (title and claim text)
are to be classified w.r.t. the standard taxonomyIPC, a tree with4 levels and5229 nodes. Sections
A, B,. . . , H. form the first level. As in [1], we concentrate on the8 subtasks rooted at the sections,
ranging from D (n = 1140, C = 160, P = 187) to B (n = 9794, C = 1172, P = 1319).
We use linear kernels (see Section 5.1) with variance parametersvc. All experiments are averaged
over three training/test splits, different methods using the same ones.Ψ is used with a different
5-partition per section and split, the same across all methods. Our method outputs a predictive
pj ∈ R

C for each test casexj . The standard predictiony(xj) = argmaxc pj,c maximizes expected
accuracy, classes are ranked asrj(c) ≤ rj(c

′) iff pj,c ≥ pj,c′ . The test scores are the same as in [1]:
accuracy(acc)m−1

∑

j I{y(xj)=yj}, precision(prec)m−1
∑

j rj(yj)
−1, parent accuracy(pacc)

m−1
∑

j I{par(y(xj))=par(yj)}, par(c) being the parent ofL(c). Let ∆(c, c′) be half the length of
the shortest path between leafsL(c), L(c′). The taxo-loss(taxo) ism−1

∑

j ∆(y(xj), yj). These
scores are motivated in [1]. For taxo-loss and parent accuracy, we better choosey(xj) to minimize
expected loss8, different from the standard prediction.

We compare methods F1, F2, H1, H2 (F: flat; H: hierarchical). F1: allvc shared (1); H1:vc shared
across each level of the tree (3). F2, H2:vc shared across each subtree rooted at root’s children (A:
15, B: 34, C: 17, D: 7, E: 7, F: 17, G: 12, H: 5). Recall that there are 3 accuracy parameters. For
hyperparameter learning:k1 = 8, k2 = 4, k3 = 15 (F1, F2);k1 = 10, k2 = 4, k3 = 25 (H1, H2)9.

6Available athttp://www.niaad.liacc.up.pt/old/statlog/.
7Raw data from www.wipo.int/ibis/datasets. Label hierarchy described at

www.wipo.int/classifications/en. Thanks to L. Cai, T. Hofmann for providing us with the
count data and dictionary. We did Porter stemming, stop word removal, and removal of empty categories. The
attributes are bag-of-words over the dictionary of occuring words. All casesxi were scaled to unit norm.

8For parent accuracy, letp(j) be the node with maximal mass (underpj) of its children which are leafs,
theny(xj) must be a child ofp(j).

9Except for section C, wherek1 = 14, k2 = 6, k3 = 35.

acc (%) prec (%) taxo
F1 H1 F2 H2 F1 H1 F2 H2 F1 H1 F2 H2

A 40.6 41.9 40.5 41.9 51.6 53.4 51.4 53.4 1.27 1.19 1.29 1.19
B 32.0 32.9 31.7 32.7 41.8 43.8 41.6 43.7 1.52 1.44 1.55 1.44
C 33.7 34.7 34.1 34.5 45.2 46.6 45.4 46.4 1.34 1.26 1.35 1.27
D 40.0 40.6 39.7 40.8 52.4 54.1 52.2 54.3 1.19 1.11 1.18 1.11
E 33.0 34.2 32.8 34.1 45.1 47.1 45.0 47.1 1.39 1.31 1.38 1.31
F 31.4 32.4 31.4 32.5 42.8 44.9 42.8 45.0 1.43 1.34 1.43 1.34
G 40.1 40.7 40.2 40.7 51.2 52.5 51.3 52.5 1.32 1.26 1.32 1.26
H 39.3 39.6 39.4 39.7 52.4 53.3 52.5 53.4 1.17 1.15 1.17 1.14

taxo[0-1] pacc (%) pacc[0-1] (%)
F1 H1 F2 H2 F1 H1 F2 H2 F1 H1 F2 H2

A 1.28 1.19 1.29 1.18 58.9 61.6 58.2 61.5 57.2 61.3 56.9 61.4
B 1.54 1.44 1.56 1.44 53.6 56.4 52.7 56.6 51.9 55.9 51.4 55.9
C 1.33 1.26 1.32 1.26 58.9 62.6 58.5 62.0 58.6 61.8 58.9 61.6
D 1.20 1.12 1.22 1.12 64.6 67.0 64.4 67.1 63.5 67.1 62.6 67.0
E 1.43 1.33 1.44 1.34 56.0 59.1 56.2 59.2 54.0 58.2 53.5 57.9
F 1.43 1.34 1.44 1.34 56.8 59.7 56.8 59.8 54.9 58.7 54.6 58.9
G 1.32 1.26 1.32 1.26 58.0 59.7 57.6 59.6 56.8 59.2 56.6 58.9
H 1.19 1.16 1.19 1.15 61.6 62.5 61.8 62.5 59.9 61.6 60.0 61.8

Table 1: Results on tasks A-H. Methods F1, F2 flat, H1, H2 hierarchical. taxo[0-1], pacc[0-1] for
argmaxc pj,c rule, rather than minimize expected loss.

