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Abstract

In this paper, we present a subspace method for learning nonlinear dynamical
systems based on stochastic realization, in which state vectors are chosen using
kernel canonical correlation analysis, and then state-space systems are identified
through regression with the state vectors. We construct the theoretical underpin-
ning and derive a concrete algorithm for nonlinear identification. The obtained
algorithm needs no iterative optimization procedure and can be implemented on
the basis of fast and reliable numerical schemes. The simulation result shows that
our algorithm can express dynamics with a high degree of accuracy.

1 Introduction

Learning dynamical systems is an important problem in several fields including engineering, phys-
ical science and social science. The objectives encompass a spectrum ranging from the control of
target systems to the analysis of dynamic characterization, and for several decades, system identi-
fication for acquiring mathematical models from obtained input-output data has been researched in
numerous fields, such as system control.

Dynamical systems are learned by, basically, two different approaches. The first approach is based
on the principles of minimizing suitable distance functions between data and chosen model classes.
Well-known and widely accepted examples of such functions are likelihod functions [1] and the av-
erage squared prediction-errors of observed data. For multivariate models, however, this approach
is known to have several drawbacks. First, the optimization tends to lead to an ill-conditioned esti-
mation problem because of the over-parameterization, i.e., minimum parameters (called canonical
forms) do not exist in multivariate systems. Second, the minimization, except in trivial cases, can
only be carried out numerically using iterative algorithms. This often leads to there being no guaran-
tee of reaching a global minimum and high computational costs. The second approach is a subspace
method which involves geometric operations on subspaces spanned by the column or row vectors
of certain block Hankel matrices formed by input-output data [2,3]. It is well known that subspace
methods require no a priori choice of identifiable parameterizations and can be implemented by fast
and reliable numerical schemes.

The subspace method has been actively researched throughout the last few decades and several
algorithms have been proposed, which are, for representative examples, based on the orthogonal
decomposition of input-output data [2,4] and on stochastic realization using canonical correlation
analysis [5]. Recently, nonlinear extensions have begun to be discussed for learning systems that
cannot be modeled sufficiently with linear expressions. However, the nonlinear algorithms that
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have been proposed to date include only those in which models with specific nonlinearities are as-
sumed [6] or those which need complicated nonlinear regression [7,8]. In this study, we extend the
stochastic-realization-based subspace method [5] to the nonlinear regime by developing it on repro-
ducing kernel Hilbert spaces [9], and derive a nonlinear subspace identification algorithm which can
be executed by a procedure similar to that in the linear case.

The outline of this paper is as follows. Section 2 gives some theoretical materials for the subspace
identification of dynamical systems with reproducing kernels. In section 3, we give some approx-
imations for deriving a practical algorithm, then describe the algorithm specifically in section 4.
Finally, an empirical result is presented in section 5, and we give conclusions in section 6.

Notation Let x, y andz be random vectors, then denote the covariance matrix ofx andy by Σxy

and the conditional covariance matrix ofx andy conditioned onz by Σxy|z. Let a be a vector in
a Hilbert space, andB, C Hilbert spaces. Then, denote the orthogonal projection ofa ontoB by
a/B and the oblique projection ofa ontoB alongC by a/C B. Let A be an[m × n] matrix, then
L{A} := {Aα|α ∈ R

n} will be referred to as the column space andL{A′} := {A′α|α ∈ R
m}

the row space ofA. •′ denotes the transpose of a matrix•, andId ∈ R
d×d is the identity matrix.

2 Rationales

2.1 Problem Description and Some Definitions

Consider two discrete-time wide-sense stationary vector processes{u(t),y(t), t = 0,±1, · · · } with
dimensionsnu andny, respectively. The first componentu(t) models theinput signal while the
second componenty(t) models theoutput of the unknown stochastic system, which we want to
construct from observed input-output data, as a nonlinear state-space system:

x(t + 1) = g(x(t),u(t)) + v

y(t) = h(x(t),u(t)) + w,
(1)

wherex(t) ∈ R
n is the state vector, andv andw are the system and observation noises. Throughout

this paper, we shall assume that the joint process(u,y) is a stationary and purely nondeterministic
full rank process [3,5,10]. It is also assumed that the two processes are zero-mean and have finite
joint covariance matrices. A basic step in solving this realization problem, which is also the core
of the subspace identification algorithm presented later, is the construction of astate spaceof the
system. In this paper, we will derive a practical algorithm for this problem based on stochastic
realization with reproducing kernel Hilbert spaces.

