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Abstract

We introduce a game-theoretic model for network formation inspired by earlier
stochastic models that mix localized and long-distance connectivity. In this model,
players may purchase edges at distanced at a cost ofdα, and wish to minimize
the sum of their edge purchases and their average distance to other players. In
this model, we show there is a striking “small world” threshold phenomenon: in
two dimensions, ifα < 2 then every Nash equilibrium results in a network of
constantdiameter (independent of network size), and ifα > 2 then every Nash
equilibrium results in a network whose diameter grows as a root of the network
size, and thus is unbounded. We contrast our results with those of Kleinberg [8] in
a stochastic model, and empirically investigate the “navigability” of equilibrium
networks. Our theoretical results all generalize to higher dimensions.

1 Introduction

Research over the last decade from fields as diverse as biology, sociology, economics and computer
science has established the frequent empirical appearance of certain structural properties in natu-
rally occurring networks. These properties include small diameter, local clustering of edges, and
heavy-tailed degree distributions [11]. Not content to simply catalog such apparently “universal”
properties, many researchers have proposed stochastic models of decentralized network formation
that can explain their emergence. A typical such model is known aspreferential attachment[3], in
which arriving vertices are probabilistically more likely to form links to existing vertices with high
degree; this generative process is known to form networks with power law degree distributions.

In parallel with these advances, economists and computer scientists have examined models in which
networks are formed due to “rational” or game-theoretic forces rather than probabilistic ones. In
such models networks are formed via the self-interested behavior of individuals who benefit from
participation in the network [7]. Common examples include models in which a vertex or player can
purchase edges, and would like to minimize their average shortest-path distance to all other vertices
in the jointly formed network. A player’s overall utility thus balances the desire to purchase few
edges yet still be “well-connected” in the network. While stochastic models for network formation
define a (possibly complex) distribution over possible networks, the game-theoretic models are typ-
ically equated with their (possibly complex) set of (Nash)equilibriumnetworks. It is also common
to analyze the so-calledPrice of Anarchy[9] in such models, which measures how much worse an
equilibrium network can be than some measure of social or centralized optimality [6, 2, 5, 1].

In this paper we introduce and give a rather sharp analysis of a network formation model of the
game-theoretic variety, but which was inspired by a striking result of Kleinberg [8] in a stochastic
model, and thus forms a bridge between these two lines of thought. In Kleinberg’s stochastic model,
the network formation process begins on an underlying substrate network that is highly regular —



for instance, a grid in two dimensions. This regular substrate is viewed as a coarse model of “local”
connectivity, such as one’s geographically close neighbors. The stochastic process then adds “long-
distance” edges to the grid, in an attempt to model connections formed by travel, chance meetings,
and so on. Kleinberg’s model assumes that the probability that an edge connecting two vertices
whosegrid distance isd is proportional to1/dα for someα > 0 — thus, longer-distance edges are
less likely, but will still appear in significant numbers due to the long tail of the generating distri-
bution. An interesting recent empirical study [4] of the migration patterns of dollar bills provides
evidence for the validity of such a model. In a theoretical examination of the “six degrees of sepa-
ration” or “small world” folklore first popularized by the pioneering empirical work of Travers and
Milgram [10], Kleinberg proved thatonly for α = 2 will the resulting network be likely to support
the routing of messages on short paths using a natural distributed algorithm. For larger values ofα
the network simply does not have short paths (small diameter), and for smaller values the diameter is
quite small, but the long-distance edges cannot be exploited effectively from only local topological
information.

Our model and result can be viewed as an “economic” contrast to Kleinberg’s. We again begin with
a regular substrate like the grid in two dimensions; these edges are viewed as being provided free of
charge to the players or vertices. A vertexu is then free to purchase an edge to a vertexv at grid
distanced = δ(u, v) at a cost ofdα for α > 0. Thus, longer-distance edges now have higher cost
rather than lower probability, but again in a power law form. We analyze the networks that are Nash
equilibria of a game in which each player’s payoff is the negative of the sum of their edge purchases
and average distances to the other vertices.

Our main result is a precise analysis of the diameter (longest shortest path between any pair of
vertices) of equilibrium networks in this model. In particular, we show a sharp threshold result:
for anyα < 2, every pure Nash equilibrium network has onlyconstantdiameter (that is, diameter
independent of the network sizen); andfor anyα > 2, every pure Nash equilibrium has diameter
that grows as aroot of the network size(that is, unbounded and growing rapidly withn). In the full
version, we show in addition that the threshold phenomenon occurs in mixed Nash equilibrium as
well.

