Cross-Validation Optimization for Large Scale
Hierarchical Classification Kernel Methods

Matthias W. Seeger
Max Planck Institute for Biological Cybernetics
P.O. Box 2169, 72012{bingen, Germany
seeger @ uebi ngen. nmpg. de

Abstract

We propose a highly efficient framework for kernel multi-class models with a
large and structured set of classes. Kernel parameters are learned automatically
by maximizing the cross-validation log likelihood, and predictive probabilities are
estimated. We demonstrate our approach on large scale text classification tasks
with hierarchical class structure, achieving state-of-the-art results in an order of
magnitude less time than previous work.

1 Introduction

In many real-world statistical problems, we would like to fit a model with a large number of depen-
dent variables to a training sample with very many cases. For example, in multi-way classification
problems with a structured label space, modern applications demand predictions on thousands of
classes, and very large datasets become available.aifid C' denote dataset size and number of
classes respectively, nonparametric kernel methods like SVMs or Gaussian processes typically scale
superlinearly inn C, if dependencies between the latent class functions are properly represented.
Furthermore, most large scale kernel methods proposed so far refrain from solving the problem of
learning hyperparameters (kernel or loss function parameters). The user has to run cross-validation
schemes, which require frequent human interaction and are not suitable for learning more than a few
hyperparameters.

In this paper, we propose a general framework for learning in probabilistic kernel classification
models. While the basic model is standard, a major feature of our approach is the high computational
efficiency with which the primary fitting (for fixed hyperparameters) is done, allowing us to deal
with hundreds of classes and thousands of datapoints within a few minutes. The primary fitting
scales linearly inC', and depends on mainly via a fixed number afatrix-vector multiplications
(MVM) with n x n kernel matrices. In many situations, these MVM primitives can be computed
very efficiently, as will be demonstrated. Furthermore, we optimize hyperpararaatersatically

by minimizing the cross-validation log likelihood, making use of our primary fitting technology as
inner loop in order to compute the CV criterion and its gradient. Our approach can be used to learn
a large number of hyperparameters and does not need user interaction.

Our framework is generally applicable to structured label spaces, which we demonstrate here for
hierarchical classificatiorof text documents. The hierarchy is represented through an ANOVA
setup. While the” latent class functions are fully dependenpriori, the scaling of our method

stays within a factor of two compared to unstructured classification. We test our framework on the
same tasks treated in [1], achieving comparable results in at least an order of magnitude less time.
Our method estimates predictive probabilities for each test point, which can allow better predictions
w.r.t. loss functions different from zero-one.

The primary fitting method is given in Section 2, the extension to hierarchical classification in Sec-
tion 3. Hyperparameter learning is discussed in Section 4. Computational details are provided in

Section 5. We present experimental results in Section 6. @inyhefficient implementation is
publicly available, as projeddr in the LHOTSE toolbox for adaptive statistical models.

2 Penalized Multiple Logistic Regression

Our problem is to predicy € {1,...,C} fromx € X, given some i.i.d. dat® = {(x;,y;)|i =
1,...,n}. We use zero-one codinge. y, € {0,1}, 17y, = 1. We elpoy themultiple lo-
gistic regression model, consisting 6f latent (unobserved) class functions feeding into the
multiple logistic (or softmax) likelihoodP(y; . = 1|x;,u;) = ev(®) /(3 et (@), We write
u. = f.+ b. for intercept parameters. € R and functionsf, living in a reproducing ker-
nel Hilbert space (RKHS) with kernek (©), and consider th@enalized negative log likelihood
=" log P(y;|u) + (1/2) S, || £e]12 + (1/2)02||b]|2, which we minimize for primary
fitting. || - | is the RKHS norm for kernek (). Details on such setups can be found in [4].

Our notation fom C vectorg (and matrices) uses the orderigg= (Y1,1:Y2,15 s Un,15Y1,25 - - -)-
We setu = (u.(x;)) € R"C. @ denotes the Kronecker produttis the vector of all ones. Selection
indexes! are applied td only: y; = (yi.)icr.. € RIIC.