We denote the joint input-output processw(t)′ = [y(t)′,u(t)′] ∈ R
nw(nw = nu + ny) and feature

mapsφu : Ut → Fu ∈ R
nφu , φy : Yt → Fy ∈ R

nφy andφw : Wt → Fw ∈ R
nφw with the

Mercer kernelsku, ky andkw, whereUt, Yt andWt are the Hilbert spaces generated by the second-
order random variablesu(t), y(t) andw(t), andFy, Fu andFw are the respective feature spaces.
Moreover, we define the future output, input and the past input-output vectors in the feature spaces
as

fφ(t) :=
[

φy(y(t))′,φy(y(t + 1))′, · · · ,φy(y(t + l − 1))′
]′
∈ R

lnφ
y ,

u
φ
+(t) := [φu(u(t))′,φu(u(t + 1))′, · · · ,φu(u(t + l − 1))′]

′
∈ R

lnφ
u ,

pφ(t) := [φw(w(t − 1))′,φw(w(t − 2))′, · · · ]
′
∈ R

∞,

(2)

and the Hilbert spaces generated by these random variables as:

P
φ
t = span{φ(w(τ))|τ < t}, U

φ+
t = span{φ(u(τ))|τ ≥ t}, Y

φ+
t = span{φ(y(τ))|τ ≥ t}.

(3)
U

φ−
t andY

φ−
t are defined similarly. These spaces are assumed to be closed with respect to the

root-mean-square norm‖ξ‖ := [E{ξ2}]1/2, whereE{·} denotes the expectation value, and thus are
thought of as Hilbert subspaces of an ambient Hilbert spaceH φ := U φ ∨Y φ containing all linear
functionals of the joint process in the feature spaces(φu(u),φy(y)).

2.2 Optimal Predictor in Kernel Feature Space

First, we require the following technical assumptions [3,5].
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ASSUMPTION1. The inputu is ‘exogenous’, i.e., no feedback from the outputy to the inputu.

ASSUMPTION2. The input process is ‘sufficiently rich’. More precisely, at each timet, the input
spaceUt has the direct sum decompositionUt = U

−
t + U

+
t

(

U
−

t ∩ U
+

t = {0}
)

.

Note that assumption 2 implies that the input process is purely nondeterministic and admits a spectral
density matrix without zeros on the unit circle (i.e., coercive). This is too restrictive in many practical
situations and we can instead assume only a persistently exciting (PE) condition of sufficiently high
order and finite dimensionality for an underlying “true” system from the outset. Then, we can give
the following proposition which enables us to develop a subspace method in feature space, as in the
linear case.

PROPOSITION1. If assumptions 1 and 2 are satisfied, then similar conditions in the feature spaces
described below are fulfilled:

(1) There is no feedback fromφy(y) to φu(u).

(2) U
φ

t has the direct sum decompositionU
φ

t = U
φ−

t + U
φ+

t (U φ−
t ∩ U

φ+
t = {0})

PROOF. Condition (2) is shown straightforwardly from assumption 2 and the properties of the
reproducing kernel Hilbert spaces. AsU +

t ⊥ Y
−

t |U −
t (derived from assumption 1) and

Y −/U
+

t ∨U
−

t = Y
−

t /U
−

t are equivalent, if the orthogonal complement ofUt is denoted byU⊥t ,
we can obtainY −

t = U
−

t + U ⊥
t . Now, when representingY −φ

t using the input space on fea-
ture spaceU φ

t and the orthogonal complementU
⊥φ

t , we can writeY −φ
t = U

−φ
t + U

⊥φ
t because

U
φ

t = U
−φ

t +U
+φ

t from condition (2),U +
t ⊥ U ⊥

t , and owing to the properties of the reproducing
kernel Hilbert spaces. Therefore,U

+φ
t ⊥ Y

−φ
t |U −φ

t can be shown by tracing inversely.

Using proposition 1, we now obtain the following representation result.

