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Abstract

This work presents a method for estimating human facial attractiveness, 
based on supervised learning techniques. Numerous facial features that 
describe facial geometry, color and texture, combined with an average 
human attractiveness score for each facial image, are used to train various 
predictors. Facial attractiveness ratings produced by the final predictor are 
found to be highly correlated with human ratings, markedly improving 
previous machine learning achievements. Simulated psychophysical 
experiments with virtually manipulated images reveal preferences in the 
machine's judgments which are remarkably similar to those of humans. 
These experiments shed new light on existing theories of facial 
attractiveness such as the averageness, smoothness and symmetry 
hypotheses. It is intriguing to find that a machine trained explicitly to 
capture an operational performance criteria such as attractiveness rating, 
implicitly captures basic human psychophysical biases characterizing the 
perception of facial attractiveness in general.

1 Introduction

Philosophers, artists and scientists have been trying to capture the nature of beauty since the 
early days of philosophy. Although in modern days a common layman's notion is that 
judgments of beauty are a matter of subjective opinion, recent findings suggest that people 
might share a common taste for facial attractiveness and that their preferences may be an 
innate part of the primary constitution of our nature. Several experiments have shown that 2 
to 8 months old infants prefer looking at faces which adults rate as being more attractive 
[1]. In addition, attractiveness ratings show very high agreement between groups of raters 
belonging to the same culture and even across cultures [2]. Such findings give rise to the 
quest for common factors which determine human facial attractiveness. Accordingly, 
various hypotheses, from cognitive, evolutional and social perspectives, have been put 
forward to describe the common preferences for facial beauty. 

Inspired by Sir Francis Galton’s photographic method of composing faces [3], Rubenstein, 
Langlois and Roggman created averaged faces by morphing multiple images together and 
proposed that averageness is the answer for facial attractiveness [4, 5]. Human judges found 
these averaged faces to be attractive and rated them with attractiveness ratings higher than 
the mean rating of the component faces composing them. Grammer and Thornhill have 
investigated symmetry and averageness of faces and concluded that symmetry was more 
important than averageness in facial attractiveness [6]. Little and colleagues have agreed 
that average faces are attractive but claim that faces with certain extreme features, such as 
extreme sexually dimorphic traits, may be more attractive than average faces [7]. Other 



researchers have suggested various conditions which may contribute to facial attractiveness 
such as neonate features, pleasant expressions and familiarity. Cunningham and his 
associates suggest a multiple fitness model in which there is no single constructing line that 
determines attractiveness. Instead, different categories of features signal different desirable 
qualities of the perceived target [8]. Even so, the multiple fitness model agrees that some 
facial qualities are universally physically attractive to people.

Apart from eliciting the facial characteristics which account for attractiveness, modern 
researchers try to describe underlying mechanisms for these preferences. Many contributors 
refer to the evolutionary origins of attractiveness preferences [9]-[11]. According to this 
view, facial traits signal mate quality and imply chances for reproductive success and 
parasite resistance. Some evolutionary theorists suggest that preferred features might not 
signal mate quality but that the “good taste” by itself is an evolutionary adaptation 
(individuals with a preference for attractiveness will have attractive offspring that will be 
favored as mates) [9]. Another mechanism explains attractiveness' preferences through a 
cognitive theory - a preference for attractive faces might be induced as a by-product of 
general perception or recognition mechanisms [5, 12]: Attractive faces might be pleasant to 
look at since they are closer to the cognitive representation of the face category in the mind. 
These cognitive representations are described as a part of a cognitive mechanism that 
abstracts prototypes from distinct classes of objects. These prototypes relate to average 
faces when considering the averageness hypothesis. A third view has suggested that facial 
attractiveness originates in a social mechanism, where preferences may be dependent on the 
learning history of the individual and even on his social goals [12]. 

