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Abstract

In this paper, we formalizenulti-instance multi-label learning, where each train-

ing example is associated with not only multiple instances but also multiple class
labels. Such a problem can occur in many real-world tasks, e.g. an image usually
contains multiple patches each of which can be described by a feature vector, and
the image can belong to multiple categories since its semantics can be recognized
in different ways. We analyze the relationship between multi-instance multi-label
learning and the learning frameworks to&ditional supervised learningnulti-
instance learningand multi-label learning. Then, we propose theill BoosT

and MiML SvM algorithms which achieve good performance in an application to
scene classification.

1 Introduction

In traditional supervised learning, an object is represented by an instance (or feature vector) and
associated with a class label. Formally, }étdenote the instance space (or feature spacepand

the set of class labels. Then the task is to learn a functianX¥ — Y from a given data set
{(x1,91), (®2,92), -, (Tm,ym)}, Wherex; € X is an instance ang; € ) the known label ofe;.

Although the above formalization is prevailing and successful, there are many real-world problems
which do not fit this framework well, where a real-world object may be associated with a number of
instances and a number of labels simultaneously. For example, an image usually contains multiple
patches each can be represented by an instance, while in image classification such an image can
belong to several classes simultaneously, e.g. an image can belomytdainsas well asAfrica.

Another example is text categorization, where a document usually contains multiple sections each of
which can be represented as an instance, and the document can be regarded as belonging to different
categories if it was viewed from different aspects, e.g. a document can be categorizéehéific
novel,Jules Verne’s writingor evenbooks on travelling. Web mining is a further example, where
each of the links can be regarded as an instance while the web page itself can be recogréned as
page,sports pagesoccer page, etc.

In order to deal with such problems, in this paper we formatizdti-instance multi-label learning
(abbreviated as MiL). In this learning framework, a training example is described by multiple
instances and associated with multiple class labels. Formally;, Ed¢note the instance space and
Y the set of class labels. Then the task is to learn a fungtipp, : 2% — 2Y _from_ a given _data
set{(X1,Y1), (X2,Y2), -+, (Xm, Ym)}, WhereX; C X is a set of instance@zﬁ”, o) Lz

2 € X (j = 1,2,---,n;), and; C ¥ is a set of labeldy(”, y{", -y}, 4\ € Y (k =
1,2,---,1;). Heren, denotes the number of instancesipand(; the number of labels iir;.

After analyzing the relationship betweeni. and the frameworks of traditional supervised learn-
ing, multi-instance learningand multi-label learning, we propose two ML algorithms, MmL -



BoosTtand MiML SvM. Application to scene classification shows that, solving some real-world
problems in the MML framework can achieve better performance than solving them in existing
frameworks such as multi-instance learning and multi-label learning.

2 Multi-Instance Multi-Label Learning

We start by investigating the relationship betweemuM and the frameworks of traditional super-
vised learning, multi-instance learning and multi-label learning, and then we develop some solutions.

Multi-instance learning [4] studies the problem where a real-world object described by a number of
instances is associated with one class label. Formally, the task is to learn a fufigtipn 2% —
{=1,+1} from a given data sef(X1,v1), (X2,92),  +, (Xm,ym)}, WhereX,; C X is a set of
instances{:cgl),mg),---,xﬁfi)}, my) €X(j=12--,n),y; € {—1,+1} is the label ofX;.!
Multi-instance learning techniques have been successfully applied to diverse applications including
scene classification [3, 7].

Multi-label learning [8] studies the problem where a real-world object described by one instance is
associated with a number of class labels. Formally, the task is to learn a fusfigtion: X — 2%
from a given data set(z1, Y1), (x2,Y2), -+, (@m, Yim) }, Wherex; € X is an instance andl; C Y

a set of labelgy\", y{, ... ,yl(f)}, v e ¥ (k = 1,2,---,1;).2 Multi-label learning techniques

have also been successfully applied to scene classification [1].

