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Abstract
We1 developConditional Random Sampling (CRS), a technique particularly suit-
able for sparse data. In large-scale applications, the data are often highly sparse.
CRS combines sketching and sampling in that it converts sketches of the data into
conditional random samplesonline in the estimation stage, with the sample size
determined retrospectively. This paper focuses on approximating pairwisel2 and
l1 distances and comparing CRS with random projections. For boolean (0/1) data,
CRS is provably better than random projections. We show using real-world data
that CRS often outperforms random projections. This technique can be applied in
learning, data mining, information retrieval, and database query optimizations.

1 Introduction

Conditional Random Sampling (CRS)is a sketch-based sampling technique that effectively exploits
data sparsity. In modern applications in learning, data mining, and information retrieval, the datasets
are often very large and also highly sparse. For example, theterm-documentmatrix is often more
than99% sparse [7]. Sampling large-scale sparse data is challenging. Theconventional random
sampling(i.e., randomly picking a small fraction) often performs poorly when most of the samples
are zeros. Also, in heavy-tailed data, the estimation errors of random sampling could be very large.

As alternatives to random sampling, varioussketchingalgorithms have become popular, e.g., random
projections [17] and min-wise sketches [6]. Sketching algorithms are designed for approximating
specificsummary statistics. For a specific task, a sketching algorithm often outperforms random
sampling. On the other hand, random sampling is much more flexible. For example, we can use the
same set of random samples to estimate anylp pairwise distances and multi-way associations.Con-
ditional Random Sampling (CRS)combines the advantages of both sketching and random sampling.

Many important applications concern only the pairwise distances, e.g., distance-based clustering
and classification, multi-dimensional scaling, kernels. For a large training set (e.g., at Web scale),
computing pairwise distances exactly is often too time-consuming or even infeasible.

Let A be a data matrix ofn rows andD columns. For example,A can be theterm-documentmatrix
with n as the total number of word types andD as the total number of documents. In modern search
engines,n ≈ 106 ∼ 107 andD ≈ 1010 ∼ 1011. In general,n is the number of data points andD
is the number of features. Computing all pairwise associationsAA

T, also called theGram matrix
in machine learning, costsO(n2D), which could be daunting for largen andD. Various sampling
methods have been proposed for approximating Gram matrix and kernels [2,8]. For example, using
(normal) random projections [17], we approximateAA

T by (AR) (AR)
T, where the entries of

R ∈ R
D×k are i.i.d.N(0, 1). This reduces the cost down toO(nDk+n2k), wherek ≪ min(n, D).

1The full version [13]:www.stanford.edu/∼pingli98/publications/CRS tr.pdf



Sampling techniques can be critical in databases and information retrieval. For example, the
database query optimizer seeks highly efficient techniques to estimate the intermediate join sizes
in order to choose an “optimum” execution path for multi-way joins.

Conditional Random Sampling (CRS) can be applied to estimating pairwise distances (in any norm)
as well as multi-way associations. CRS can also be used for estimating joint histograms (two-way
and multi-way). While this paper focuses on estimating pairwisel2 and l1 distances and inner
products, we refer readers to the technical report [13] for estimating joint histograms. Our early
work, [11,12] concerned estimating two-way and multi-way associations in boolean (0/1) data.

We will compare CRS withnormal random projectionsfor approximatingl2 distances and inner
products, and withCauchy random projectionsfor approximatingl1 distances. In boolean data,
CRS bears some similarity toBroder’s sketches[6] with some important distinctions. [12] showed
that in boolean data, CRS improves Broder’s sketches by roughly halving the estimation variances.

2 The Procedures of CRS

Conditional Random Samplingis a two-stage procedure. In thesketchingstage, we scan the data
matrix once and store a fraction of the non-zero elements in each data point, as “sketches.” In the
estimationstage, we generateconditional random samplesonline pairwise (for two-way) or group-
wise (for multi-way); hence we name our algorithmConditional Random Sampling (CRS).

2.1 The Sampling/Sketching Procedure

1
2
3
4
5
n

1    2    3     4    5    6    7    8    D

(a) Original

1
2
3
4
5
n

1    2    3     4    5    6    7    8    D

(b) Permuted

1
2
3
4
5
n

(c) Postings

1
2
3
4
5
n

(d) Sketches
Figure 1: A global view of thesketchingstage.