THEOREM 1. Under assumptions 1 and 2, the optimal predictorf̂
φ
(t) of the future output vector

in feature spacefφ(t) based onPφ
t ∨Uφ+

t is uniquely given by the sum of the oblique projections:

f̂
φ
(t) = fφ (t) /P

φ
t ∨ Uφ+

t = Πpφ(t) + Ψu
φ
+(t), (4)

in whichΠ andΨ satisfy the discrete Wiener-Hopf-type equations

ΠΣφpφp|φu
= Σφf φp|φu

, ΨΣφuφu|φp
= Σφf φu|φp

. (5)

PROOF. From proposition 1, the proof can be carried out as in the linear case (cf. [3,5]).

2.3 Construction of State Vector

LetLf , Lp be the square root matrices ofΣφf φf |φu
, Σφpφp|φu

, i.e.,Σφf φf |φu
= LfL′

f , Σφpφp|φu
=

LpL
′
p, and assume that the SVD of the normalized conditional covariance is given by

L−1
f Σφf φp|φu

(L−1
p )′ = USV ′, (6)

whereS ∈ R
lnφy×nφp is the matrix with all entries being zero, except the leading diagonal, which

has the entriesρi satisfyingρ1 ≥ · · · ≥ ρn > 0 for n = min(lnφy
, nφp

), andU , V are square
orthogonal.



We define the extended observability and controllability matrices

O := LfUS1/2, C := S1/2V ′L′
p, (7)

whererank(O) = rank(R) = n. Then, from the SVD of Eq. (6), the block Hankel matrix
Σφf φp|φu

has the classical rank factorizationΣφf φp|φu
= OC. If a ’state vector’ is now defined to

be then-dimensional vector

x (t) = CΣ−1
φpφp|φu

pφ(t) = S1/2V ′L−1
p pφ(t), (8)

it is readily seen thatx(t) is a basis for the stationary oblique predictor spaceXt := Y
φ+

t /
U

φ+

t
P

φ
t ,

which, on the basis of general geometric principles, can be shown to be a minimal state space for the
processφy(y), as in the linear case [3,5]. This is also assured by the fact that the oblique projection

of fφ(t) ontoU
φ+

t alongP
φ
t can be expressed, using Eqs. (5), (7) and (8), as

fφ(t)/
U

φ+

t
P

φ
t = Πpφ(t) = Σφf φp|φu

Σ−1
φpφp|φu

pφ(t) = Ox(t) (9)

andrank(O) = n, and the variance matrix ofx(t) is nonsingular. In terms ofx(t), the optimal

predictorf̂
φ
(t) in Eq. (4) has the form

f̂
φ

= Ox(t) + Ψu
φ
+(t). (10)

It is seen thatx(t) is a conditional minimal sufficient statistic carrying exactly all the information
contained inPφ

t that is necessary for estimating the future outputs, given the future inputs.

In analogy with the linear case [3,5], the output process in feature spaceφy(y(t)) now admits a
minimal stochastic realization with the state vectorx(t) of the form

x(t + 1) = Aφx(t) + Bφφu(u(t)) + Kφe(t),

φy(y(t)) = Cφx(t) + Dφφu(u(t)) + e(t),
(11)

whereAφ ∈ R
n×n, Bφ ∈ R

n×nφu , Cφ ∈ R
nφy×n, Dφ ∈ R

nφy×nφu andKφ ∈ R
n×nφy are

constant matrices ande(t) := φ(y(t)) − (φ(y(t))|Pφ
t ∨ U

φ
t ) is the prediction error.

2.4 Preimage

In this section, we describe the state-space model for the outputy(t) while the state-space model
(11), derived in the previous section, represents the output in feature spaceφy(y(t)). At first, we

define the feature mapsφx : Xt 7→ Fx ∈ R
nφx , φū := Ut 7→ Fū ∈ R

nφū and the linear spaceX φ
t ,

Ū
φ

t generated byφx(x(t)), φū(u(t)). Then, the product ofX φ
t andŪ

φ
t satisfiesX φ

t ∩ Ū
φ

t = 0

becauseXt ∩ U
φ

t = 0 andφx, φū are bijective. Therefore, the outputy(t) is represented as the
direct sum of the oblique projections as

y(t)/X
φ

t ∨ Ū
φ

t = C̄φφx(x(t)) + D̄φφū(u(t)). (12)

As a result, we can obtain the following theorem.