In fact, themulti- learning frameworks result from the ambiguity in representing real-world objects.
Multi-instance learning studies the ambiguity in the input space (or instance space), where an object
has many alternative input descriptions, i.e. instances; multi-label learning studies the ambiguity
in the output space (or label space), where an object has many alternative output descriptions, i.e.
labels; while MML considers the ambiguity in the input and output spaces simultaneously. We
illustrate the differences among these learning frameworks in Figure 1.

object -~ .object

[instance_|------ @ -=---- [Cinstance ® -
(a) Traditional supervised learning (b) Multi-instance learning
011_'1‘({‘_"2,’ ..... l‘)h_ifL‘E‘,‘_,_,-" sss sas
. o -@>  [m
(c) Multi-label learning (d) Multi-instance multi-label learning

Figure 1: Four different learning frameworks

Traditional supervised learning is evidently a degenerated version of multi-instance learning as well
as a degenerated version of multi-label learning, while traditional supervised learning, multi-instance
learning and multi-label learning are all degenerated versionsigiMThus, we can tackle ML

by identifying its equivalence in the traditional supervised learning framework, using multi-instance
learning or multi-label learning as the bridge.

*According to notions used in multi-instance learnif;, v:) is a labelecdhagwhile X; an unlabeled bag.

2Although most works on multi-label learning assume that an instance can be associated with multiple valid
labels, there are also works assuming that only one of the labels associated with an instance is correct [6]. We
adopt the former assumption in this paper.



Solution 1: Using multi-instance learning as the bridge: We can transformmaLMearning task,
i.e. to learn a functioryy,rarr : 2% — 2Y, into a multi-instance learning task, i.e. to learn a
function farrr @ 2% x Y — {—1,+1}. Foranyy € Y, furr(Xi,y) = +1if y € Y; and
—1 otherwise. The proper labels for a new examjlé can be determined according Y6 =

{ylarg, ey [faro(X™,y) = +1]}. We can transform this multi-instance learning task further into
a traditional supervised learning task, i.e. to learn a funcfigry;, : X x Y — {—1,+1}, under

a constraint specifying how to derivl,; (X;,y) from fSISL(m§i),y) (j =1,---,n;). Forany

yey, fSISL(:By),y) = +1if y € Y; and—1 otherwise. Here the constraint canfe; .. (X;,y) =

sz’gn[z;‘il fSISL(w;i), y)] which has been used in transforming multi-instance learning tasks into
traditional supervised learning tasks f9Note that other kinds of constraint can also be used here.

Solution 2: Using multi-label learning as the bridge: We can also transformnaLMearning task,

i.e. to learn a functiorfa sz : 2% — 2Y, into a multi-label learning task, i.e. to learn a function
furr + 2 — 2Y0 Foranyz; € Z, furn(zi) = furvn(Xe) if 2z = ¢(X;), ¢ 0 2¥ — Z.

The proper labels for a new exampte' can be determined according¥d = fa;.1(¢(X*)). We

can transform this multi-label learning task further into a traditional supervised learning task, i.e. to
learn a functionfsrsr, : 2 x Y — {—1,+1}. Foranyy € Y, fsrsr(zi,y) = +1if y € Y; and

—1 otherwise. Thatisfarr(z:) = {y|arg,cy[fsisc(zi,y) = +1]}. Here the mapping can be
implemented witlconstructive clusteringvhich has been used in transforming multi-instance bags
into traditional single-instances [11]. Note that other kinds of mapping can also be used here.

3 Algorithms

In this section, we propose two algorithms for solvingM problems: MML BoosTworks along
the first solution described in Section 2, whilaM Svm works along the second solution.

3.1 MiML BoosT

Given any sef), let|Q2| denote its size, i.e. the number of elementQjrgiven any predicate, let
[] be 1 if = holds and O otherwise; give(¥X;,Y;), foranyy € Y, let¥(X,,y) = +1ify € V;
and—1 otherwise, wherd is a functionV : 2% x Y — {—1,+1}. The MimL BoosTalgorithm is
presented in Table 1.
In the first step, each MiL example(X,,Y,) (v = 1,2,---,m) is transformed into a set ¢}/|
number of multi-instance bags, IH(Xuv yl)v \I](Xua yl)]a [(Xuv yQ)v \P(Xua y2)]a B [(Xu, yl)/\)v
U (X, yy))]}- Note that[(Xu,y.), U(Xu,y0)] (v = 1,2,---,|Y]) is a labeled multi-instance
bag where(X,,, y,) is a bag containing.,, number of instances, i.e{(z\", y.), (@5, 1.), - -,
(a:,(Jj;),yv)}, and¥(X,,y,) € {+1,—1} is the label of this bag.
Thus, the original MML data set is transformed into a multi-instance data set containing|)|
number of bagS, i'e{[(Xla yl)v \Ij(le yl)]v Tty [(Xla y\y|)7 \I’(le yD}\)]a [(XQ, yl)v \II(X27 yl)]v
(X yy)s (X, yy)]} Let (XD, y@), B(X @, )] denote theth of thesem x |V|
number of bags, that igX ("), y(1)) denote Xy, 1), - - -, (XI¥D, y(I¥D) denoteg X1, yjy)), - -,
(X (mxIV) yy(mxIYD)) denotes X, yjy), where(X @, y(¥)) containsn; number of instances, i.e.
Then, from the data set a multi-instance learning funcfign;, can be learned, which can accom-

plish the desired MuL function becausgra (X ™) = {y| arg, ey (sign[farr (X, y)] = +1)}.
Here we use NBOOSTING[9] to implementfa,rz..

