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Abstract

We consider the problem of denoising a noisily sampled submanifoldM in R
d,

where the submanifoldM is a priori unknown and we are only given a noisy point
sample. The presented denoising algorithm is based on a graph-based diffusion
process of the point sample. We analyze this diffusion process using recent re-
sults about the convergence of graph Laplacians. In the experiments we show that
our method is capable of dealing with non-trivial high-dimensional noise. More-
over using the denoising algorithm as pre-processing method we can improve the
results of a semi-supervised learning algorithm.

1 Introduction

In the last years several new methods have been developed in the machine learning community
which are based on the assumption that the data lies on a submanifoldM in R

d. They have been
used in semi-supervised learning [15], dimensionality reduction [14, 1] and clustering. However
there exists a certain gap between theory and practice. Namely in practice the data lies almost never
exactly on the submanifold but due to noise is scattered around it. Several of the existing algorithms
in particular graph based methods are quite sensitive to noise. Often they fail in the presence of high-
dimensional noise since then the distance structure is non-discriminative. In this paper we tackle this
problem by proposing a denoising method for manifold data. Given noisily sampled manifold data
in R

d the objective is to ’project’ the sample onto the submanifold.
There exist already some methods which have related objectives like principal curves [6] and the
generative topographic mapping [2]. For both methods one has to know the intrinsic dimension of
the submanifoldM as a parameter of the algorithm. However in the presence of high-dimensional
noise it is almost impossible to estimate the intrinsic dimension correctly. Moreover usually prob-
lems arise if there is more than one connected component.
The algorithm we propose adresses these problems. It works well for low-dimensional submanifolds
corrupted by high-dimensional noise and can deal with multiple connected components. The basic
principle behind our denoising method has been proposed by [13] as a surface processing method in
R

3. The goal of this paper is twofold. First we extend this method to general submanifolds inR
d

aimed at dealing in particular with high-dimensional noise. Second we provide an interpretation of
the denoising algorithm which takes into account the probabilistic setting encountered in machine
learning and which differs from the one usually given in the computer graphics community.

2 The noise model and problem statement

We assume that the data lies on an abstractm-dimensional manifoldM , where the dimensionm
can be seen as the number of independent parameters in the data. This data is mapped via a smooth,
regular embeddingi : M → R

d into the feature spaceRd. In the following we will not distin-
guish betweenM and i(M) ⊂ R

d, since it should be clear from the context which case we are
considering. The Euclidean distance inR

d then induces a metric onM . This metric depends on the



embedding/representation (e.g. scaling) of the data inR
d but is at least continuous with respect to

the intrinsic parameters. Furthermore we assume that the manifoldM is equipped with a probability
measurePM which is absolutely continuous with respect to the natural volume element1 dV of M .
With these definitions the model for the noisy data-generating process inR

d has the following form:

X = i(Θ) + ε,

whereΘ ∼ PM andε ∼ N(0, σ). Note that the probability measure of the noiseε has full support
in R

d. We consider here for convenience a Gaussian noise model but also any other reasonably
concentrated isotropic noise should work. The lawPX of the noisy dataX can be computed from
the true data-generating probability measurePM :

PX(x) = (2π σ2)−
d
2

∫

M

e−
‖x−i(θ)‖2

2σ2 p(θ) dV (θ). (1)

Now the Gaussian measure is equivalent to the heat kernelpt(x, y) = (4πt)−
d
2 exp

(
− ‖x−y‖2

4t

)
of

the diffusion process onRd, see e.g. [5], if we make the identificationσ2 = 2t. An alternative point
of view onPX is therefore to seePX as the result of a diffusion of the density function2 p(θ) of
PM stopped at timet = 1

2σ2. The basic principle behind the denoising algorithm in this paper is to
reversethis diffusion process.