Despite the outward similarity, there are some important differences between our results and Klein-
berg’s. In addition to the proofs being essentially unrelated (since one requires a stochastic and the
other an equilibrium analysis), Kleinberg’s result establishes a “knife’s edge” (fast routing only atα
exactly2), while ours is a threshold or phase transition — there is a broad range ofα values yielding
constant diameter, which sharply crosses over to polynomial growth atα = 2. On the other hand,
for α = 2 Kleinberg establishes that in his model not only that there is small (though orderlog(n)2
rather than constant) diameter, but that short paths can benavigatedby a naive greedy routing algo-
rithm. However, simulation results discussed in Section 5 suggest that the equilibrium networks of
our model do support fast routing as well. Like Kleinberg’s results, all of ours generalize to higher
dimensions as well, with the threshold occurring atα = r in r-dimensional space.

The outline of the paper is as follows. In Section 2 we define our game-theoretic model and introduce
the required equilibrium concepts. In Section 3 we provide the constant diameter upper bound for
r = 2 whenα < 2, and also even better constants forα ≤ 1. Section 4 provides the diameter
lower bound forα > 2, while in Section 5 we explore greedy routing in equilibrium networks via
simulation.

2 Preliminaries

We devote this section to a formal definition of the model. We assume that the players are located on
a grid, so each playerv is uniquely identified with a grid point(a, b), where1 ≤ a, b ≤ √

n; thus the
total number of players isn. The action of playervi is a vectorsi ∈ {0, 1}n indicating which edges
to other playersvi has purchased. We lets = s1 × · · · × sn be the joint action of all the players,
v1, ..., vn. We also uses−i to denote the joint action of all players except playervi.

The Graph.The joint actions defines an undirected graphG(s) as follows. The nodes ofG(s) are
the playersV = {v1, . . . , vn}. An edge(vi, vj) is bought by playervi if and only if si(j) = 1. Let
Ei(si) = {(vi, vj) | si(j) = 1} be the set of edges bought by playervi and letE(s) = ∪i∈V Ei(si).
The graph induced bys is G(s) = (V, E(s)).



Distancesand Costs.The grid defines a natural distanceδ. Let vi be the player identified with the
grid point(a, b) andvi′ with (a′, b′); then their grid distance isδ(vi, vi′) = |a− a′|+ |b− b′|. Next
we define a natural family of edge cost functions in which the cost of an edge is a function of the
grid distance:

c(vi, vj) =
{

0 δ(vi, vj) = 1
aδ(vi, vj)α otherwise

wherea, α > 0 are parameters of the model. Thus, grid edges are free to the players, and longer
edges have a cost polynomial in their grid distance.

The Game.We are now ready to define the formal network formation game we shall analyze. The
overall cost functionci of playervi is defined as

ci(s) = ci(si, s−i) =
∑

e∈Ei(si)

c(e) +
n∑

j=1

∆G(s)(vi, vj)

where∆G(s)(u, v) is the shortest distance betweenu andv in G(s). Thus, in this game player
i wishes to minimizeci(s), which requires balancing edge costs and shortest paths. We empha-
size that players benefit from edge purchases by other players, since shortest paths are measured
with respect to the overall graph formed by all edges purchased. The graph diameter is defined as
maxi,j ∆G(s)(vi, vj).

Equilibrium Concepts.A joint action s = s1 × · · · × sn is said to be aNash equilibriumif for
every playeri and any alternative action̂si ∈ {0, 1}n, we haveci(si, s−i) ≤ ci(ŝi, s−i). If s is a
Nash equilibrium we say that its corresponding graphG(s) is an equilibrium graph. A joint action
s = s1×· · ·×sn is said to belink stableif for every playeri and any alternative action̂si ∈ {0, 1}n

that differs fromsi in exactly one coordinate(i.e. one edge), we haveci(si, s−i) ≤ ci(ŝi, s−i). If s is
link stable we say that its corresponding graphG(s) is a stable graph. Note that an equilibrium graph
implies a link stable graph. Link stability means that the graph is stable under single-edge unilateral
deviations (as opposed to Nash, which permits arbitrary unilateral deviations), and is a private case
of the pairwise stability given notion given in [7]. The popularity of the link stable notion is due to its
simplicity and due to the fact that it is easily computable, as opposed to computing best responses
which in similar problems is known to be NP-Hard [6]. Note that as the grid edges are free, the
diameter of an equilibrium or link stable graph is bounded by2

√
n.