For convenience, ldtB, g) denote the baf( X, y), ¥ (X, y)]. Then, here the goal is to learn a func-
tion F(B) minimizing the bag-level exponential logss Eg|lexp(—gF(B))], which ultimately

3This constraint assumes that all instances contribute equally and independently to a bag’s label, which is
different from the standard multi-instance assumption that there is one ‘key’ instance in a bag that triggers
whether the bag’s class label will be positive or negative. Nevertheless, it has been shown that this assumption
is reasonable and effective [9]. Note that the standard multi-instance assumption does not always hold, e.g. the
label Africa of an image is usually triggered by several patches jointly instead of by only one patch.



Table 1: The MMLBoOOSTalgorithm

1 Transform each MaL example(X,, Yu) (u=1,2,--+,m) into|Y| number of multi-
instance bag$[(Xu, 1), Y(Xu,y1)], -+, [(Xu, y13)), ¥(Xu, yjy))]}. Thus, the original
data set is transformed into a multi-instance data set containing|)’| number of
multi-instance bags, denoted by X ), y), U(X@ 4N} (1 =1,2,---,m x [V)).

sy =12, m x V).

2 Initialize weight of each bag to ") = —

3 Repeatfot =1,2,---,T iterations:
3a SetW( D= W(”/n (i=1,2,---,m x |Y]|), assign the bag’s lab& (X (), 4/()
to each of its mstance{sr:;.zﬁ ( >) (j=1,2,---,n;), and build an instance-level
predictorh,[(x\”,y )] € {~1,+1}.

3b  For theith bag, compute the error rat€) e [0, 1] by counting the number of
Do el yO)#w(x D (0]

misclassified instances within the bag, ed) =
3 Ife <0.5forallie {1,2,---,m x |V|}, go to Step 4.
3d Compute:; = argmin,, mem W exp[(2e) — 1)c].
3e Ifer <0, goto Step 4.

3f  Setw® = W(2 exp[(2¢¥ — l)ct] --+,m x |Y|) and re-normalize such
thato < W@ < 1and> 7P

n;

4  ReturnY” = {y|arg,, sign (Z] > ctht[(mj,y)]) = 41} (x] is X*’s jth instance).

estimates the bag-level log-odds functibivg % In each boosting round, the aim is to

expandF(B) into F(B) + cf(B), i.e. adding a new weak classifier, so that the exponential loss
is minimized. Assuming all instances in a bag contribute equally and independently to the bag’s
label, f(B) = nlB >_; h(b;) can be derived, wheré(b;) € {—1,+1} is the prediction of the

instance-level classmér( ) for the jth instance in bagd3, andnB is the number of instances 1.

It has been shown by [9] that the be4tB) to be added can be achieved by seekiig which
maximizesy ", Z?;l[n%W(i)g(i)h(by))], given the bag-level weightd” = exp(—gF(B)). By
assigning each instance the label of its bag and the corresponding WEight;, h(-) can be

learned by minimizing the weighted instance-level classification error. This actually corresponds to
the Step 3a of ML BoosT. When f(B) is found, the best multiplies > 0 can be got by directly

optimizing the exponential loss:
_ O 5 ppl?
Z_W(Z) exple (923(3) ]
3 ’]’Li

= Z_W(i) exp[(2¢V — 1)¢]

wheree(®) = -L Zj[[(h(by)) # ¢()] (computed in Step 3b). Minimization of this expectation ac-
tually corresponds to Step 3d, where numeric optimization techniques such as quasi-Newton method
can be used. Finally, the bag-level weights are updated in Step 3f according to the additive structure
of F(B).

EpEg|slexp(—gF(B) + c(—gf(B)))]

3.2 MIML SvM

Given (X;,Y;) andz; = #(X;) whereg : 2%¥ — Z foranyy € Y, let®(z;,y) = +1if y € Y;
and —1 otherwise, where is a function® : Z x Y — {—1,+1}. The MimL SvmM algorithm is
presented in Table 2.