Different studies have tried to use computational methods in order to analyze facial 
attractiveness. Averaging faces with morph tools was done in several cases (e.g. [5, 13]). In 
[14], laser scans of faces were put into complete correspondence with the average face in 
order to examine the relationship between facial attractiveness, age, and averageness. 
Another approach was used in [15] where a genetic algorithm, guided by interactive user 
selections, was programmed to evolve a “most beautiful” female face. [16] used machine 
learning methods to investigate whether a machine can predict attractiveness ratings by 
learning a mapping from facial images to their attractiveness scores. Their predictor achieved a 
significant correlation of 0.6 with average human ratings, demonstrating that facial beauty can be 
learned by a machine, at least to some degree. However, as human raters still do significantly 
outperform the predictor of [16], the challenge of constructing a facial attractiveness 
machine with human level evaluation accuracy has remained open. A primary goal of this 
study is to surpass these results by developing a machine which obtains human level 
performance in predicting facial attractiveness. Having accomplished this, our second 
main goal is to conduct a series of simulated psychophysical experiments and study the 
resemblance between human and machine judgments. This latter task carries two potential 
rewards: A. To determine whether the machine can aid in understanding the psychophysics 
of human facial attractiveness, capitalizing on the ready accessibility of the analysis of its 
inner workings, and B. To study whether learning an explicit operational ratings 
prediction task also entails learning implicit humanlike biases, at least for the case of 
facial attractiveness.

2 The facial  training database:  Acquisi t ion,  preprocessing 
and representation

2 .1 Ra t ing  fa c ia l  a t t ra ct iveness

The chosen database was composed of 91 facial images of American females, taken by the 
Japanese photographer Akira Gomi. All 91 samples were frontal color photographs of young 
Caucasian females with a neutral expression. All samples were of similar age, skin color 
and gender. The subjects’ portraits had no accessories or other distracting items such as 
jewelry. All 91 facial images in the dataset were rated for attractiveness by 28 human raters 
(15 males, 13 females) on a 7-point Likert scale (1 = very unattractive, 7 = very attractive). 
Ratings were collected with a specifically designed html interface. Each rater was asked to 



view the entire set before rating in order to acquire a notion of attractiveness scale. There 
was no time limit for judging the attractiveness of each sample and raters could go back and 
adjust the ratings of already rated samples. The images were presented to each rater in a 
random order and each image was presented on a separate page. The final attractiveness 
rating of each sample was its mean rating across all raters. To validate that the number of 
ratings collected adequately represented the ``collective attractiveness rating'' we randomly 
divided the raters into two disjoint groups of equal size. For each facial image, we 
calculated the mean rating on each group, and calculated the Pearson correlation between 
the mean ratings of the two groups. This process was repeated 1,000 times. The mean 
correlation between two groups was 0.92 ( = 0.01). This corresponds well to the known 
level of consistency among groups of raters reported in the literature (e.g. [2]). Hence, the 
mean ratings collected are stable indicators of attractiveness that can be used for the 
learning task. The facial set contained faces in all ranges of attractiveness. Final 
attractiveness ratings range from 1.42 to 5.75 and the mean rating was 3.33 ( = 0.94).

2 .2 Da ta  prepro cess ing  a nd  representa t io n

Preliminary experimentation with various ways of representing a facial image have 
systematically shown that features based on measured proportions, distances and angles of 
faces are most effective in capturing the notion of facial attractiveness (e.g. [16]). To extract 
facial features we developed an automatic engine that is capable of identifying eyes, nose, 
lips, eyebrows, and head contour. In total, we measured 84 coordinates describing the 
locations of those facial features (Figure 1). Several regions are suggested for extracting 
mean hair color, mean skin color and skin texture. The feature extraction process was 
basically automatic but some coordinates needed to be manually adjusted in some of the 
images. The facial coordinates are used to create a distances-vector of all 3,486 distances 
between all pairs of coordinates in the complete graph created by all coordinates. For each 
image, all distances are normalized by face length. In a similar manner, a slopes-vector of 
all the 3,486 slopes of the lines connecting the facial coordinates is computed. Central 
fluctuating asymmetry (CFA), which is described in [6], is calculated from the coordinates 
as well. The application also provides, for each face, Hue, Saturation and Value (HSV) 
values of hair color and skin color, and a measurement of skin smoothness.  

Figure 1: Facial coordinates with hair and skin sample regions as represented by the facial 
feature extractor. Coordinates are used for calculating geometric features and asymmetry. 
Sample regions are used for calculating color values and smoothness. The sample image, 
used for illustration only, is of T.G. and is presented with her full consent.