Figure 1 provides a global view of thesketchingstage. The columns of a sparse data matrix (a)
are first randomly permuted (b). Then only the non-zero entries are considered, calledpostings(c).
Sketchesare simply the front of postings (d). Note that in the actual implementation, we only need
to maintain a permutation mapping on the column IDs.
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(a) Data matrix and random samples
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P  :   1 (1)   2 (3)   5 (1)   6 (2)     8 (1)   11 (3)   14 (2)   15 (1)  2

P  :   2 (1)   4 (2)   6 (1)   9 (1)   10 (2)   11 (1)   13 (1)   15 (2)

(b) Postings

1
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K  :   2 (1)   4 (2)   6 (1)   9 (1)   10 (2)   
K  :   1 (1)   2 (3)   5 (1)   6 (2)     8 (1)   11 (3)   

(c) Sketches
Figure 2: (a): A data matrix with two rows andD = 15. If the column IDs are random, the first
Ds = 10 columns constitute a random sample.ui denotes theith row. (b): Postings consist of
tuples “ID (Value).” (c): Sketches are the firstki entries of postings sorted ascending by IDs. In this
example,k1 = 5, k2 = 6, Ds = min(10, 11) = 10. Excluding 11(3) in K2, we obtain the same
samples as if we directly sampled the firstDs = 10 columns in the data matrix.

Apparently sketches are not uniformly random samples, which may make the estimation task dif-
ficult. We show, in Figure 2, that sketches are almost random samples pairwise (or group-wise).
Figure 2(a) constructsconventional random samplesfrom a data matrix; and we show one can gen-
erate (retrospectively) the same random samples from sketches in Figure 2(b)(c).

In Figure 2(a), when the column are randomly permuted, we can construct random samples by sim-
ply taking the firstDs columns from the data matrix ofD columns (Ds ≪ D in real applications).

For sparse data, we only store the non-zero elements in the form of tuples “ID (Value),” a structure
calledpostings. We denote the postings by Pi for each rowui. Figure 2(b) shows the postings for
the same data matrix in Figure 2(a). The tuples are sorted ascending by their IDs. Asketch, Ki, of
postings Pi, is the firstki entries (i.e., the smallestki IDs) of Pi, as shown in Figure 2(c).



The central observation is that if we exclude all elements of sketches whose IDs are larger than

Ds = min (max(ID(K1)), max(ID(K2))) , (1)

we obtain exactly the same samples as if we directly sampled the firstDs columns from the data
matrix in Figure 2(a). This way, we convert sketches into random samples byconditioningon Ds,
which differs pairwise and we do not know beforehand.

2.2 The Estimation Procedure

The estimation task for CRS can be extremely simple. After we construct the conditional random
samples from sketches K1 and K2 with the effective sample sizeDs, we can compute any distances
(l2, l1, or inner products) from the samples and multiply them byD

Ds
to estimate the original space.

(Later, we will show how to improve the estimates by taking advantage of the marginal information.)

We useũ1,j andũ2,j (j = 1 to Ds) to denote the conditional random samples (of sizeDs) obtained
by CRS. For example, in Figure 2, we haveDs = 10, and the non-zerõu1,j andũ2,j are

ũ1,2 = 3, ũ1,4 = 2, ũ1,6 = 1, ũ1,9 = 1, ũ1,10 = 2

ũ2,1 = 1, ũ2,2 = 3, ũ2,5 = 1, ũ2,6 = 2, ũ2,8 = 1.