Since the likelihood depends on tligonly throughf.(x;), every minimizer of> must be a kernel
expansion:f. =, i K9 (-, x;) (representer theorem, see [4]). Plugging this in, the regularizer
becomeg1/2)a’Ka + (1/2)0 2||b|]2. K¢ = (K©) (x4, 2;));; € R™", K = diag(K9).

is block-diagonal. We refer to this setupfést classificatiormodel. Theb, may be eliminated as
b=0c*(I®1")a. Thus,ifK = K + ¢%(I ® 1)(I ®17), then® becomes

1 . .
D =Py + §ozTI{oz7 Oy, = —ylu+171, I; =log1Texp(u;), u=Ka. (1)

® is strictly convex ina (because the likelihood is log-concave), so it has a unique minimum point
&. The corresponding kernel expansions age= 3", &; (K (-, x;) +). Estimates of the
conditional probability on test points, are obtained by plugging.(x.) into the likelihood.

We note that this setup can also be seen as MAP approximation to a Bayesian model, wlfgre the
are given independent Gaussian process préogs]7]. It is also related to the multi-class SVM [2],
where—log P(y;|u;) is replaced by the margin lossu,, (x;) + max.{u.(x;) + 1 — d. 4, }. The
negative log multiple logistic likelihood has similar properties, but is smooth as a functionawid

the primary fitting ofae does not require constrained convex optimization.

We minimize® using theNewton-Raphso(NR) algorithm, the details are provided in Section 5.
The complexity of our fitting algorithm is dominated By (k2 + 2) matrix-vector multiplications
with K, wherek; is the number of NR iterationg; the number ofinear conjugate gradienfLCG)
steps for computing each Newton direction. Since NR is a second-order convergent rhetter,

be chosen smallk, determines the quality of each Newton direction, for both fairly small values
are sufficient (see Section 6.2).

3 Hierarchical Classification

So far we dealt with flat classification, the classes being indepedemori, with block-diagonal

kernel matrixkK . However, if the label set has a known structuree can benefit from representing

it in the model. Here we focus drierarchical classification, the label sét, ..., C} being the leaf

nodes of a tree. Classes with lower common ancestor should be more closely related. In this Section,
we propose a model for this setup and show how it can be dealt with in our framework with minor
modifications and minor extra cost.

In flat classification, the latent class functiomsare modelled aa priori independent, in that the
regularizer (which plays the role of a log prior) is a sum of individual terms for eacithout any

1Seewww. kyb. t uebi ngen. npg. de/ bs/ peopl e/ seeger/ | hot se/ .

2In Mat | ab, r eshape(y, n, C) would give the matrixy; .) € R™°.

3Learning an unknown label set structure may be achieved by expectation maximization techniques, but this
is subject to future work.

interaction termsAnalysis of variancdANOVA) models go beyond this independent design, they
have previously been applied to text classification by [1].{Cet .., P} be the nodes of the tree,
being the root, and the numbers are assigned breadth figst (1,are the root’s children). The tree
is determined by” andn,,, p =0,..., P, the number of children of noge Let L be the set of leaf
nodes|L| = C. Assign apair of latent functionsy,,, 1, to each node, except the root. Thgare
assumed priori independent, as in flat classificatiar, is the sum ofi,/, p’ running over the nodes
(includingp) on the path from the root tp. The class functions to be fed into the likelihood are the
ur(c of the leafs. This setup represents similarities conditioned on the hierarchy. For example, if
leafs L(c), L(c) have the common parepf thenuy,) = u, + tr(c), Ur(e)y = Up + Ur(ery, SO
the class functionsharethe effectu,. Since regularization forces all independent effégisto be
smooth, the classes ¢’ are urged to behave similardypriori.

Letu = (up(x;))ip, @ = (ip(xi))i, € R™P. The vectors are related as= (® @ Iu, ® €
{0,1}7F . Importantly,® has a simple structure which allows MVM with or & to be computed
easily inO(P), without having to compute or sto® explicitly. MVM with ® is described in
Algorithm 1, and MVM with®7 works in a similar manner [8].

Under the hierarchical model, the class functieng., are strongly dependeat priori. We may
represent this prior coupling in our framework by simply plugging in the implied kernel matrix

K= (®,. o)K(®] @I, 2)

where the innetk is block-diagonal. K is not sparse and certainly not block-diagonal, but the
important point is that we are still able to do kernel MVMs efficiently: pre- and postmultiplying by
® is cheap, and(is block-diagonal just as in the flat case.