Final NR (s) CV Fold (s) Final NR (s) CV Fold (s)
F1 H1 F1 H1 F1 H1 F1 H1

A 2030 3873 573 598 E 131.5 203.4 32.2 49.6
B 3751 8657 873 1720 F 1202 2871 426 568
C 4237 7422 719 1326 G 1342 2947 232 579
D 56.3 118.5 9.32 20.2 H 971.7 1052 146 230

Table 2: Running times for tasks A-H. Method F1 flat, H1 hierarchical. CV Fold: Re-optimization
of α[J], gradient accumulation for single fold.

For final fitting:k1 = 25, k2 = 12 (F1, F2);k1 = 30, k2 = 17 (H1, H2). The optimization is started
from vc = 5 for all methods. Results are given in Table 1.

The hierarchical model outperforms the flat one consistently. While the differences in accuracy
and precision are hardly significant (as also found in [1]), they (partly) are in taxo-loss and parent
accuracy. Also, minimizing expected loss is consistently better than using the standard rule for the
latter, although the differences are very small. H1 and H2 do not perform differently: choosing
many differentvc in the linear kernel seems no advantage here (but see Section 6.1). The results are
very similar to the ones of [1]. However, for our method, the recommendation in [1] to usevc = 1
leads to significantly worse results in all scores, thevc chosen by our methods are generally larger.

In Table 2, we present running times10 for the final fitting and for a single fold during hyperparameter
optimization (5of them are required forΨ, ∇hΨ). Cai and Hofmann [1] quote a final fitting time of
2200s on the D section, while we require119s (more than18 times faster). It is precisely this high
efficiency of primary fitting which allows us to use it as inner loop for hyperparameter learning.

7 Discussion

We presented a general framework for very efficient large scale kernel multi-way classification with
structured label spaces and demonstrated its features on hierarchical text classification tasks with
many classes. As shown for the hierarchical case, the framework is easily extended to novel struc-

10Processor time on64bit 2.33GHz AMD machines.

tural priors or covariance functions, and while not shown here, it is also easy to extend it to different
likelihoods (as long as they are log-concave). We solve the kernel parameter learning problem by
optimizing the CV log likelihood, whose gradient can be computed within the framework. Our
method provides estimates of the predictive distribution at test points, which may result in better
predictions for non-standard losses or ROC curves. Efficient and easily extendable code is publicly
available (see Section 1).

An extension to multi-label classification is planned. More advanced label set structures can be
adressed, noting that Hessian vector products can often be computed in about the same way as gra-
dients. An application to label sequence learning is work in progress, which may even be combined
with a hierarchical prior. Infering a hierarchy from data is possible in principle, using expectation
maximization techniques (note that the primary fitting can deal with targetdistributionsyi), as well
as incorporating uncertain data.

Empirical Bayesian methods or approximate CV scores for hyperparameter learning have been pro-
posed in [11, 3, 6], but they are orders of magnitude more expensive than our proposal here, and
do not apply to a massive number of classes. Many multi-class SVM techniques are available (see
[2, 5] for references). Here, fitting is a constrained convex problem, and often fairly sparse solutions
(many zeros inα) are found. However, if the degree of sparsity is not large, first-order conditional
gradient methods typically applied can be slow11. SVM methods typically do not come with effi-
cient automatic kernel parameter learning schemes, and they do not provide estimates of predictive
probabilities which are asymptotically correct.

Acknowledgments

Thanks to Olivier Chapelle for many useful discussions. Supported in part by the IST Programme
of the European Community, under the PASCAL Network of Excellence, IST-2002-506778.

References

[1] L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. InCIKM
13, pages 78–87, 2004.

[2] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector ma-
chines.J. M. Learn. Res., 2:265–292, 2001.

[3] P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of
smoothing by the method of generalized cross-validation.Numerische Mathematik, 31:377–403, 1979.

[4] P.J. Green and B. Silverman.Nonparametric Regression and Generalized Linear Models. Monographs
on Statistics and Probability. Chapman & Hall, 1994.

[5] C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines.IEEE
Transactions on Neural Networks, 13:415–425, 2002.

[6] Y. Qi, T. Minka, R. Picard, and Z. Ghahramani. Predictive automatic relevance determination by expec-
tation propagation. InProceedings of ICML 21, 2004.

[7] M. Seeger. Gaussian processes for machine learning.International Journal of Neural Systems, 14(2):69–
106, 2004.

[8] M. Seeger. Cross-validation optimization for structured Hessian kernel methods. Techni-
cal report, Max Planck Institute for Biologic Cybernetics, Tübingen, Germany, 2006. See
www.kyb.tuebingen.mpg.de/bs/people/seeger.

[9] Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. InAdvances in NIPS
18, 2006.

[10] A. Smola and P. Bartlett. Sparse greedy Gaussian process regression. InAdvances in NIPS 13, pages
619–625, 2001.

[11] C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes.IEEE PAMI,
20(12):1342–1351, 1998.

[12] C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss trans-
form. In Advances in NIPS 17, pages 1561–1568, 2005.

11These methods solve a very large number of small problems iteratively, as opposed to ours which does few
expensive Newton steps. The latter kind, if feasible at all, often makes better use of hardware features such as
cacheing and vector operations, and therefore is the preferred approach in numerical optimization.