Combining the distances-vector and the slopes-vector yields a vector representation of 6,972 
geometric features for each image. Since strong correlations are expected among the 
features in such representation, principal component analysis (PCA) was applied to these 
geometric features, producing 90 principal components which span the sub-space defined by 
the 91 image vector representations. The geometric features are projected on those 90 
principal components and supply 90 orthogonal eigenfeatures representing the geometric 
features. Eight measured features were not included in the PCA analysis, including CFA, 
smoothness, hair color coordinates (HSV) and skin color coordinates. These features are 



assumed to be directly connected to human perception of facial attractiveness and are hence 
kept at their original values. These 8 features were added to the 90 geometric eigenfeatures, 
resulting in a total of 98 image-features representing each facial image in the dataset. 

3 Experiments  and results

3 .1 Predic to r  co nstruc t io n  a nd  v a l ida t io n

We experimented with several induction algorithms including simple Linear Regression, 
Least Squares Support Vector Machine (LS-SVM) (both linear as well as non-linear) and 
Gaussian Processes (GP). However, as the LS-SVM and GP showed no substantial 
advantage over Linear Regression, the latter was used and is presented in the sequel. 

A key ingredient in our methods is to use a proper image-features selection strategy. To this 
end we used subset feature selection, implemented by ranking the image-features by their 
Pearson correlation with the target. Other ranking functions produced no substantial gain. To 
measure the performance of our method we removed one sample from the whole dataset. 
This sample served as a test set. We found, for each left out sample, the optimal number of 
image-features by performing leave-one-out-cross-validation (LOOCV) on the remaining 
samples and selecting the number of features that minimizes the absolute difference between 
the algorithm's output and the targets of the training set. In other words, the score for a test 
example was predicted using a single model based on the training set only. This process was 
repeated n=91 times, once for each image sample. The vector of attractiveness predictions of 
all images is then compared with the true targets. These scores are found to be in a high 
Pearson correlation of 0.82 with the mean ratings of humans (P-value < 10-23), which 
corresponds to a normalized Mean Squared Error of 0.39. This accuracy is a marked 
improvement over the recently published performance results of a Pearson correlation of 0.6 
on a similar dataset [16]. The average correlation of an individual human rater to the mean 
correlations of all other raters in our dataset is 0.67 and the average correlation between the 
mean ratings of groups of raters is 0.92 (section 2.1).

It should be noted that we tried to use this feature selection and training procedure with the 
original geometric features instead of the eigenfeatures, ranking them by their correlation to 
the targets and selecting up to 300 best ranked features. This, however, has failed to produce 
good predictors due to strong correlations between the original geometric features (maximal 
Pearson correlation obtained was 0.26).

3 .2 S i mi la r i ty  o f  ma chi ne  a nd  hu ma n ju dg ments

Each   rater  (human  and  machine)   has  a  91  dimensional rating  vector   describing  its 

Figure 2: Distribution of mean Euclidean distance from each human rater to all other raters
in the ratings space. The machine’s average distance form all other raters (left bar) is 
smaller than the average distance of each of the human raters to all others. 



attractiveness ratings of all 91 images. These vectors can be embedded in a 91 dimensional 
ratings space. The Euclidian distance between all raters (human and machine) in this space 
was computed. Compared with each of the human raters, the ratings of the machine were the 
closest, on average, to the ratings of all other human raters (Figure 2). To verify that the 
machine ratings are not outliers that fall out of clusters of human raters (even though their 
mean distance from the other ratings is small) we surrounded each of the rating vectors in 
the ratings space with multidimensional spheres of several radius sizes. The machine had 
more human neighbors than the mean number of neighbors of human raters, testifying that it 
does not fall between clusters. Finally, for a graphic display of machine ratings among 
human ratings we applied PCA to machine and human ratings in the rating space and 
projected all ratings onto the resulting first 2 and 3 principal components. Indeed, the 
machine is well placed in a mid-zone of human raters (Figure 3). 
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Figure 3: Location of machine ratings among the 28 human ratings: Ratings were projected 
into 2 dimensions (a) and 3 dimensions (b) by performing PCA on all ratings and projecting 
them on the first principal components. The projected data explain 29.8% of the variance in 
(a) and 36.6% in (b).