We note that the step from flat to hierarchical
classification requires minor modifications oAlgorithm 1: Matrix-vector multiplication
existing code only. If code for representing & = ®x

block-diagonalK is available, we can use it o O.y0 := 0.5 := 0.

to represent the inneK’, just replacingC' by forp=0,...,Pdo

P. This simplicity carries through to the hyper- if n,, > 0 (p not a leaf node)hen

parameter learning case (see Section 4). The LetJ(p)={s+1,...,s+n,}.
cost of a kernel MVM is increased by a factor y — (y", " +al)" s s+,
P/C < 2, which in most hierarchies in prac- end if

tice is close tol. However, it would be wrong
to claim that hierarchical classification in gen-
eral comes as cheap as flat classification.

end for

The subtle issue is that the primary fitting becomes more \cqstkcisely because there is more
coupling between the variables. In the flat case, the Hessi@nigtclose to block-diagonal. The

LCG algorithm to compute Newton directions converges quickly, because it nearly decomposes into
C independent ones, and fewer NR steps are required (see Section 5). In the hierarchical case,
both LCG and NR need more iterations to attain the same accuracy. In numerical mathematics,
much work has been done to approximately decouple linear systemebgnditioning. In some

of these strategies, knowledge about the structure of the system matrix (in our case: the hierarchy)
can be used to drive preconditioning. An important point for future research is to find a good
preconditioning strategy for the system of Eg. 5. However, in all our experiments so far the fitting
of the hierarchical model took less than twice the time required for the flat model on the same task.
Some further extensions, such as learning with incomplete label information, are discussed in [8].

4 Hyperparameter Learning

In any model of interest, there will be fréwyperparameteré, for example parameters of the ker-

nels K(¢). These were assumed to be fixed in the primary fitting method introduced in Section 2.

In this Section, we describe a scheme for learrfingghich makes use of the primary fitting algo-

rithm as inner loop. Note that such nested strategies are commonplace in Bayesian Statistics, where
(marginal) inference is typically used as subroutine for parameter learning.

Recall that primary fitting consists of minimizing of Eq. 1 w.r.t.c. If we minimize® w.r.t. h as
well, we run into the problem of overfitting. A common remedy is to minimize the negeitbss-

validation log likelihoodV instead. Le{/; } be a partition of 1,...,n}, with J, = {1,...,n}\ I,
and let®;, = u[TJk]((l/Q)a[Jk] —yj)+ 1Tl[Jk] be the primary criterion on the subsat of the

data. Heremu ;) = I?Jka[t]k]. Theay;,) are independent variablesot part of a commorx. The
CV criterion Is

U= Z U, Yy = 7yﬂu[lk] + 1Tl[1k]7 U, = Klk,Jka[Jk}; 3)
k

where o ;,; minimizes®;, . Since for eachk, we fit and evaluate on disjoint parts gf ¥ is
an unbiased estimator of the test negative log likelihood, and minimigirghhould be robust to
overfitting.

In order to selech, we pick a fixed partition at random, then do gradient-based minimizatidn of
w.r.t. h. Tothis end, we keep the st ;,; } of primary variables, and iterate between re-fitting those

for each foldl;,, and computingl andV, ¥. The latter can be determined analytically, requiring

us to solve a linear system with the Hessian maIH'B(V[TJk}KJkV[Jk] already encountered during
primary fitting (see Section 5). This means that the same LCG code used to compute Newton
directions there can be applied here in order to compute the gradidnt dhe details are given

in Section 5. As for the complexity, suppose there @felds. The update of thex|;,; requires

q primary fitting applications, but since they are initialized with the previous vaiygs, they do
converge very rapidly, especially during later outer iterations. Computiigased on thex|

comes basically for free. The gradient computation decomposes into two parts: accumulation, and
kernel derivative MVMs. The accumulation part requires solvjreystems of siz€(q — 1) /q)n C,

thusq k3 kernel MVMs on thef{Jk if linear conjugate gradients (LCG) is uséd,being the number

of LCG steps. We also need two buffer matridBs F' of ¢n C' elements each. Note that the
accumulation step imdependenof the number of hyperparameters. The kernel derivative MVM
part consists of derivative MVM calls for each independent componenhofee Section 5.1. As
opposed to the accumulation part, this part consists of a simple large matrix operation and can be
run very efficiently using specialized numerical linear algebra code.