3 The denoising algorithm

In practice we have only an i.i.d. sampleXi, i = 1, . . . , n of PX . The ideal goal would be to find the
corresponding set of pointsi(θi), i = 1, . . . , n on the submanifoldM which generated the points
Xi. However due to the random nature of the noise this is in principle impossible. Instead the goal
is to find corresponding pointsZi on the submanifoldM which are close to the pointsXi. However
we are facing several problems. Since we are only given a finite sample, we do not knowPX or
evenPM . Second as stated in the last section we would like to reverse this diffusion process which
amounts to solving a PDE. However the usual technique to solve this PDE on a grid is unfeasible
due to the high dimension of the ambient spaceR

d.
Instead we solve the diffusion process directly on a graph generated by the sampleXi. This can be
motivated by recent results in [7] where it was shown that the generator of the diffusion process, the
Laplacian∆Rd , can be approximated by the graph Laplacian of a random neighborhood graph. A
similar setting for the denoising of two-dimensional meshes inR

3 has been proposed in the seminal
work of Taubin [13]. Since then several modifications of his original idea have been proposed in
the computer graphics community, including the recent development in [11] to apply the algorithm
directly to point cloud data inR3. In this paper we propose a modification of this diffusion process
which allows us to deal with general noisy samples of arbitrary (low-dimensional) submanifolds in
R

d. In particular the proposed algorithm can cope with high-dimensional noise. Moreover we give
an interpretation of the algorithm, which differs from the one usually given in the computer graphics
community and takes into account the probabilistic nature of the problem.

3.1 Structure on the sample-based graph

We would like to define a diffusion process directly on the sampleXi. To this end we need the gen-
erator of the diffusion process, the graph Laplacian. We will construct this operator for a weighted,
undirected graph. The graph vertices are the sample pointsXi. With {h(Xi)}

n
i=1 being thek-nearest

neighbor (k-NN) distances the weights of thek-NN graph are defined as

w(Xi, Xj) = exp
(

−
‖Xi − Xj‖

2

(max{h(Xi), h(Xj)})2

)

, if ‖Xi − Xj‖ ≤ max{h(Xi), h(Xj)},

and w(Xi, Xj) = 0 otherwise. Additionally we setw(Xi, Xi) = 0, so that the graph has no
loops. Further we denote byd the degree functiond(Xi) =

∑n
j=1 w(Xi, Xj) of the graph and

1In local coordinatesθ1, . . . , θm the natural volume elementdV is given asdV =
√

det g dθ1 . . . dθm,
wheredet g is the determinant of the metric tensorg.

2Note thatPM is not absolutely continuous with respect to the Lebesgue measure inR
d and thereforep(θ)

is not a density inRd.



we introduce two Hilbert spacesHV ,HE of functions on the verticesV and edgesE. Their inner
products are defined as

〈f, g〉HV
=

∑n

i=1
f(Xi) g(Xi) d(Xi), 〈φ, ψ〉HE

=
∑n

i,j=1
w(Xi, Xj)φ(Xi, Xj)ψ(Xi, Xj).

Introducing the discrete differential∇ : HV → HE , (∇f)(Xi, Xj) = f(Xj) − f(Xi) the graph
Laplacian is defined as

∆ : HV → HV , ∆ = ∇∗∇, (∆f)(Xi) = f(Xi) −
1

d(Xi)

∑n

j=1
w(Xi, Xj)f(Xj),

where∇∗ is the adjoint of∇. Defining the matrixD with the degree function on the diagonal the
graph Laplacian in matrix form is given as∆ =

�
− D−1W , see [7] for more details. Note that

despite∆ is not a symmetric matrix it is a self-adjoint operator with respect to the inner product in
HV .

3.2 The denoising algorithm

Having defined the necessary structure on the graph it is straightforward to write down the backward
diffusion process. In the next section we will analyze the geometric properties of this diffusion
process and show why it is directed towards the submanifoldM . Since the graph Laplacian is the
generator of the diffusion process on the graph we can formulate the algorithm by the following
differential equation on the graph:

∂tX = −γ ∆X, (2)

whereγ > 0 is the diffusion constant. Since the points change with time, the whole graph is dynamic
in our setting. This is different to the diffusion processes on a fixed graph studied in semi-supervised
learning. In order to solve the differential equation (2) we choose an implicit Euler-scheme, that is

X(t + 1) − X(t) = −δt γ ∆X(t + 1), (3)

whereδt is the time-step. Since the implicit Euler is unconditionally stable we can choose the factor
δt γ arbitrarily. We fix in the followingγ = 1 so that the only free parameter remains to beδt,
which is set toδ = 0.5 in the rest of the paper. The solution of the implicit Euler scheme for one
timestep in Equation 3 can then be computed as:Xt+1 = (