In the first step, theX,, of each MML example(X,,Y,) (v = 1,2,---,m) is collected and put
into a data sef’. Then, in the second step;medoids clustering is performed d&h Since each



Table 2: The MML Svm algorithm

1 For MimL examplegX,,Y,) (u=1,2,---,m), I ={Xu|Ju=1,2,---,m}.
2 Randomly seleat elements fron” to initialize the medoidd/; (t = 1,2, -, k),
repeat until allM, do not change:
2a T ={M:}(t=1,2,---,k).
2b Repeatforeack, € (I' — {M|t =1,2,---,k}):
index = argminge 1 ... g} A (Xu, Mi), Tindez = Dindea U {Xu}.
2c M;=argmin Y dy(A,B)({t=1,2,--,k).
A€y gt
3 Transform(X,,Y.) into a multi-label exampléz,,Y.) (v = 1,2,---,m), where
Zy = (Zul, Zu2, 7, Zuk) = (dH(Xu, ]\41)7 dH(,Xu7 ]\/[2)7 ety dH(Xu, Mk))

4 Foreachy € ), derive adata séd, = {(zu, ® (z4,y)) |lu=1,2,---,m}, and then
train an M hy = SVMTrain(D,).

5 ReturnY™* = {argma}}j{hy(z*)} U {ylhy(2*) > 0,y € Y}, wherez* = (du(X™, M1),
ye
du(X™, M2), -+, du(X", My)).

data item inl’, i.e. X, is an unlabeled multi-instance bag instead of a single instance, we employ
Hausdorff distance [5] to measure the distance. In detail, given two bags{a1,az, -, a,,}
andB = {by,bs, -, b, }, the Hausdorff distance betwednand B is defined as

d (A, B) = max{max min ||a — b]|, maxmin ||b — a||}

where ||a — b|| measures the distance between the instancaad b, which takes the form of
Euclidean distance here.

After the clustering process, we divide the dataléito & partitions whose medoids afd; (t =
1,2,--- k), respectively. With the help of these medoids, we transform the original multi-instance
exampleX,, into ak-dimensional numerical vecter,, where theith (i = 1,2, ---, k) component

of z, is the distance betweeX,, and M, that is,dy (X, M;). In other wordsz,; encodes some
structure information of the data, that is, the relationship betwgrand theith partition ofI".

This process reassembles ttanstructive clusteringrocess used by [11] in transforming multi-
instance examples into single-instance examples except that in [11] the clustering is executed at the
instance level while here we execute it at the bag level. Thus, the original xampleg X,,,Y.,)

(u = 1,2,---,m) have been transformed into multi-label examples, Y,) (v = 1,2,---,m),
which corresponds to the Step 3 ofilvl. SvM. Note that this transformation may lose information,
nevertheless the performance oil SvM is still good. This suggests thatIML is a powerful
framework which has captured more original information than other learning frameworks.

Then, from the data set a multi-label learning functjfy,; can be learned, which can accom-
plish the desired MiL function becauséns;arn(X*) = farnr(z*). Here we use MSvm [1] to
implementfy; .

Concretely, M.SvMm decomposes the multi-label learning problem into multiple independent binary
classification problems (one per class), where each example associated with the label szt
garded as a positive example when buildingvSfor any clasg, € Y, while regarded as a negative
example when building \®&v for any clasg ¢ Y, as shown in the Step 4 of ML SvMm. In making
predictions, tha&-Criterion[1] is used, which actually corresponds to the Step 5 of thelMBvm
algorithm. That is, the test example is labeled by all the class labels with positivesSores, ex-

cept that when all the\Bx scores are negative, the test example is labeled by the class label which
is with thetop (least negative) score.

4 Application to Scene Classification

The data set consists of 2,000 natural scene images belonging to the diessgsnountainssea,
sunset, andirees, as shown in Table 3. Some images were from theEL image collection while
some were collected from the Internet. Over 22% images belong to multiple classes simultaneously.