As shown in Section 5, the extension of hyperparameter learning to the hierarchical case of Section 3
is simply done by wrapping the accumulation part, the coding and additional memory effort being
minimal. Given a method for computing andV,, ¥, we plug these into a custom optimizer such

as Quasi-Newton in order to leahn

5 Computational Details

In this Section, we provide details for the general plan laid out above. It is precisely these which
characterize our framework and allow us to apply a standard model to domains beyond its usual
applications, but of interest to Machine Learning.

Recall Section 2. We minimizé by choosing search directioss and doing line minimizations
alonga + As, A > 0. For the latter, we maintain the pdin, v), u = K a. We have:

Vul=mm—y+a, wm=explu—1®1), i.e. m = Py =1u;). 4
Given(a,u), ® andV,, ® can be computed i®(n C), without requiring MVMs. This suggests to

perform the line search in along the directiors = K s, the correspondingx can be constructed
from the final\. Since kernel MVMs are significantly more expensive than tii&seC') operations,
the line searches basically come for free!

We choose search directions Bgwton-Raphso(NR)*, since the Hessian d# is required anyway
for hyperparameter learning. L& = diagw, P = (1@ I)(1T ®I),andW = D - DPD. We
haveVVv, ®;, = W, andg = V, ®;;, = # — y from Eq. 4. The NR system id + Wf{)a’ =
Wu — g, with the NR direction being = o/ — a. If V = (I — DP)DY? thenW =V V7,
becausé1” @ I)D = I. We see thaty’ = V' 3 (using(1” @ I)g = 0), and we can obtain it from
the equivalensymmetric system

(I+VTKV)B:VTu—D71/2(ﬂ'—y), o' =Vvg (5)

“Initial experiments with conjugate gradientsdngave very slow convergence, due to poor conditioning,
but experiments with a different dual criterion are in preparation.

(details are in [8]). Note thaPz = (3, z(<))., so that MVM with V' can be done ifD(n C).

The NR direction is obtained by solving this system approximately biirikar conjugate gradients
(LCG) method, requiring a MVM with the system matrix in each iteration, thus a single MVM with
K. Our implementation includes diagonal preconditioning and numerical stability safeguards [8].
The NR system need not be solved to high accuracy (see Section 6.2). Inifiaty,D~/%q,
because thew 3 = a if only (17 ® I')a = 0, which is true if the initial fulfils it.

We now show how to compute the gradievif, U for the CV criterion¥ (Eqg. 3). Note that

ayy) is determined by the stationary equation; + g;; = 0. Taking the derivative gives
dayy = ~Wi((dK j)ap + K j(dayy)). We obtain a system fodey;; which is sym-
metrized as above:I + VK,V ;)8 = —V{ (dK)ayy;, doy = VipB. Also,

dV; = (71'[1] - yI)T((dK]’J)a[J] + IN(’]"](daU])). With s = I.,I(Tr[l] —vy;) — I._’JV[J](I +
VLK Vi)'V K (7 —y;), we have thati¥; = (I. joyy)7 (dK)s. If we collect these
vectors as columns d, F' € R"“:4, we have thatt¥ = tr E” (dK) F. In the hierarchical setup,
we use Eq. 2.E = (@] ® I)E € R"79, F accordingly, thenl¥ = tr E"(dK)F. Here, we
build E, F in the buffers allocated faE, F', then transform them later in place.

We finally mention some of the computational “tricks”, without which we could not have dealt with
the largest tasks in Section 6.2 (for section B, a simglé vector require®8M of memory). For

the linear kernel (see Section 5.1), the main primitive— X X T A can be coded very efficiently

using a standard sparse matrix format %t If A is stored row-major (g1,a4,2,...), the com-
putation becomes faster by a factordofo 6 compared to the standard column-major formétor
hyperparameter learning, we work on subsgtsand need MVMs withK ; . “Covariance repre-
sentation shuffling” permutes the representationfs.j, sits in the upper left part, and MVM can

use flat rather than indexed code, which is many times faster. We also share memory blocks of size
n C between LCG, gradient accumulation, line searches, keeping the overall memory requirements
atrn C for a small constant, and avoiding frequent reallocations.

5.1 Matrix-Vector Multiplication

MVM with K is the bottleneck of our framework, and all efforts should be concentrated on this
primitive. We can tap into much prior work in numerical mathematics. With many clagses

may share kernelsk (¢) = vy, M) v, > 0 variance parameterg/ () independent correlation
functions. Our generic implementation stores two symmetric matfidés in an x n buffer.