THEOREM 2. Under assumptions 1 and 2, ifrank Σφf φp|φu
= n, then the outputy can be repre-

sented in the following state-space model:

x(t + 1) = Aφx(t) + Bφφu(u(t)) + K̄φφe(ē(t)),

y(t) = C̄φφx(x(t)) + D̄φφū(u(t)) + ē(t),
(13)

whereē(t) := y(t)− y(t)/X
φ

t ∨ Ū
φ

t is the prediction error and̄Kφ := KφAē, in whichAē is the
coefficient matrix of the nonlinear regression fromē(t) to e(t) 1.

1Letf be a map from̄e(t) to e and minimize a regularized riskc((ē1, e1, f(ē1)), · · · , (ēm, em, f(ēm)))+
Ω(‖f‖H ), whereΩ : [0,∞) → R is a strictly monotonically increasing function andc : (Ē × R

2)m →
R ∪ {∞} (Ē ∈ span{ē}) is an arbitrary loss function; then, from the representer theorem[9],f satisfies
f ∈ span{ffie(ē(t))}, whereffie is a feature map with the associated Mercer kernelke. Therefore, we can
represent nonlinear regression fromē(t) to e(t) asAēffie(ē(t)).



3 Approximations

3.1 Realization with Finite Data

In practice, the state vector and associated state-space model should be constructed with avail-
able finite data. Let the past vectorpφ(t) be truncated to finite length, i.e.,p

φ
T (t) := [φw(w(t −

1))′,φw(w(t − 2))′, · · · ,φw(w(t − T ))′]′ ∈ R
T (nφy +nφu ), whereT > 0, and defineP[t−T,t) :=

span{pφ
T (τ)|τ < t}. Then, the following theorem describes the construction of the state vec-

tor and the corresponding state-space system which form the finite-memory predictorf̂
φ

T (t) :=

fφ(t)/U
φ+

t ∩ P
φ
[t−T,t).

THEOREM 3. Under assumptions 1 and 2, ifrank(Σφf φp|φu
) = n, then the processφy(y) is

expressed by the following nonstationary state-space model:

x̂T (t + 1) = Aφx̂T (t) + Bφφu(u(t)) + Kφ(t)êT (t),

φy(y(t)) = Cφx̂T (t) + Dφφu(u(t)) + êT (t).
(14)

where the state vector̂xT (t) is a basis on the finite-memory predictor spaceY
φ+

t /
U

φ+

t
P

φ
[t−T,t),

andêT (t) := φy(y(t)) − (φy(y(t))|Pφ
[T,t) ∨ U

φ+
t ) is the prediction error.

The proof can be carried out as in the linear case (cf. [3,5]). In other words, we can obtain the
approximated state vectorx̂T by applying the facts in Section 2 to finite data. This state vector differs
from x(t) in Eq. (8); however, whenT → ∞, the difference between̂xT (t) andx(t) converges to
zero and the covariance matrix of the estimation errorPφ also converges to the stabilizing solution
of the following Algebra Riccati Equation (ARE):

Pφ = AφPφAφ′
+Σφ

wΣφ
w

′
−(AφPφCφ′

+Σφ
wΣφ

w

′
)(CφPφCφ′

+Σφ
e Σφ

e

′
)−1(AφPφCφ′

+Σφ
wΣφ

w

′
)′.

(15)
Moreover, the Kalman gainKφ converges to

Kφ = (AφPφCφ′
+ Σφ

wΣφ
w

′
)(CφPφCφ′

+ Σφ
e Σφ

e

′
)−1, (16)

whereΣφ
w and Σφ

e are the covariance matrices of errors in the state and observation equations,
respectively.