3 .3  Psy cho phy s ica l  exper i ment s  i n  s i l i co

A number of simulated psychophysical experiments reveal humanlike biases of the 
machine's performance. Rubenstein et al. discuss a morphing technique to create 
mathematically averaged faces from multiple face images [5]. They reported that averaged 
faces made of 16 and 32 original component images were rated higher in attractiveness than 
the mean attractiveness ratings of their component faces and higher than composites 
consisting of fewer faces. In their experiment, 32-component composites were found to be 
the most attractive. We used a similar technique to create averaged virtually-morphed faces 
with various numbers of components, nc, and have let the machine predict their 
attractiveness. To this end, coordinate values of the original component faces were averaged 
to create a new set of coordinates for the composite. These coordinates were used to 
calculate the geometrical features and CFA of the averaged face. Smoothness and HSV 
values for the composite faces were calculated by averaging the corresponding values of the 
component faces1. To study the effect of nc on the attractiveness score we produced 1,000 
virtual morph images for each value of nc between 2 and 50, and used our attractiveness 
predictor (section 3.1) to compute the attractiveness scores of the resulting composites. 

In accordance with the experimental results of [5], the machine manifests a humanlike bias 
for higher scores of averaged composites over their components’ mean score. Figure 4a, 
presenting these results, shows the percent of components which were rated as less 
attractive than their corresponding composite, for each number of components nc. As 
evident, the attractiveness rating of a composite surpasses a larger percent of its 
components’ ratings as nc increases. Figure 4a also shows the mean scores of 1,000 

                                                          
1 HSV values are converted to RGB before averaging



composites and the mean scores of their components, for each nc (scores are normalized to 
the range [0, 1]). Their actual attractiveness scores are reported in Table 1. As expected, the 
mean scores of the components images are independent of nc, while composites’ scores 
increase with nc. Mean values of smoothness and asymmetry of the composites are 
presented in Figure 4b.  
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Figure 4: Mean results over 1,000 composites made of varying numbers of image 
components: (a) Percent of components which were rated as less attractive than their 
corresponding composite accompanied with mean scores of composites and the mean scores 
of their components (scores are normalized to the range [0, 1]. actual attractiveness scores 
are reported in Table 1). (b) Mean values of smoothness and asymmetry of 1,000 composites 
for each number of components, nc.

Table 1: Mean results over 1,000 composites made of varying numbers of component images

NUMBER OF 
COMPONENTS 
IN COMPOSITE

COMPOSITE  
SCORE

COMPONENTS 
MEAN SCORE

COMPONENTS RATED 
LOWER THAN 

COMPOSITE (PERCENT)

2 3.46 3.34 55 %
4 3.66 3.33 64 %

12 3.74 3.32 70 %
25 3.82 3.32 75 %
50 3.94 3.33 81 %

Recent studies have provided evidence that skin texture influences judgments of facial 
attractiveness [17]. Since blurring and smoothing of faces occur when faces are averaged 
together [5], the smooth complexion of composites may underlie the attractiveness of 
averaged composites. In our experiment, a preference for averageness is found even though 
our method of virtual-morphing does not produce the smoothening effect and the mean 
smoothness value of composites corresponds to the mean smoothness value in the original 
dataset, for all nc (see Figure 4b). Researchers have also suggested that averaged faces are 
attractive since they are exceptionally symmetric [18]. Figure 4b shows that the mean level 
of asymmetry is indeed highly correlated with the mean scores of the morphs (Pearson 
correlation of -0.91, P-value < 10-19). However, examining the correlation between the rest 
of the features and the composites' scores reveals that this high correlation is not at all 
unique to asymmetry. In fact, 45 of the 98 features are strongly correlated with attractiveness 
scores (|Pearson correlation| > 0.9). The high correlation between these numerous features 
and attractiveness scores of averaged faces indicates that symmetry level is not an 
exceptional factor in the machine’s preference for averaged faces. Instead, it suggests that 



averaging causes many features, including both geometric features and symmetry, to change 
in a direction which causes an increase in attractiveness.  