Thelinear kernel K (©) (z, ') = v.z" ' is frequently used for text classification (see Section 6.2).
If the data matrixX is sparse, kernel MVM can be done in much less than the ge@étitn?),
typically in O(C n), requiringO(n) storage forX only, even if the dimension at is way beyond

n.

If the K'(©) are isotropic kernels (depending [— || only) and ther are low-dimensional, MVM

with K can be approximated using specialized nearest neighbour data structureskDdreas
[12, 9]. Again, the MVM cost is typicallyO(C n) in this case. For general kernels whose kernel
matrices have a rapidly decaying eigenspectrum, one can approximate MVM bylaxsingnk
matricesinstead of thek () [10], whence MVM isO(C n d), d the rank.

In Section 4 we also need MVM with the derivativgy/dh,) K). Note that(d/dlog v.) K® =
K9, reducing to kernel MVM. For isotropic kereldy) = f(A), ai; = |zi — z;], so

(8/8hj)K(C) = g;(A). If KD trees are used to approxima#e, they can be used equivalently (and
with little additional cost) for computing derivative MVMs.

5The innermost vector operations work on contiguous chunks of memory, rather than strided ones, thus
supporting cacheing or vector functions of the processor.

6 Experiments

In this Section, we provide experimental results for our framework on data from remote sensing, and
on a set of large text classification tasks with very many classes, the latter are hierarchical.

6.1 Flat Classification: Remote Sensing

We use thesatimageremote sensing task from tis¢éatlogrepository? This task has been used in

the extensive SVM multi-class study of [5], where it is among the datasets on which the different
methods show the most variance. It has 4435 training,m = 2000 test cases, and = 6 classes.

We use the isotropiGaussian (RBFkernel

KO (x,2') = veexp (—&Hm - a:’||2> , Ve we >0, x,x € R (6)

We compare the methodsc-sep(ours with separate kernels for each class; 12 hyperparameters),
mc-tied (ours with a single shared kernel; 2 hyperparametdn®st (one-against-restC' binary
classifiers are trained separately to discriminafeom the rest, they are voted by log probability

upon prediction; 12 hyperparameters). Note thrastis arguably the most efficient method which

can be used for multi-class, because its binary classifiers can be fitted separately and in parallel. Even
if run sequentiallylrestrequires less memory by a factor@fthan a joint multi-class method.

We use oub-fold CV criterion ¥ for each method. Results here are averaged over ten randomly
drawn 5-partitions of the training set (the same partitions are used for the different methods). The
test error (in percent) ahc-seps 7.81 vs. 8.01 for 1rest. The result fomc-seps state-of-the-art,

for example the best SVM technique tested in [5] attainéd, and SVM one-against-rest attained
8.30 in this study. Note that whil&restalso may choose 12 independent kernel parameters, it does
not make good use of this possibility, as opposemhtesep.mc-tiedhas test erro8.37, suggesting

that tying kernels leads to significant degradation. ROC curves for the different methods are given
in [8], showing thaimc-sepalso profits from estimating the predictive probabilities in a better way.

6.2 Hierarchical Classification: Patent Text Classification

We use the WIPO-alpha collectibpreviously studied in [1], where patents (title and claim text)
are to be classified w.r.t. the standard taxondR@, a tree withd levels and>229 nodes. Sections
A, B,..., H. form the first level. As in [1], we concentrate on thsubtasks rooted at the sections,
ranging from D (n= 1140, C = 160, P = 187)to B (n = 9794, C = 1172, P = 1319).
We use linear kernels (see Section 5.1) with variance parametefdl experiments are averaged
over three training/test splits, different methods using the same ohés.used with a different
5-partition per section and split, the same across all methods. Our method outputs a predictive
p; € RC for each test case;. The standard predictionx;) = argmax, p; . maximizes expected
accuracy, classes are ranked-ag) < r;(¢) iff p; . > p; . The test scores are the same as in [1]:
accuracy(acc)m™! > Ly =u,1 precision (prec) m ! > r;(y;)~!, parent accuracy(pacc)
m~1 > Lipar(y(a,))=par(y,)}» Par(c) being the parent of(c). Let A(c,c’) be half the length of
the shortest path between ledftc), L(¢'). Thetaxo-loss(taxo) ism ™" 3=, A(y(x;), ;). These
scores are motivated in [1]. For taxo-loss and parent accuracy, we better ghi@gséo minimize
expected loss different from the standard prediction.