3.2 Using Kernel Principal Components

Let z be a random variable,kz a Mercer kernel with a feature mapφz and a feature spaceFz, and
denoteΦz := [φz(z1), · · · ,φz(zm)]′ and the associated Gram matrixGz := ΦzΦ

′
z. The firstith

principal componentsuz,i ∈ L{Φ′
z}(i = 1, · · · , dz) combined in a matrixUz = [uz,1, · · · ,uz,dz

]
form an orthonormal basis of adz-dimensional subspaceL{Uz} ⊆ L{Φ′

z}, and can therefore also
be described as the linear combinationUz = Φ′

zAz, where the matrixAz ∈ R
m×dz holds the

expansion coefficients.Az is found by, for example, the eigendecompositionGz = ΓzΛzΓ−z′

such thatAz consists of the firstdz columns ofΓzΛ
−1/2
z . Then,Φz with respect to the principal

components is given byCz := ΦzUz = ΦzΦ
′
zAz = GzAz [11]. From the orthogonality ofΓz (i.e.,

Γ′
zΓz = ΓzΓ

′
z = Im), we can derive the following equation:

(A′
zGzGzAz)

−1 =
(

(ΓzΛ
−1/2
z,d )′(ΓzΛzΓ

′
z)(ΓzΛzΓ

′
z)(ΓzΛ

−1/2
z,d )

)−1

= Ā′
zG

−1
z G−1

z Āz, (17)

whereΛz,d is the matrix which consists of the firstdz columns ofΛz, andĀz := ΓzΛ
1/2
z,d satisfying

Ā′
zAz = A′

zĀz = Idz
andĀzA

′
z = AzĀ

′
z = Im.

This property of kernel principal components enables us to approximate matters described in the
previous sections in computable forms. First, using Eq. (17), the conditional covariance matrix
Σφf φf |φu

can be expressed as

Σφf φf |φu
= Σφf φf

− Σφf φu
Σ−1

φuφu
Σφuφf

≈ A′
fGfGfAf − (A′

fGfGuAu)(A′
uGuGuAu)−1(A′

uGuGfAf )

= A′
f

(

GfGf − GfGu(GuGu)−1GuGf

)

Af (:= A′
f Σ̂ff |uAf ),

(18)



whereΣ̂ff |u may be called the empirical conditional covariance operators, and the regularized vari-
ant can be obtained by replacingGfGf , GuGu with (Gf +εIm)2, (Gu+εIm)2 (ε > 0) (cf.[12,13]).
Σφpφp|φu

andΣφf φp|φu
can be approximated as well. Moreover, usingL−1

∗ = L̂−1
∗ Ā∗, whereL̂∗ is

the square root matrix of̂Σφ∗φ∗|u (∗ = p, f ) 2, we can represent Eqs. (6) and (8) approximately as

L−1
f Σφf φp|φu

(L−1
p )′ ≈ (L̂−1

f Āf )(A′
f Σ̂fp|uAp)

(

Ā′
p(L̂

−1
p )′

)

= L̂−1
f Σ̂fp|u(L̂−1

p )′ = Û ŜV̂ ′, (19)

x (t) = S1/2V ′L−1
p pφ(t) ≈ Ŝ1/2V̂ ′(L̂−1

p Āp)(A
′
pk(p(t))) = Ŝ1/2V̂ ′L̂−1

p k(p(t)), (20)

wherek(p(t)) := Φpp
φ(t) = [kp(p1(t),p(t)), · · · , kp(pm(t),p(t))]′.

In addition, we can apply this approximation with the kernel PCA to the state-space models derived
in the previous sections. First, Eq. (11) can be approximated as

x(t + 1) = Aφx(t) + BφA′
uku(u(t)) + Kφe(t),

A′
yky(y(t)) = Cφx(t) + DφA′

uku(u(t)) + e(t),
(21)

whereAu andAy are the expansion coefficient matrices found by the eigendecomposition ofGu

andGy, respectively. Also, using the coefficient matricesAx, Ae andAū, Eq.(13) can be written as

x(t + 1) = Aφx(t) + BφA′
uku(u(t)) + K̄φA′

eke(ē(t)),

y(t) = C̄φA′
xkx(x(t)) + D̄φA′

ūku(u(t)) + ē(t).
(22)