3 Constant Diameter at Equilibrium for α ∈ [0, 2]

In this section we analyze the diameter of equilibrium networks whenα ∈ [0, 2]. Our results actually
hold under the more general notion of link stability as well. The following is the first of our two
main theorems.

Theorem 3.1 For any constantε > 0, if α = 2 − ε, then there exists a constantc(α) such that for
anyn, all Nash equilibria or link stable graphs overn players have diameter at mostc(α).

The proof of this theorem has a number of technical subtleties, so we first provide its intuition, which
is illustrated in Figure 1(B). We analyze an equilibrium (or link stable) graph in stages, and focus on
the distance of vertices to some focal playeru. In each stage we argue that more grid-distant players
have an incentive to purchase an edge tou due to the centrality ofu in the graph.

We start with the following simple fact: for every nodesv and w we have that ifδ(v, w) ≤ d
then∆G(s)(v, w) ≤ d since all grid edges are free. We would like to show that even a stronger
property holds — namely, that ifδ(v, w) ≤ dα then∆G(s)(w, v) ≤ d for someα > 1. Since
this property is no longer simply implied by the grid edges, it requires arguing that grid-distant
vertices have an incentive to purchase edges to each other. Suppose there are nodesu andv such
that∆G(s)(u, v) ≥ d. We first define a “close” graph neighborhood ofu, Su = {w|∆G(s)(u,w) ≤
d/3}. Note that for everyw ∈ Su we have that∆G(s)(v, w) ≥ 2d/3. Next we would like to claim
that the cardinality ofSu is large — thusu’s neighborhood is densely populated. For this we define
Sδ

u = {w|δ(u,w) ≤ d/3} ⊆ Su. Using the grid topology (see Figure 1(A)) we see that|Sδ
u| is of

orderd2.
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Figure 1: (A) The number of nodes at exact distancek is exactly4k, while the number withink is
orderk2. (B) Illustration of the main argument of Theorem 3.1. Hereu andv are vertices at grid
distanced, while u andv′ are at grid distanced′, whered ≤ d3/α ≤ d′. In the proof we use the
size ofSδ

u to show thatv benefits by purchasing an edge tou and thus must be distance 1 tou in the
equilibrium graph; this in turn allows us to argue thatv′ wishes to purchase an edge tou as well.

Now consider the benefit tov of buying the edge(v, u) (which is not in the graph since
∆G(s)(u, v) ≥ d). Since the distance fromv to every node inSu is reduced by at leastd/3 and
the set size is at least orderd2, we have that the benefit is of orderd3. The fact that this edge was
not bought implies thatδ(v, u)α = Ω(d3). Therefore, we have that∆G(s)(u, v) ≥ d implies that
δ(u, v) = Ω(d3/α), which is the contrapositive ofδ(u, v) = O(d3/α) implies∆G(s)(u, v) ≤ d.

In other words, for “small enough” values ofα (quantified in the full proof), vertices quite distant
from u in the grid have an incentive to buy an edge tou, by virtue of the dense population inSδ

u.
But this in turn argues that the size ofSu is even larger thanSδ

u; we then “bootstrap” this argument
to show that yet further vertices have an incentive to connect tou, and so on. We now proceed with
the formal proof based on this argument.

Lemma 3.2 Let G(s) be an equilibrium or link stable graph andu be the grid center. Suppose
that for every nodev such thatδ(u, v) ≤ dβ (whereβ ≥ 1 and dβ <

√
n/2), we have that

∆G(s)(u, v) ≤ d. Then for everyd, and for every nodev such thatδ(u, v) ≤ 21/α(d/3)β′ , where

β′ = 2β+1
α , we have that∆G(s)(u, v) ≤ d.

Proof: Let v be a node such that∆G(s)(u, v) = d and letSu = {w|∆G(s)(u, w) ≤ d/3}; observe
that d′ = minw∈Su ∆G(s)(w, v) is at least2d

3 andthusv’s benefit of buying the edge(v, u) is at
least d

3 |Su|. Next we would like to bound the size ofSu from below. Using the topology of the
grid, the grid the center node has4k nodes (See Figure 1(A)) in exact grid distancek (if k ≤ n/2),
which implies that the center node has2k2 nodes in grid distance at mostk. The setSu contains all
nodes such that∆G(s)(u,w) ≤ d/3 by definition which implies by our assumption that it includes
all nodesw such thatδ(u,w) ≤ (d/3)β . Therefore, the size ofSu is at least2(d/3)2β . Now since
G(s) is an equilibrium or link stable graph, it means thatv would not like to buy the edge(u, v) and
thus

δ(u, v)α > 2(d/3)2β · d/3 = 2
d2β+1

32β+1

Taking theα root, we have that∆G(s)(u, v) > d implies δ(u, v) ≥ 21/α d(2β+1)/α

3(2β+1)/α , which is the

contrapositive ofδ(u, v) ≤ 21/α d(2β+1)/α

3(2β+1)/α implies∆G(s)(u, v) ≤ d, as required.