Denote the inner product, squaredl2 distance, andl1 distance, bya, d(2), andd(1), respectively,

a =

D
∑

i=1

u1,iu2,i, d(2) =

D
∑

i=1

|u1,i − u2,i|
2, d(1) =

D
∑

i=1

|u1,i − u2,i| (2)

Once we have the random samples, we can then use the following simple linear estimators:

âMF =
D

Ds

Ds
∑

j=1

ũ1,jũ2,j , d̂
(2)
MF =

D

Ds

Ds
∑

j=1

(ũ1,j − ũ2,j)
2
, d̂

(1)
MF =

D

Ds

Ds
∑

j=1

|ũ1,j − ũ2,j|. (3)

2.3 The Computational Cost

Th sketching stage requires generating a random permutation mapping of lengthD, and linear scan
all the non-zeros. Therefore, generating sketches forA ∈ R

n×D costsO(
∑n

i=1 fi), wherefi is the
number of non-zeros in theith row, i.e.,fi = |Pi|. In the estimation stage, we need to linear scan the
sketches. While the conditional sample sizeDs might be large, the cost for estimating the distance
between one pair of data points would be onlyO(k1 + k2) instead ofO(Ds).

3 The Theoretical Variance Analysis of CRS

We give some theoretical analysis on the variances of CRS. For simplicity, we ignore the “finite
population correction factor”,D−Ds

D−1 , due to “sample-without-replacement.”

We first consider̂aMF = D
Ds

∑Ds

j=1 ũ1,jũ2,j. By assuming “sample-with-replacement,” the samples,
(ũ1,j ũ2,j), j = 1 to Ds, are i.i.d, conditional onDs. Thus,

Var(âMF |Ds) =

„

D

Ds

«2

DsVar(ũ1,1ũ2,1) =
D

Ds

D
`

E(ũ1,1ũ2,1)
2 − E2 (ũ1,1ũ2,1)

´

, (4)

E(ũ1,1ũ2,1) =
1

D

D
X

i=1

(u1,iu2,i) =
a

D
, E (ũ1,1ũ2,1)

2 =
1

D

D
X

i=1

(u1,iu2,i)
2
, (5)

Var(âMF |Ds) =
D
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D
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The unconditional variance would be simply

Var(âMF ) = E (Var(âMF |Ds)) = E

„

D

Ds

«

 

D
X
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u
2
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2
2,i −

a2

D

!

,



asVar(X̂) = E
“

Var(X̂|Ds)
”

+ Var
“

E(X̂|Ds)
”

= E
“

Var(X̂|Ds)
”

, whenX̂ is conditionally unbiased.

No closed-form expression is known for E
(

D
Ds

)

; but we know E
(

D
Ds

)

≥ max
(

f1

k1

, f2

k2

)

(similar

to Jensen’s inequality). Asymptotically (ask1 andk2 increase), the inequality becomes an equality

E

(

D

Ds

)

≈ max

(

f1 + 1

k1
,
f2 + 1

k2

)

≈ max

(

f1

k1
,
f2

k2

)

, (7)

wheref1 andf2 are the numbers of non-zeros inu1 andu2, respectively. See [13] for the proof.
Extensive simulations in [13] verify that the errors of (7) are usually within5% whenk1, k2 > 20.

We similarly derive the variances for̂d
(2)
MF andd̂

(1)
MF . In a summary, we obtain (whenk1 = k2 = k)

Var(âMF ) = E

„

D

Ds
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Var
“

d̂
(2)
MF

”

= E

„

D

Ds

«„

d
(4) − [d(2)]2

D

«

≈ max(f1, f2)

D

1

k

“

Dd
(4) − [d(2)]2

”

, (9)

Var
“

d̂
(1)
MF

”

= E

„

D

Ds

«„

d
(2) − [d(1)]2

D

«

≈ max(f1, f2)

D

1

k

“

Dd
(2) − [d(1)]2

”

. (10)

where we denoted(4) =
∑D

i=1 (u1,i − u2,i)
4.

Thesparsityterm max(f1,f2)
D reduces the variances significantly. Ifmax(f1,f2)

D = 0.01, the variances
can be reduced by a factor of 100, compared toconventional random coordinate sampling.

4 A Brief Introduction to Random Projections
We give a brief introduction to random projections, with which we compare CRS. (Normal) Random
projections [17] are widely used in learning and data mining [2–4].

Random projections multiply the data matrixA ∈ R
n×D with a random matrixR ∈ R

D×k to
generate a compact representationB = AR ∈ R

n×k. For estimatingl2 distances,R typically
consists of i.i.d. entries inN(0, 1); hence we call itnormal random projections. For l1, R consists
of i.i.d. CauchyC(0, 1) [9]. However, the recent impossibility result [5] has ruled out estimators
that could be metrics for dimension reduction inl1.