4 Algorithm

In this section, we give a subspace identification algorithm based on the discussions in the previous
sections. Denote the finite input-output data as{u(t),y(t), t = 1, 2, · · · , N + 2l − 1}, wherel > 0
is an integer larger than the dimension of systemn andN is thesufficientlarge integer, and assume
that all data is centered. First, using the Gram matricesGu, Gy andGw associated with the input,
the output, and the input-output, repectively, we must to calculate the Gram matricesGU , GY and
GW corresponding to the past input, the future output, and the past input-output defined as

GU :=

























2l
∑

i=l+1

Gu,ii

2l
∑

i=l+1

Gu,i(i+1) · · ·
2l
∑

i=l+1

Gu,i(i+N−1)

2l
∑

i=l+1

Gu,(i+1)i

2l
∑

i=l+1

Gu,(i+1)(i+1) · · ·
2l
∑

i=l+1

Gu,(i+1)(i+N−1)

...
...

.. .
...

2l
∑

i=l+1

Gu,(i+N−1)i

2l
∑

i=l+1

Gu,(i+N−1)(i+1) · · ·
2l
∑

i=l+1

Gu,(i+N−1)(i+N−1)

























,

(23)

GW :=























l
∑

i=1

Gw,ii

l
∑

i=1

Gw,i(i+1) · · ·
l

∑

i=1

Gw,i(i+N−1)

l
∑

i=1

Gw,(i+1)i

l
∑

i=1

Gw,(i+1)(i+1) · · ·
l

∑

i=1

Gw,(i+1)(i+N−1)

...
...

. . .
...

l
∑

i=1

Gw,(i+N−1)i

l
∑

i=1

Gw,(i+N−1)(i+1) · · ·
l

∑

i=1

Gw,(i+N−1)(i+N−1)























, (24)

andGY is defined analogously toGU . Now the procedure is given as follows.

Step 1 Calculate the regularized empirical covariance operators and their square root matrices as

Σ̂ff |u = (GY + εIN )2 − GY GU (GU + εIN )−2GUGY = L̂f L̂′
f ,

Σ̂pp|u = (GW + εIN )2 − GW GU (GU + εIN )−2GUGW = L̂pL̂
′
p,

Σ̂fp|u = GY GW − GY GU (GU + εIN )−2GUGW .

(25)

2This is given by(L−1
∗ )′L−1

∗ = Σ−1

φ∗φ∗|φu
≈ (A′

∗Σ̂∗∗|uA∗)
−1 = Ā′

∗Σ̂
−1

∗∗|uĀ∗ = Ā′
∗(L̂

−1
∗ )′L̂−1

∗ Ā∗.



Step 2 Calculate the SVD of the normalized covariance matrix (cf. Eq. (19))

L−1
f Σ̂fp|u(L̂−1

p )′ = Û ŜV̂ ′ ≈ U1S1V1, (26)

whereS1 is obtained by neglecting the small singular values so that the dimension of the
state vectorn equals the dimension ofS1.

Step 3 Estimate the state sequence as (cf. Eq. (20))

Xl := [x(l),x(l + 1), · · · ,x(l + N − 1)] = S
1/2
1 V ′

1 L̂−1
p GW , (27)

and define the following matrices consisting ofN − 1 columns:

X̂l+1 = X̄l(:, 2 : N), X̂l = X̄l(:, 1 : N − 1). (28)

Step 4 Calculate the eigendecomposition of the Gram matricesGu, Gū, Gy andGx and the corre-
sponding expansion coefficient matricesAu, Aū, Ay andAx. Then, determine the system
matricesAφ, Bφ, Cφ, Dφ, C̄φ andD̄φ by applying regularized least square regressions to
the following equations (cf. Eqs. (21) and (22)):

[

X̂k+1

A′
yGy(:, 2, N)

]

=

[

Aφ Bφ

Cφ Dφ

] [

X̂k

A′
uGu(:, 1, N − 1)

]

+

[

ρw

ρe

]

, (29)

Yl|l = C̄φ(A′
xGx(:, 2, N)) + D̄φ(Ā′

uGu(:, 2, N)) + ρ̄e, (30)

where the matricesρw, ρe andρ̄e are the residuals.

Step 5 Calculate the covariance matrices of the residuals
[

Σw Σwe

Σew Σe

]

=
1

N − 1

[

ρwρ′w ρwρ′e
ρeρ

′
w ρeρ

′
e

]

, (31)

solve ARE (15), and, using the stabilizing solution, calculate the Kalman gainKΦ in Eq.
(16).