�
+ δt ∆)−1Xt. After each timestep

the point configuration has changed so that one has to recompute the weight matrixW of the graph.
Then the procedure is continued until a predefined stopping criterion is satisfied, see Section 3.4.
The pseudo-code is given in Algorithm 1. In [12] it was pointed out that there exists a connection

Algorithm 1 Manifold denoising
1: Chooseδt, k
2: while Stopping criterion not satisfieddo
3: Compute thek-NN distancesh(Xi), i = 1, . . . , n,
4: Compute the weightsw(Xi, Xj) of the graph withw(Xi, Xi) = 0,

w(Xi, Xj) = exp
(

−
‖Xi−Xj‖

2

(max{h(Xi),h(Xj)})2

)

, if ‖Xi − Xj‖ ≤ max{h(Xi), h(Xj)},

5: Compute the graph Laplacian∆, ∆ =
�
− D−1W ,

6: SolveX(t + 1) − X(t) = −δt ∆X(t + 1) ⇒ X(t + 1) = (
�

+ δt ∆)−1X(t).
7: end while

between diffusion processes and Tikhonov regularization. Namely the result of one time step of
the diffusion process with the implicit Euler scheme is equivalent to the solution of the following
regularization problem on the graph:

arg min
Zα∈HV

S(Zα) := arg min
Zα∈HV

d∑

α=1

‖Zα − Xα(t)‖
2
HV

+ δt

d∑

α=1

‖∇Zα‖
2
HE

,

whereZα denotes theα-component of the vectorZ ∈ R
d. With ‖∇Zα‖

2
HE

= 〈Zα,∆Zα〉HV
the

minimizer of the above functional with respect toZα can be easily computed as

∂S(Zα)

∂Zα
= 2(Zα − Xα(t)) + 2 δt ∆Zα = 0, α = 1, . . . , d,



so thatZ = (
�

+ δt ∆)−1Xt. Each time-step of our diffusion process can therefore be seen as
a regression problem, where we trade off between fitting the new pointsZ to the pointsX(t) and
having a ’smooth’ point configurationZ measured with respect to the current graph built fromX(t).

3.3 k-nearest neighbor graph versus h-neighborhood graph

In the denoising algorithm we have chosen to use a weightedk-NN graph. It turns out that ak-NN
graph has three advantages over anh-neighborhood graph3. The first advantage is that the graph has
a better connectivity. Namely points in areas of different density have quite different neighborhood
scales which leads for a fixedh to either disconnected or over-connected graphs.
Second we usually have high-dimensional noise. In this case it is well-known that one has a drastic
change in the distance statistic of a sample, which is illustrated by the following trivial lemma.

Lemma 1 Letx, y ∈ R
d andε1, ε2 ∼ N(0, σ2) and defineX = x + ε1 andY = y + ε2, then

E ‖X − Y ‖
2

= ‖x − y‖
2

+ 2 d σ2, and Var ‖X − Y ‖
2

= 8σ2 ‖x − y‖
2

+ 8 d σ4.

One can deduce that the expected squared distance of the noisy submanifold sample is dominated by
the noise term if2dσ2 > maxθ,θ′ ‖i(θ) − i(θ′)‖

2, which is usually the case for larged. In this case
it is quite difficult to adjust the average number of neighbors in a graph by a fixed neighborhood size
h since the distances start to concentrate around their mean value. The third is that by choosingk
we can control directly the sparsity of the weight matrixW and the Laplacian∆ =

�
− D−1W so

that the linear equation in each time step can be solved efficiently.

3.4 Stopping criterion

The problem of choosing the correct number of iterations is very difficult if one has initially high-
dimensional noise and requires prior knowledge. We propose two stopping criterions. The first
one is based on the effect that if the diffusion is done too long the data becomes disconnected and
concentrates in local clusters. One therefore can stop if the number of connected components of the
graph4 increases. The second one is based on prior knowledge about the intrinsic dimension of the
data. In this case one can stop the denoising if the estimated dimension of the sample (e.g. via the
correlation dimension, see [4]) is equal to the intrinsic one. Another less founded but very simple
way is to stop the iterations if the changes in the sample are below some pre-defined threshold.