Denotev1, v2 ∈ R
k the two rows inB, corresponding to the original data pointsu1, u2 ∈ R

D. We
also introduce the notation for the marginall2 norms:m1 = ‖u1‖

2, m2 = ‖u2‖
2.

4.1 Normal Random Projections

In this case,R consists of i.i.d.N(0, 1). It is easy to show that the following linear estimators of
the inner producta and the squaredl2 distanced(2) are unbiased

âNRP,MF =
1

k
vT
1v2, d̂

(2)
NRP,MF =

1

k
‖v1 − v2‖

2, (11)

with variances [15,17]

Var(âNRP,MF ) =
1

k

(

m1m2 + a2
)

, Var
(

d̂
(2)
NRP,MF

)

=
2[d(2)]2

k
. (12)

Assuming that the marginsm1 = ‖u1‖
2 andm2 = ‖u2‖

2 are known, [15] provides a maximum
likelihood estimator, denoted bŷaNRP,MLE , whose (asymptotic) variance is

Var(âNRP,MLE) =
1

k

(m1m2 − a2)2

m1m2 + a2
+ O(k−2). (13)

4.2 Cauchy Random Projections for Dimension Reduction inl1
In this case,R consisting of i.i.d. entries in CauchyC(0, 1). [9] proposed an estimator based on the
absolute sample median. Recently, [14] proposed a variety of nonlinear estimators, including, a bias-
corrected sample median estimator, a bias-corrected geometric mean estimator, and a bias-corrected



maximum likelihood estimator. An analog of the Johnson-Lindenstrauss (JL) lemma for dimension
reduction inl1 is also proved in [14], based on the bias-corrected geometric mean estimator.

We only list the maximum likelihood estimator derived in [14], because it is the most accurate one.

d̂
(1)
CRP,MLE,c =

(

1 −
1

k

)

d̂
(1)
CRP,MLE , (14)

whered̂
(1)
CRP,MLE solves a nonlinear MLE equation

− k

d̂
(1)
CRP,MLE

+
k
X

j=1

2d̂
(1)
CRP,MLE

(v1,j − v2,j)
2 +

“

d̂
(1)
CRP,MLE

”2
= 0. (15)

[14] shows that

Var
(

d̂
(1)
CRP,MLE,c

)

=
2[d(1)]2

k
+

3[d(1)]2

k2
+ O

(

1

k3

)

. (16)

4.3 General Stable Random Projections for Dimension Reduction inlp (0 < p ≤ 2)

[10] generalized the bias-corrected geometric mean estimator to general stable random projections
for dimension reduction inlp (0 < p ≤ 2), and provided the theoretical variances and exponential
tail bounds. Of course, CRS can also be applied to approximating anylp distances.

5 Improving CRS Using Marginal Information
It is often reasonable to assume that we know the marginal information such as marginall2 norms,
numbers of non-zeros, or even marginal histograms. This often leads to (much) sharper estimates,
by maximizing the likelihood under marginal constraints. In the boolean data case, we can express
the MLE solution explicitly and derive a closed-form (asymptotic) variance. In general real-valued
data, the joint likelihood is not available; we propose an approximate MLE solution.

5.1 Boolean (0/1) Data

In 0/1 data, estimating the inner product becomes estimating a two-way contingency table, which
has four cells. Because of the margin constraints, there is only one degree of freedom. Therefore, it
is not hard to show that the MLE ofa is the solution, denoted bŷa0/1,MLE , to a cubic equation

s11

a
−

s10

f1 − a
−

s01

f2 − a
+

s00

D − f1 − f2 + a
= 0, (17)

wheres11 = #{j : ũ1,j = ũ2,j = 1}, s10 = #{j : ũ1,j = 1, ũ2,j = 0}, s01 = #{j : ũ1,j =
0, ũ2,j = 1}, s00 = #{j : ũ1,j = 0, ũ2,j = 0}, j = 1, 2, ...,Ds.