5 Simulation Result

In this section, we illustrate the proposed algorithm for learning nonlinear dynamical systems with
synthetic data. The data was generated by simulating the following system [8] using the 4th- and
5th-order Runge-Kutta method with a sampling time of 0.05 seconds:

ẋ1(t) = x2(t) − 0.1 cos(x1(t))(5x1(t) − 4x3
1(t) + x5

1(t)) − 0.5 cos(x1(t))u(t),

ẋ2(t) = −65x1(t) + 50x3
1(t) − 15x5

1(t) − x2(t) − 100u(t),

y(t) = x1(t),

(32)

where the input was a zero-order-hold white noise signal uniformly distributed between−0.5 and
0.5. We applied our algorithm on a set of 600 data points, and then validated the obtained model
using a fresh data set of 400 points. As a kernel function, we used the RBF Gaussian kernel
k(zi,zj) = exp(−‖zi − zj‖

2/2σz). The parameters to be tuned for our method are thus the
widths of the kernelsσ for u, y, w andx, the regularization degreeε, and the row-block numberl
of the Hankel matrix. In addition, we must select the order of the system and the number of kernel
principal componentsnpc

∗ for u, y ande. Figure 2 shows free-run simulation results of the model
acquired by our algorithm, in which the parameters were set asσu = 2.5, σy = 3.5, σw = 4.5,
σx = 1.0, npc

u = npc
y = 4, npc

x = 9 andε = 0.05, and, for comparison, by the linear subspace
identification [5]. The row-block numberl was set as10 in both identifications. The simulation
errors [2]

ε =
100

ny

ny
∑

c=1

√

∑m
i=1((yi)c − (ys

i )c)2
∑m

j=1((yi)c)2
, (33)

whereys
i are simulated values and the used initial state is a least square estimation with the initial

few points, were improved to40.2 for our algorithm, from44.1 for the linear method. The accuracy
was improved by about 10 percent. The system orders are8 for our algorithm, whle10 for the
linear method, in this case. We can see that our method can estimate the state sequence with more
information and yield the model capturing the dynamics more precisely. However, the parameters
involved much time and effort for tuning.



0 50 100 150 200 250 300 350 400

-3

-2

-1

0

1

2

3

Data Point

Observation

Simulation

0 50 100 150 200 250 300 350 400

-3

-2

-1

0

1

2

3

Data Point

Observation

Simulation

Figure 2: Comparison of simulated outputs. Left: Kernel subspace identification method (proposed
method). Right: Linear subspace identification method [5]. The broken lines represent the observa-
tions and the solid lines represent the simulated values.

6 Conclusion

A new subspace method for learning nonlinear dynamical systems using reproducing kernel Hilbert
spaces has been proposed. This approach is based on approximated solutions of two discrete Wiener-
Hopf equations by covariance factorization in kernel feature spaces. The algorithm needs no iterative
optimization procedures, and hence, solutions can be obtained in a fast and reliable manner. The
comparative empirical results showed the high performance of our method. However, the parameters
involved much time and effort for tuning. In future work, we will develop the idea for closed-loop
systems for the identification of more realistic applications. Moreover, it should be possible to
extend other established subspace identification methods to nonlinear frameworks as well.
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[9] Scḧolkopf, B. & Smola, A. (2002) “Learning with Kernels”MIT Press.
[10] Rozanov, N. I. (1963) “Stationary Random Processes”Holden-Day, San Francisco, CA.
[11] Kuss, M. & Graepel, T. (2003) “The Geometry of Kernel Canonical Correlation Analysis”Technical
Report, Max Planck Institute for Biological Cybernetics, Tubingen, Germany(108).
[12] Bach, F. R., & Jordan, M. I. (2002) “Kernel Independent Component Analysis”Journal of Machine Learn-
ing Research (JMLR),3 : 1-48.
[13] Fukumizu, K. & Bach, F. R., & Jordan, M. I. (2004) “Dimensionality Reduction for Supervised Learning
with Reproducing Kernel Hilbert Spaces”Journal of Machine Learning Research (JMLR),5 : 73-99.