4 Large sample limit and theoretical analysis

Our qualitative theoretical analysis of the denoising algorithm is based on recent results on the limit
of graph Laplacians [7, 8] as the neighborhood size decreases and the sample size increases. We use
this result to study the continuous limit of the diffusion process. The following theorem about the
limit of the graph Laplacian applies toh-neighborhood graphs, whereas the denoising algorithm is
based on ak-NN graph. Our conjecture5 is that the result carries over tok-NN graphs.

Theorem 1 [7, 8] Let {Xi}
n
i=1 be an i.i.d. sample of a probability measurePM on am-dimensional

compact submanifold6 M of R
d, wherePM has a densitypM ∈ C3(M). Let f ∈ C3(M) and

x ∈ M\∂M , then ifh → 0 andnhm+2/ log n → ∞,

lim
n→∞

1

h2
(∆f)(x) ∼ −(∆Mf)(x) −

2

p
〈∇f,∇p〉TxM , almost surely,

where∆M is the Laplace-Beltrami operator ofM and∼ means up to a constant which depends on
the kernel functionk(‖x − y‖) used to define the weightsW (x, y) = k(‖x − y‖) of the graph.

3In anh-neighborhood graph two sample pointsXi, Xj have a common edge if‖Xi − Xj‖ ≤ h.
4The number of connected comp. is equal to the multiplicity of the first eigenvalue of the graph Laplacian.
5Partially we verified the conjecture however the proof would go beyond the scope of this paper.
6Note that the case whereP has full support inRd is a special case of this theorem.



4.1 The noise-free case

We first derive in a non-rigorous way the continuum limit of our graph based diffusion process in
the noise free case. To that end we do the usual argument made in physics to go from a difference
equation on a grid to the differential equation. We rewrite our diffusion equation (2) on the graph as

i(t + 1) − i(t)

δt
= −

h2

δt

1

h2
∆i

Doing now the limith → 0 andδt → 0 such that the diffusion constantD = h2

δt stays finite and
using the limit of 1

h2 ∆ given in Theorem 1 we get the following differential equation,

∂ti = D [∆M i +
2

p
〈∇p,∇i〉]. (4)

Note that for thek-NN graph the neighborhood sizeh is a function of the local density which implies
that the diffusion constantD also becomes a function of the local densityD = D(p(x)).

Lemma 2 ([9], Lemma 2.14) Let i : M → R
d be a regular, smooth embedding of anm-

dimensional manifoldM , then∆M i = mH, whereH is the mean curvature7 of M .

Using the equation∆M i = mH we can establish equivalence of the continuous diffusion equation
(4) to a generalized mean curvature flow.

∂ti = D [mH +
2

p
〈∇p,∇i〉], (5)

The equivalence to the mean curvature flow∂ti = mH is usually given in computer graphics as the
reason for the denoising effect, see [13, 11]. However as we have shown the diffusion has already
an additional part if one has a non-uniform probability measure onM .

4.2 The noisy case

The analysis of the noisy case is more complicated and we can only provide a rough analysis. The
large sample limitn → ∞ of the graph Laplacian∆ at a sample pointXi is given as

∆Xi = Xi −

∫

Rd kh(‖Xi − y‖) y pX(y)dy
∫

Rd kh(‖Xi − y‖)pX(y)dy
, (6)

wherekh(‖x − y‖) is the weight function used in the construction of the graph, that is in our case

kh(‖x − y‖) = e−
‖x−y‖2

2h2
�

‖x−y‖≤h. In the following analysis we will assume three things, 1) the
noise levelσ is small compared to the neighborhood sizeh, 2) the curvature ofM is small compared
to h and 3) the densitypM varies slowly alongM . Under these conditions it is easy to see that the
main contribution of−∆Xi in Equation 6 will be in the direction of the gradient ofpX atXi. In the
following we try to separate this effect from the mean curvature part derived in the noise-free case.
Under the above conditions we can do the following second order approximation of a convolution
with a Gaussian, see [7], using the explicit form ofpX of Equation 1 :

∫

Rd

kh(‖X − y‖) y pX(y)dy =

∫

M

1

(2πσ2)d/2

∫

Rd

kh(‖X − y‖) y e−
‖y−i(θ)‖2

2σ2 p(θ) dy dV (θ)