The (asymptotic) variance of̂a0/1,MLE is proved [11–13] to be

Var(â0/1,MLE) = E

(

D

Ds

)

1
1
a + 1

f1−a + 1
f2−a + 1

D−f1−f2+a

. (18)

5.2 Real-valued Data

A practical solution is to assume some parametric form of the (bivariate) data distribution based
on prior knowledge; and then solve an MLE considering various constraints. Suppose the samples
(ũ1,j , ũ2,j) are i.i.d. bivariate normal with moments determined by the population moments, i.e.,

»

ṽ1,j

ṽ2,j

–

=

»

ũ1,j − ū1

ũ2,j − ū2

–

∼ N

„»

0
0

–

, Σ̃

«

, (19)

Σ̃ =
1

Ds

Ds

D

»

‖u1‖2 − Dū2
1 uT

1u2 − Dū1ū2

uT
1u2 − Dū1ū2 ‖u2‖2 − Dū2

2

–

=
1

Ds

»

m̈1 ä
ä m̈2

–

, (20)

where ū1 =
∑D

i=1 u1,i/D, ū2 =
∑D

i=1 u2,i/D are the population means. m̈1 =
Ds

D

(

‖u1‖
2 − Dū2

1

)

, m̈2 = Ds

D

(

‖u2‖
2 − Dū22

)

, ä = Ds

D

(

uT
1u2 − Dū1ū2

)

. Suppose that̄u1,
ū2, m1 = ‖u1‖

2 andm2 = ‖u2‖
2 are known, an MLE fora = uT

1u2, denoted bŷaMLE,N , is

âMLE,N =
D

Ds

ˆ̈a + Dū1ū2, (21)



where, similar to Lemma 2 of [15],̈̂a is the solution to a cubic equation:
ä3 − ä2

(

ṽT
1 ṽ2

)

+ ä
(

−m̈1m̈2 + m̈1‖ṽ2‖
2 + m̈2‖ṽ1‖

2
)

− m̈1m̈2ṽ
T
1 ṽ2 = 0. (22)

âMLE,N is fairly robust, although sometimes we observe the biases are quite noticeable. In general,
this is a good bias-variance trade-off (especially whenk is not too large). Intuitively, the reason why
this (seemly crude) assumption of bivariate normality works well is because, once we have fixed the
margins, we have removed to a large extent the non-normal component of the data.

6 Theoretical Comparisons of CRS With Random Projections
As reflected by their variances, for general data types, whether CRS is better than random projec-
tions depends on two competing factors: data sparsity and data heavy-tailedness. However, in the
following two important scenarios, CRS outperforms random projections.

6.1 Boolean (0/1) data

In this case, the marginal norms are the same as the numbers of non-zeros, i.e.,mi = ‖ui‖
2 = fi.

Figure 3 plots the ratio, Var(âMF )
Var(âNRP,MF ) , verifying that CRS is (considerably) more accurate:

Var(âMF )

Var(âNRP,MF )
=

max(f1, f2)

f1f2 + a2

1
1
a + 1

D−a

≤
max(f1, f2)a

f1f2 + a2
≤ 1.

Figure 4 plots
Var(â0/1,MLE)
Var(âNRP,MLE) . In most possible range of the data, this ratio is less than 1. When

u1 andu2 are very close (e.g.,a ≈ f2 ≈ f1), random projections appear more accurate. However,
when this does occur, the absolute variances are so small (even zero) that their ratio does not matter.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a/f
2

V
ar

ia
nc

e 
ra

tio

f
2
/f

1
 = 0.2

f
1
 = 0.05D

f
1
 = 0.95D

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

a/f
2

V
ar

ia
nc

e 
ra

tio

f
2
/f

1
 = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a/f
2

V
ar

ia
nc

e 
ra

tio

f
2
/f

1
 = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a/f
2

V
ar

ia
nc

e 
ra

tio

f
2
/f

1
 = 1

Figure 3: The variance ratios, Var(âMF )
Var(âNRP,MF ) , show that CRS has smaller variances than random

projections, when no marginal information is used. We letf1 ≥ f2 and f2 = αf1 with α =
0.2, 0.5, 0.8, 1.0. For eachα, we plot fromf1 = 0.05D to f1 = 0.95D spaced at0.05D.
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Figure 4: The ratios,
Var(â0/1,MLE)
Var(âNRP,MLE) , show that CRS usually has smaller variances than random

projections, except whenf1 ≈ f2 ≈ a.