Table 3: The image data set (@esert,m: mountainss: sea,su: sunsetf: trees)

label #images| label  #images| label # images| label #images
d 340 d+m 19 m+ su 19 d+m+su 1
m 268 d+s 5 m+t 106 d+su+t 3
S 341 d+su 21 S+ su 172 m+s+t 6
su 216 d+t 20 s+t 14 m+su+t 1
t 378 m+s 38 su+t 28 S+su+t 4

4.1 Comparison with Multi-Label Learning Algorithms

Since the scene classification task has been successfully tackled by multi-label learning algo-
rithms [1], we compare the NiL algorithms with established multi-label learning algorithns-A
ABOOST.MH [8] and MLSvM [1]. The former is the core of a successful multi-label learning system
BOOSTEXTER[8], while the latter has achieved excellent performance in scene classification [1].

For MimL BoosTand MiML SvM, each image is represented as a bag of nine instances generated
by the N method [7]. Here each instance actually corresponds to an image patch, and better
performance can be expected with better image patch generation methocbABoAST.MH and

MLSvM, each image is represented as a feature vector obtained by concatenating the instances of
MIMLBoOSTOr MIML SvMm. Gaussian kernel IBsvM [2] is used to implement MSvm, where

the cross-trainingstrategy is used to build the classifiers while Th€riterion is used to label the
images [1]. The MvL Svm algorithm is also realized with a Gaussian kernel, while the parameter

k is set to be 20% of the number of training imade¥ote that the instance-level predictor used in

Step 3a of MML BoOsTis also a Gaussian kerneldsvm (with default parameters).

Since AbABoOST.MH and MLSvMm make multi-label predictions, here the performance of the
compared algorithms are evaluated according to five multi-label evaluation metrics, as shown in
Tables 4 to 7, where ‘|’ indicates ‘the smaller the better’ while ‘1" indicates ‘the bigger the better’.
Details of these evaluation metrics can be found in [8]. Tenfold cross-validation is performed and
‘mean + std’ is presented in the tables, where the best performance achieved by each algorithm
is bolded. Note that since in each boosting rountMMBOOST performs more operations than
ADABOOST.MH does, for fair comparison, the boosting rounds used bxBoosT.MH are set to

ten times of that used by MiL BoosTsuch that the time cost of them are comparable.

Table 4:The performance of MiL BoosTwith different boosting rounds

boosting evaluation metric

rounds hamm.loss'  one-error' coverage' rank.loss' ave.prec.’
5 .202+011 .373+.045 1.026+.093 .208+.028 .764+.027
10 .1974+.010 .3624+.040 1.013+.109 .1914+.027 .770+.026
15 .195+.009 .361+.034 1.004+.101 .186+.025 .772+.023
20 .1934+.008 .355+.037 .996+.102 .183+.025 .775+.024
25 .189+.009 .351+.039 .989+.103 .181+.026 777+.025

Table 5:The performance of BABoosT.MH with different boosting rounds

boosting evaluation metric

rounds  hamm.loss ' one-errort coverage' rank.loss' ave.prec.’
50 .228+.013 A473+.031 1.299+.099 .263+.022 .695+.022
100 .2344+.019 4654+.042  1.292+.138 .259+.030 .698+.033
150 .233+.020 .465+.053  1.279+.140 .255+.032 .700+.033
200 .2324+.012 4534+.031  1.269+.107 .253+.022 .706+.020
250 .231+.018 .451+.046  1.258+.137 .250+.031 .708+.030

“In preliminary experiments, several percentage values have been tested ranging from 20% to 100% with an
interval of 20%. The results show that these values do not significantly affect the performancerdd\wh.



Table 6:The performance of MiL Svm with differenty used in Gaussian kernel

Gaussian evaluation metric

kernel hamm. loss'  one-error! coverage! rank.loss' ave.prec.!
y=.1 .181+.017 .332+.036  1.024+.089 .187+.018 .780+.021
v=.2 .180+.017 .327+.033  1.022+.085 .187+.018 .783+.020
v=.3 .188+.016 .344+.032  1.065+.094 .196+.020 .772+.020
y=4 .193+.014 .358+.030  1.080+.099 .202+.022 .764+.021
y=.5 .196+.014 .370+.033  1.109+.101 .209+.023 .757+.023

Table 7:The performance of MSvm with differenty used in Gaussian kernel

Gaussian evaluation metric

kernel hamm.loss ' one-error'  coverage' rank.loss' ave.prec.!
y=1 .200+.014 .379+.032  1.125+.115 .214+.020 .751+.022
=2 .196+.013 .368+.032  1.115+.122 .211+.023 .756+.022
vy=3 .195+.015 .370+.034  1.129+.113 .214+.022 .754+.023
vy=4 .196+4.016 .3724+.034 1.151+.122 .220+.024 .751+.023
vy=5 .202+.015 .388+.032  1.181+.128 .229+.026 .741+.023