=

∫

M

kh(‖X − i(θ)‖) i(θ) p(θ) dV (θ) + O(σ2)

Now define the closest point of the submanifoldM to X: i(θmin) = arg mini(θ)∈M ‖X − i(θ)‖.
Using the condition on the curvature we can approximate the diffusion step−∆X as follows:

−∆X ≈ i(θmin) − X
︸ ︷︷ ︸

I

−

(

i(θmin) −

∫

M
kh(‖i(θmin) − i(θ)‖) i(θ) p(θ) dV (θ)

∫

M
kh(‖i(θmin) − i(θ)‖) p(θ) dV (θ)

︸ ︷︷ ︸

II

)

,

7The mean curvatureH is the trace of the second fundamental form. IfM is a hypersurface inRd the mean
curvature atp is H = 1

d−1

∑d−1

i=1
κiN , whereN is the normal vector andκi the principal curvatures atp.



where we have omitted second-order terms. It follows from the proof of Theorem 1 that the termII
is an approximation of−∆M i(θmin)− 2

p 〈∇p,∇i〉 = −mH − 2
p 〈∇p,∇i〉 whereas the first termI

leads to a movement ofX towardsM . We conclude from this rough analysis that in the denoising
procedure we always have a tradeoff between reducing the noise via the termI and smoothing of the
manifold via the mean curvature termII. Note that the termII is the same for all pointsX which
havei(θmin) as their closest point onM . Therefore this term leads to a global flow which smoothes
the submanifold. In the experiments we observe this as the shrinking phenomenon.

5 Experiments

In the experimental section we test the performance of the denoising algorithm on three noisy
datasets. Furthermore we explore the possibility to use the denoising method as a preprocessing
step for semi-supervised learning. Due to lack of space we can not deal with further applications as
preprocessing method for clustering or dimensionality reduction.

5.1 Denoising

The first experiment is done on a toy-dataset. The manifoldM is given ast → [sin(2πt), 2πt],
t is sampled uniformly on[0, 1]. We embedM into R

200 and put full isotropic Gaussian noise
with σ = 0.4 on each datapoint resulting in the left part of Figure 5.1. We verify the effect of the
denoising algorithm by estimating continuously the dimension over different scales (note that the
dimension of a finite sample always depends on the scale at which one examines). We use for that
purpose the correlation dimension estimator of [4].
The result of the denoising algorithm withk = 25 for thek-NN graph and10 timesteps is given
in the right part of Figure 5.1. One can observe visually and by inspecting the dimension estimate
as well as by the histogram of distances that the algorithm has reduced the noise. One can also see
two undesired effects. First as discussed in the last section the diffusion process has a component
which moves the manifold in the direction of the mean curvature, which leads to a smoothing of the
sinusoid. Second at the boundary the sinusoid shrinks due to the missing counterparts in the local
averaging done by the graph Laplacian, see (6), which result in an inward tangential component.
In the next experiment we apply the denoising to the handwritten digit datasets USPS and MNIST.
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Figure 1: Left:500 samples of the noisy sinusoid inR200 as described in the text, Right: Result after
10 steps of the denoising method withk = 25, note that the estimated dimension is much smaller
and the scale has changed as can be seen from the histogram of distances shown to the right

For handwritten digits the underlying manifold corresponds to varying writing styles. In order to
check if the denoising method can also handle several manifolds at the same time which would make
the method useful for clustering and dimensionality reduction we fed all the 10 digits simultaneously
into the algorithm. For USPS we used the 9298 digits in the training and test set and from MNIST a
subsample of 1000 examples from each digit. We used the two-sided tangent distance in [10] which
provides a certain invariance against translation, scaling, rotation and line thickness. In Figure 2 and
3 we show a sample of the result across all digits. In both cases digits are transformed wrongly. This
happens since they are outliers with respect to their digit manifold and lie closer to another digit
component. An improved handling of invariances should resolve at least partially this problem.