We compare methods F1, F2, H1, H2 (F: flat; H: hierarchical). Flu.ahared (1); H1w,. shared
across each level of the tree (3). F2, H2:shared across each subtree rooted at root’s children (A:
15,B:34,C:17,D: 7, E: 7, F: 17, G: 12, H: 5). Recall that there are 3 accuracy parameters. For
hyperparameter learning; = 8,ky = 4, ks = 15 (F1, F2):k; = 10, ko = 4, ks = 25 (H1, H2).

SAvailable atht t p: / / www. ni aad. | i acc. up. pt/ ol d/ statl og/.

'Raw data from www. wi po.int/ibis/datasets. Label hierarchy described at
WWW. Wi po.int/classifications/en. Thanks to L. Cai, T. Hofmann for providing us with the
count data and dictionary. We did Porter stemming, stop word removal, and removal of empty categories. The
attributes are bag-of-words over the dictionary of occuring words. All casegere scaled to unit norm.

8For parent accuracy, let(j) be the node with maximal mass (ungey) of its children which are leafs,
theny(z;) must be a child op(j).

9Except for section C, where, = 14, k2 = 6, ks = 35.

acc (%) prec (%) taxo

F1 H1 F2 H2| F1 H1 F2 H2| F1 H1 F2 H2
406 419 405 419|516 534 514 534|127 119 129 1.19
32.0 329 31.7 327|418 43.8 416 43.7)/ 152 144 155 1.44
33.7 34.7 341 345|452 466 454 46.4| 134 126 135 1.27
40.0 40.6 39.7 40.8| 524 541 522 543|119 111 118 1.11
33.0 342 328 34.1| 451 471 450 47.1|139 131 138 1.31
314 324 314 325|428 449 428 450|143 134 143 1.34
40.1 40.7 40.2 40.7|51.2 525 51.3 525|132 126 132 1.26
39.3 396 394 39.7| 524 533 525 534|117 115 117 114

taxo[0-1] pacc (%) pacc[0-1] (%)

F1 H1 F2 H2| F1 H1 F2 H2| F1 H1 F2 H2
128 119 129 118|589 61.6 582 615|572 61.3 56.9 614
154 144 156 144|536 56.4 527 56.6|51.9 559 514 559
133 126 132 126|589 626 585 620|586 618 589 61.6
120 112 122 112|646 67.0 644 67.1|635 671 626 67.0
143 133 144 134560 591 56.2 59.2|54.0 582 535 579
143 134 144 134|568 59.7 56.8 59.8| 549 58.7 54.6 58.9
132 126 132 126|580 59.7 576 59.6|/56.8 59.2 56.6 58.9
119 116 1.19 115|616 625 61.8 625|599 61.6 60.0 61.8

IOTMmMOOwW>

ITOTMmMOOwW>

Table 1: Results on tasks A-H. Methods F1, F2 flat, H1, H2 habiiaal. taxo[0-1], pacc[0-1] for
argmax, p; . rule, rather than minimize expected loss.

FinalNR (s) | CV Fold (s) Final NR (s) | CV Fold (s)

F1 H1| F1 H1 F1 H1| F1 H1
2030 3873| 573 598 1315 203.4| 32.2 49.6
3751 8657| 873 1720 1202 2871| 426 568
4237 7422| 719 1326 1342 2947| 232 579
56.3 118.5| 9.32 20.2 971.7 1052| 146 230

o0 w>
IOTm

Table 2: Running times for tasks A-H. Method F1 flat, H1 hiehéral. CV Fold: Re-optimization
of o}, gradient accumulation for single fold.

For final fitting: k1 = 25, ko = 12 (F1, F2);k1 = 30, k; = 17 (H1, H2). The optimization is started
from v, = 5 for all methods. Results are given in Table 1.

The hierarchical model outperforms the flat one consistently. While the differences in accuracy
and precision are hardly significant (as also found in [1]), they (partly) are in taxo-loss and parent
accuracy. Also, minimizing expected loss is consistently better than using the standard rule for the
latter, although the differences are very small. H1 and H2 do not perform differently: choosing
many different,. in the linear kernel seems no advantage here (but see Section 6.1). The results are
very similar to the ones of [1]. However, for our method, the recommendation in [1] to.usel

leads to significantly worse results in all scores,#hehosen by our methods are generally larger.