Comparing Tables 4 to 7 we can find that bothmBoosTand MiML Svm are apparently better
than AbABoosT.MH and MLSvM. Impressively, pair-wisé-tests with .05 significance level reveal
that the worst performance of ML BoosT(with 5 boosting rounds) is even significantly better than
the best performance ofBaBoosT.MH (with 250 boosting rounds) on all the evaluation metrics,
and is significantly better than the best performance oSMv (with v = 2) in terms ofcoverage
while comparable on the remaining metrics; the worse performanceit Bvm (with v = .5)

is even comparable to the best performance afSMv and is significantly better than the best
performance of AABoosT.MH on all the evaluation metrics. These observations confirm that for-
malizing the scene classification task as aM problem to solve by ML BoosTor MIML SVM is
better than formalizing it as a multi-label learning problem to solve baBooST.MH or MLSvM.

4.2 Comparison with Multi-Instance Learning Algorithms

Since the scene classification task has been successfully tackled by multi-instance learning algo-
rithms [7], we compare the NiL algorithms with established multi-instance learning algorithms
DIVERSE DENSITY [7] and Bv-DD [10]. The former is one of the most influential multi-instance
learning algorithm and has achieved excellent performance in scene classification [7], while the
latter has achieved excellent performance on multi-instance benchmark tests [10].

Here all the compared algorithms use the same input representation. That is, each image is repre-
sented as a bag of nine instances generated byghen&thod [7]. The parameters of \ERSE
DENSITY and Bv-DD are set according to the settings that resulted in the best performance [7, 10].
The MimML BoosTand MiML Svm algorithms are implemented as described in Section 4.1, with 25
boosting rounds for ML BoosTwhile v = .2 for MIML SvMm.

Since DVERSE DENSITY and BEv-DD make single-label predictions, here the performance of the
compared algorithms are evaluated accordingradictive accuracy, i.e. classification accuracy

on test set. Note that for MiLBoosTand MIML SvM, thetop ranked classs regarded as the
single-label prediction. Tenfold cross-validation is performed and ‘measid’ is presented in

Table 8, where the best performance on each image class is bolded. Note that besides the predictive
accuracies on each class, the overall accuracy is also presented, which is denoted by ‘overall’.

We can find from Table 8 that MiL BoosTachieves the best performance on image cladssert
andtreeswhile MIML SvM achieves the best performance on the remaining image classes. Overall,
MIML Svm achieves the best performance. Pair-wigests with .05 significance level reveal that
the overall performance of MiL SvM is comparable to that of MiL BoOST, both are significantly
better than that of VERSE DENSITY and BEv-DD. These observations confirm that formalizing the
scene classification task as aNnil problem to solve by MML BoosTor MIML SvM is better than
formalizing it as a multi-instance learning problem to solve by#RSE DENSITY or EM-DD.



Table 8:Compare predictive accuracy ofIML BOOST, MIML SvM, DIVERSE DENSITY and Ev-DD

Image Compared algorithms

class MMLBOOST MIMLSVM  DIVERSEDENSITY EM-DD
desert .869+.014  .868+.026 .768+.037 .751+.047
mountains  .791+.024  .820+.022 .721+.030 .717+.036
sea .729+.026  .730+.030 .587+.038 .639+.063
sunset .864+.033  .883+.023 .841+.036 .815+.063
trees .801+.015  .798+.017 .781+.028 .632+.060
overall .811+.022  .820+.024 .739+.034 .711+.054

5 Conclusion

In this paper, we formalizeulti-instance multi-label learningthere an example is associated with
multiple instances and multiple labels simultaneously. Although there were some works investi-
gating the ambiguity of alternative input descriptions or alternative output descriptions associated
with an object, this is the first work studying both these ambiguities simultaneously. We show that
an MiML problem can be solved by identifying its equivalence in the traditional supervised learn-
ing framework, using multi-instance learning or multi-label learning as the bridge. The proposed
algorithms, MMLBoosTand MiML SvM, have achieved good performance in the application to
scene classification. An interesting future issue is to develaptMrersions of other popular ma-
chine learning algorithms. Moreover, it remains an open problem that whetihar &&n be tackled
directly, possibly by exploiting the connections between the instances and the labels. It is also in-
teresting to discover the relationship between the instances and labels. By unravelling the mixed
connections, maybe we can get deeper understanding of ambiguity.
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