6.2 Nearly Independent Data

Suppose two data pointsu1 andu2 are independent (or less strictly, uncorrelated to the second
order), it is easy to show that the variance of CRS is always smaller:

Var(âMF ) ≤
max(f1, f2)

D

m1m2

k
≤ Var(âNRP,MF ) =

m1m2 + a2

k
, (23)

even if we ignore the data sparsity. Therefore, CRS will be much better for estimating inner products
in nearly independent data. Once we have obtained the inner products, we can infer thel2 distances
easily byd(2) = m1 + m2 − 2a, since the margins,m1 andm2, are easy to obtain exactly.

In high dimensions, it is often the case that most of the data points are only very weakly correlated.



6.3 Comparing the Computational Efficiency
As previously mentioned, the cost of constructing sketches forA ∈ R

n×D would beO(nD) (or
more precisely,O(

∑n
i=1 fi)). The cost of (normal) random projections would beO(nDk), which

can be reduced toO(nDk/3) usingsparse random projections[1]. Therefore, it is possible that
CRS is considerably more efficient than random projections in the sampling stage.2

In the estimation stage, CRS costsO(2k) to compute the sample distance for each pair. This cost is
only O(k) in random projections. Sincek is very small, the difference should not be a concern.

7 Empirical Evaluations
We compare CRS with random projections (RP) using real data, includingn = 100 randomly
sampled documents from the NSF data [7] (sparsity≈ 1%), n = 100 documents from the NEWS-
GROUP data [4] (sparsity≈ 1%), and one class of the COREL image data (n = 80, sparsity≈ 5%).
We estimate all pairwise inner products,l1 andl2 distances, using both CRS and RP. For each pair,
we obtain 50 runs and average the absolute errors. We compare the median errors and the percentage
in which CRS does better than random projections.

The results are presented in Figures 5, 6, 7. In each panel, the dashed curve indicates that we sample
each data point with equal sample size (k). For CRS, we can adjust the sample size according to
the sparsity, reflected by the solid curves. We adjust sample sizes only roughly. The data points are
divided into 3 groups according to sparsity. Data in different groups are assigned different sample
sizes for CRS. For random projections, we use the average sample size.

For both NSF and NEWSGROUP data, CRS overwhelmingly outperforms RP for estimating inner
products andl2 distances (both using the marginal information). CRS also outperforms RP for
approximatingl1 andl2 distances (without using the margins).

For the COREL data, CRS still outperforms RP for approximating inner products andl2 distances
(using the margins). However, RP considerably outperforms CRS for approximatingl1 distances
andl2 distances (without using the margins). Note that the COREL image data are not too sparse
and are considerably more heavy-tailed than the NSF and NEWSGROUP data [13].
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Figure 5: NSF data. Upper four panels: ratios (CRS over RP ( random projections)) of the median
absolute errors; values< 1 indicate that CRS does better. Bottom four panels: percentage of pairs
for which CRS has smaller errors than RP; values> 0.5 indicate that CRS does better. Dashed
curves correspond to fixed sample sizes while solid curves indicate that we (crudely) adjust sketch
sizes in CRS according to data sparsity. In this case, CRS is overwhelmingly better than RP for
approximating inner products andl2 distances (both using margins).

8 Conclusion
There are many applications ofl1 and l2 distances on large sparse datasets. We propose a new
sketch-based method,Conditional Random Sampling (CRS), which is provably better than random
projections, at least for the important special cases of boolean data and nearly independent data. In
general non-boolean data, CRS compares favorably, both theoretically and empirically, especially
when we take advantage of the margins (which are easier to compute than distances).

2 [16] proposedvery sparse random projectionsto reduce the costO(nDk) down toO(n
√

Dk).
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Figure 6: NEWSGROUP data. The results are quite similar to those in Figure 5 for the NSF data.
In this case, it is more obvious that adjusting sketch sizes helps CRS.
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Figure 7: COREL image data.
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