In Table 2, we present running tim€gor the final fitting and for a single fold during hyperparameter
optimization (5of them are required fob, Vj ¥). Cai and Hofmann [1] quote a final fitting time of
2200s on the D section, while we requifd 9s (more thanl8 times faster). It is precisely this high
efficiency of primary fitting which allows us to use it as inner loop for hyperparameter learning.

7 Discussion

We presented a general framework for very efficient large scale kernel multi-way classification with
structured label spaces and demonstrated its features on hierarchical text classification tasks with
many classes. As shown for the hierarchical case, the framework is easily extended to novel struc-

prgcessor time of4bit 2.33GHz AMD machines.

tural priors or covariance functions, and while not showrehiiis also easy to extend it to different
likelihoods (as long as they are log-concave). We solve the kernel parameter learning problem by
optimizing the CV log likelihood, whose gradient can be computed within the framework. Our
method provides estimates of the predictive distribution at test points, which may result in better
predictions for non-standard losses or ROC curves. Efficient and easily extendable code is publicly
available (see Section 1).

An extension to multi-label classification is planned. More advanced label set structures can be
adressed, noting that Hessian vector products can often be computed in about the same way as gra-
dients. An application to label sequence learning is work in progress, which may even be combined
with a hierarchical prior. Infering a hierarchy from data is possible in principle, using expectation
maximization techniques (note that the primary fitting can deal with taligetbutionsy,), as well

as incorporating uncertain data.

Empirical Bayesian methods or approximate CV scores for hyperparameter learning have been pro-
posed in [11, 3, 6], but they are orders of magnitude more expensive than our proposal here, and
do not apply to a massive number of classes. Many multi-class SVM techniques are available (see
[2, 5] for references). Here, fitting is a constrained convex problem, and often fairly sparse solutions
(many zeros inx) are found. However, if the degree of sparsity is not large, first-order conditional
gradient methods typically applied can be stbwSVM methods typically do not come with effi-

cient automatic kernel parameter learning schemes, and they do not provide estimates of predictive
probabilities which are asymptotically correct.

Acknowledgments

Thanks to Olivier Chapelle for many useful discussions. Supported in part by the IST Programme
of the European Community, under the PASCAL Network of Excellence, IST-2002-506778.

References

[1] L. Cai and T. Hofmann. Hierarchical document categorization with support vector machin€sKh
13, pages 78-87, 2004.

[2] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector ma-
chines.J. M. Learn. Res., 2:265-292, 2001.

[3] P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of
smoothing by the method of generalized cross-validatdumerische Mathematik, 31:377-403, 1979.

[4] P.J. Green and B. Silvermamonparametric Regression and Generalized Linear Mod®lenographs
on Statistics and Probability. Chapman & Hall, 1994.

[5] C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machib&E
Transactions on Neural Networks3:415-425, 2002.

[6] Y. Qi, T. Minka, R. Picard, and Z. Ghahramani. Predictive automatic relevance determination by expec-
tation propagation. IProceedings of ICML 21, 2004.

[7] M. Seeger. Gaussian processes for machine learhiternational Journal of Neural Systerigd(2):69—
106, 2004.

[8] M. Seeger. Cross-validation optimization for structured Hessian kernel methods. Techni-
cal report, Max Planck Institute for Biologic Cyberneticsubingen, Germany, 2006. See
wwwv. kKyb. t uebi ngen. npg. de/ bs/ peopl e/ seeger.

[9] Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trAdsaiites in NIPS
18, 2006.

[10] A. Smola and P. Bartlett. Sparse greedy Gaussian process regressi@dvaimces in NIPS 13, pages
619-625, 2001.

[11] C. K. I. Wiliams and D. Barber. Bayesian classification with Gaussian procesHeEE PAMI,
20(12):1342-1351, 1998.

[12] C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss trans-
form. In Advances in NIPS 17, pages 1561-1568, 2005.

"These methods solve a very large number of small problems iteratively, as opposed to ours which does few
expensive Newton steps. The latter kind, if feasible at all, often makes better use of hardware features such as
cacheing and vector operations, and therefore is the preferred approach in numerical optimization.