It has been argued that although averaged faces are found to be attractive, very attractive 
faces are not average [18]. A virtual composite made of the 12 most attractive faces in the 
set (as rated by humans) was rated by the machine with a high score of 5.6 while 1,000 
composites made of 50 faces got a maximum score of only 5.3. This type of preference 
resembles the findings of an experiment by Perrett et al. in which a highly attractive 
composite, morphed from only attractive faces, was preferred by humans over a composite 
made of 60 images of all levels of attractiveness [13].

Another study by Zaidel et al. examined the asymmetry of attractiveness perception and 
offered a relationship between facial attractiveness and hemispheric specialization [19]. In 
this research right-right and left-left chimeric composites were created by attaching each half 
of the face to its mirror image. Subjects were asked to look at left-left and right-right 
composites of the same image and judge which one is more attractive. For women’s faces, 
right-right composites got twice as many ‘more attractive’ responses than left-left 
composites. Interestingly, similar results were found when simulating the same experiment 
with the machine: Right-right and left-left chimeric composites were created from the 
extracted coordinates of each image and the machine was used to predict their attractiveness 
ratings (taking care to exclude the original image used for the chimeric composition from the 
training set, as it contains many features which are identical to those of the composite). The 
machine gave 63 out of 91 right-right composites a higher rating than their matching left-left 
composite, while only 28 left-left composites were judged as more attractive. A paired t-test 
shows these results to be statistically significant with P-value < 10-7 (scores of chimeric 
composites are normally distributed). It is interesting to see that the machine manifests the 
same kind of asymmetry bias reported by Zaidel et al, though it has never been explicitly 
trained for that.

4 Discussion

In this work we produced a high quality training set for learning facial attractiveness of 
human faces. Using supervised learning methodologies we were able to construct the first 
predictor that achieves accurate, humanlike performance for this task. Our results add the 
task of facial attractiveness prediction to a collection of abstract tasks that has been 
successfully accomplished with current machine learning techniques.

Examining the machine and human raters' representations in the ratings space identifies the 
ratings of the machine in the center of human raters, and closest, in average, to other human 
raters. The similarity between human and machine preferences has prompted us to further 
study the machine’s operation in order to capitalize on the accessibility of its inner workings 
and learn more about human perception of facial attractiveness. To this end, we have found 
that that the machine favors averaged faces made of several component faces. While this 
preference is known to be common to humans as well, researchers have previously offered 
different reasons for favoring averageness. Our analysis has revealed that symmetry is 
strongly related to the attractiveness of averaged faces, but is definitely not the only factor in 
the equation since about half of the image-features relate to the ratings of averaged 
composites in a similar manner as the symmetry measure. This suggests that a general 
movement of features toward attractiveness, rather than a simple increase in symmetry, is 
responsible for the attractiveness of averaged faces. Obviously, strictly speaking this can be 
held true only for the machine, but, in due of the remarkable ``humnalike'' behavior of the 
machine, it also brings important support to the idea that this finding may well extend also to 
human perception of facial attractiveness. Overall, it is quite surprising and pleasing to see 
that a machine trained explicitly to capture an operational performance criteria such as 
rating, implicitly captures basic human psychophysical biases related to facial attractiveness.  
It is likely that while the machine learns the ratings in an explicit supervised manner, it also 
concomitantly and implicitly learns other basic characteristics of human facial ratings, as 
revealed by studying its "psychophysics".



Ac kno w ledg me nts

We thank Dr. Bernhard Fink and the Ludwig-Boltzmann Institute for Urban Ethology at the 
Institute for Anthropology, University of Vienna, Austria, and Prof. Alice J. O'Toole from 
the University of Texas at Dallas, for kindly letting us use their face databases. 

References

[1] Langlois, J.H., Roggman, L.A., Casey, R.J., Ritter, J.M., Rieser-Danner, L.A. & Jenkins, V.Y. 
(1987) Infant preferences for attractive faces: Rudiments of a stereotype? Developmental Psychology, 
23, 363-369.