5.2 Denoising as pre-processing for semi-supervised learning

Most semi-supervised learning (SSL) are based on the cluster assumption, that is the decision bound-
ary should lie in a low-density region. The denoising algorithm is consistent with that assumption
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Figure 2: Left: Original images from USPS, right: after 15 iterations withk = [9298/50].
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Figure 3: Left: Original images from MNIST, right: after 15 iterations withk = 100.

since it moves data points towards high-density regions. This is in particular helpful if the original
clusters are distorted by high-dimensional noise. In this case the distance structure of the data be-
comes less discriminative, see Lemma 1, and the identification of the low density regions is quite
difficult. We expect that in such cases manifold denoising as a pre-processing step should improve
the discriminative capacity of graph-based methods. However the denoising algorithm does not take
into account label information. Therefore in the case where the cluster assumption is not fulfilled
the denoising algorithm might decrease the performance. Therefore we add the number of iterations
of the denoising process as an additional parameter in the SSL algorithm.
For the evaluation of our denoising algorithm as a preprocessing step for SSL, we used the bench-
mark data sets from [3]. A description of the data sets and the results of several state-of-the-art SSL
algorithms can be found there. As SSL-algorithm we use a slight variation of the one by Zhou et al.
[15]. It can be formulated as the following regularized least squares problem.

f∗ = argminf∈HV
‖f − y‖

2
HV

+ µ 〈f,∆f〉HV
,

wherey is the given label vector and〈f,∆f〉HV
is the smoothness functional induced by the graph

Laplacian. The solution is given asf∗ = (
�

+ µ∆)−1y. In order to be consistent with our de-
noising scheme we choose instead of the normalized graph Laplacian∆̃ =

�
− D− 1

2 WD− 1
2 as

suggested in [15] the graph Laplacian∆ =
�
−D−1W and the graph structure as described in Sec-

tion 3.1. As neighborhood graph for the SSL-algorithm we used a symmetrick-NN graph with the
following weights: w(Xi, Xj) = exp(−γ ‖Xi − Xj‖

2
) if ‖Xi − Xj‖ ≤ min{h(Xi), h(Xj)}.

As suggested in [3] the distances are rescaled in each iteration such that the1/c2-quantile of the
distances equals1 wherec is the number of classes. The number ofk-NN was chosen for denois-
ing in {5, 10, 15, 25, 50, 100, 150, 200}, and for classification in{5, 10, 20, 50, 100}. The scaling



parameterγ and the regularization parameterµ were selected from{ 1
2 , 1, 2} resp.{2, 20, 200}. The

maximum of iterations was set to20. Parameter values where not all data points have been classified,
that is the graph is disconnected, were excluded. The best parameters were found by ten-fold cross
validation. The final classification is done using a majority vote of the classifiers corresponding to
the minimal cross validation test error. In Table 1 the results are shown for the standard case, that is
no manifold denoising (No MD), and with manifold denoising (MD). For the datasets g241c, g241d
and Text we get significantly better performance using denoising as a preprocessing step, whereas
the results are indifferent for the other datasets. However compared to the results of the state of the
art of SSL on all the datasets reported in [3], the denoising preprocessing has lead to a performance
of the algorithm which is competitive uniformly over all datasets. This improvement is probably not
limited to the employed SSL-algorithm but should also apply to other graph-based methods.

Table 1: Manifold Denoising (MD) as preprocessing for SSL. The mean and standard deviation of
the test error are shown for the datasets from [3] for 10 (top) and 100 (bottom) labeled points.

g241c g241d Digit1 USPS COIL BCI Text
No MD 47.9±2.67 47.2±4.0 14.1±5.4 19.2±2.1 66.2±7.8 50.0±1.1 41.9±7.0
MD 29.0±14.3 26.6±17.8 13.8±5.5 20.5±5.0 66.4±6.0 49.8±1.5 33.6±7.0
ø Iter. 12.3±3.8 11.7±4.4 9.6±2.4 7.3±2.9 4.9±2.7 8.2±3.5 5.6±4.4
No MD 38.9±6.3 34.2±4.1 3.0±1.6 6.2±1.2 15.5±2.6 46.5±1.9 27.0±1.9
MD 16.1±2.2 7.5±0.9 3.2±1.2 5.3±1.4 16.2±2.5 48.4±2.0 24.1±2.8
ø Iter. 15.0±0.8 14.5±1.5 8.0±3.2 8.3±3.8 1.6±1.8 8.4±4.3 6.0±3.5
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