[2] Cunningham, M.R., Roberts, A.R., Wu, C.-H., Barbee, A.P. & Druen, P.B. (1995) Their ideas of 
beauty are, on the whole, the same as ours: Consistency and variability in the cross-cultural perception 
of female physical attractiveness. Journal of Personality and Social Psychology, 68, 261-279.

[3] Galton, F. (1878) Composite portraits. Journal of the Anthropological Institute of Great Britain 
and Ireland, 8, 132-142.

[4] Langlois, J.H. & Roggman, L.A. (1990) Attractive faces are only average. Psychological Science, 
1, 115-121.

[5] Rubenstein, A.J., Langlois, J.H & Roggman, L.A. (2002) What makes a face attractive and why: 
The role of averageness in defining facial beauty. In Rhodes, G. & Zebrowitz, L.A. (eds.), Advances in 
Visual Cognition, Vol. 1: Facial Attractiveness, pp. 1-33. Westport, CT: Ablex.

[6] Grammer, K. & Thornhill, R. (1994) Human (Homo sapiens) facial attrativness and sexual 
selection: The role of symmetry and averageness. Journal of Comparative Psychology, 108, 233-242.

[7] Little, A.C., Penton-Voak, I.S., Burt, D.M. & Perrett, D.I. (2002) Evolution and individual 
differences in the perception of attractiveness: How cyclic hormonal changes and self-perceived 
attractiveness influence female preferences for male faces. In Rhodes, G. & Zebrowitz, L.A. (eds.), 
Advances in Visual Cognition, Vol. 1: Facial Attractiveness, pp. 59-90. Westport, CT: Ablex.

[8] Cunningham, M.R., Barbee, A.P. & Philhower, C.L. (2002) Dimensions of facial physical 
attractiveness: The intersection of biology and culture. In Rhodes, G. & Zebrowitz, L.A. (eds.), 
Advances in Visual Cognition, Vol. 1: Facial Attractiveness, pp. 193-238. Westport, CT: Ablex.

[9] Thornhill, R. & Gangsted, S.W. (1999) Facial Attractiveness. Trends in Cognitive Sciences, 3, 
452-460.

[10] Andersson, M. (1994) Sexual Selection. Princeton, NJ: Princeton University Press.

[11] Møller, A.P. & Swaddle, J.P. (1997) Asymmetry, developmental stability, and evolution. Oxford: 
Oxford University Press.

[12] Zebrowitz, L.A. & Rhodes, G. (2002) Nature let a hundred flowers bloom: The multiple ways and 
wherefores of attractiveness. In Rhodes, G. & Zebrowitz, L.A. (eds.), Advances in Visual Cognition, 
Vol. 1: Facial Attractiveness, pp. 261-293. Westport, CT: Ablex.

[13] Perrett, D.I., May, K.A. & Yoshikawa, S. (1994) facial shape and judgments of female 
attractiveness. Nature, 368, 239-242.

[14] O´Toole, A.J., Price, T., Vetter, T., Bartlett, J.C. & Blanz, V.  (1999) 3D shape and 2D surface 
textures of human faces: the role of "averages" in attractiveness and age. Image and Vision 
Computing, 18, 9-19.

[15] Johnston, V. S. & Franklin, M. (1993) Is beauty in the eye of the beholder? Ethology and 
Sociobiology, 14, 183-199.

[16] Eisenthal, Y., Dror, G. & Ruppin, E. (2006) Facial attractiveness: Beauty and the Machine. 
Neural Computation, 18, 119-142.

[17] Fink, B., Grammer, K. & Thornhill, R. (2001) Human (Homo sapiens) Facial Attractiveness in Relation 
to Skin Texture and Color. Journal of Comparative Psychology, 115, 92–99.

[18] Alley, T.R. & Cunningham, M.R. (1991) Averaged faces are attractive but very attractive faces 
are not average. Psychological Science, 2, 123-125.

[19] Zaidel, D.W., Chen, A.C. & German, C. (1995) She is not a beauty even when she smiles: 
possible evolutionary basis for a relationship between facial attractiveness and hemispheric 
specialization. Neuropsychologia, 33(5), 649-655