Equippedwith this lemma we can prove rather strong results regarding the case whereα = 2−ε, for
ε > 0. In the previous lemma there are two parts in the change of the radius — one is the exponent,
which grows, and the second is that instead of havingd in the base we have onlyd/3. The next
lemma shows that as long asd is large enough we can ignore the fact that the base decreases fromd
to d/3 — and thus “amplify” the exponentβ in the preceding analysis to a larger exponent(1+ε1)β.
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Lemma 3.3 (Amplification Lemma) LetG(s) be an equilibrium or link stable graph. Letα = 2− ε
for someε > 0. Let c(α) be a constant determined by subsequent analysis. Suppose that for every
d > c(α), for every nodev such thatδ(u, v) ≤ dβ (whereβ ≥ 1, dβ <

√
n/2, and u is the

grid center), we have that∆G(s)(u, v) ≤ d. Then for everyd > c(α), for every nodev such that

δ(u, v) ≤ dβ′ , whereβ′ = β(1 + ε1), we have that∆G(s)(u, v) ≤ d, whereε1 = ε
2(2−ε) .

Proof: Setc(α) = 3
1+2ε1

ε1 . By Lemma 3.2 we have that for everyd > 3
1+2ε1

ε1 for every nodesu and

v such thatδ(u, v) ≤ (d/3)β̂

2 , whereβ̂ = 2β+1
α , we have that∆G(s)(u, v) ≤ d.

(d/3)β̂

2
=

(d/3)
2β+1

α

2
=

d(1+ ε
2−ε )β+1/α

2 · 3(1+ ε
2−ε )β+1/α

>
d(1+ ε

2−ε )β

3(1+ ε
2−ε )β

=
d(1+ε1)βdε1β

3(1+2ε1)β
≥ d(1+ε1)β

whereboth inequalities hold ford ≥ c(α)

Now we are ready to prove the main theorem of this section.

Proof: (Theorem 3.1) Letc′(α) = 3
1+2ε1

ε1 , whereε1 = ε
2(2−ε) andlet u be the grid center. For every

nodev such thatδ(u, v) ≤ c′(α), we must have∆G(s)(u, v) ≤ c′(α), since all grid edges are part
of G(s). Next we prove that all nodes within grid distance

√
n/2 arewithin graph distancec′(α).

Since∆G(s)(u, v) ≤ δ(u, v), we can apply Lemma 3.3 to obtain that in radiusc′(α) of u in G, are
all nodesv such thatδ(u, v) ≤ c′(α)1+ε1 . We repeat this argument recursively and obtain after the
k-th time, that all nodesv such thatδ(u, v) ≤ c′(α)(1+ε1)

k

satisfy∆G(s)(u, v) ≤ c′(α). Taking
k = log1+ε1(

√
n/2), this implies that there aren/2 nodes withinc′(α) from u. Now suppose there

exists a nodev such that∆G(s)(u, v) ≥ 3c′(α). Then by buying the edge(v, u), u’s benefit is at
least2c′(α)n/2 (we know that there are at leastn/2 nodes within graph distance ofc′(α) from u),
while its cost is bounded by

√
n

α
< n (since any node grid distance fromu is at most

√
n). Setting

c(α) = 6c′(α), we obtain the theorem.

3.1 Even Smaller Constant Diameter at Equilibrium for α ≤ 1

The constant diameter boundc(α) in Theorem 3.1 blows up asε approaches 0. In this section we
show that forα < 1, rather small constant bounds hold. Note that whenα ≤ 1, the most expensive
edge cost is bounded by2a

√
n, wherea is the edge cost constant. We will use this fact to show that

every equilibrium graphG(s) has a small constant diameter.

Let u, v ∈ V , we letTG(s)(u, v) be the set of all nodes thatu can reach on a shortest path that
includesv. Formally,TG(s)(u, v) = {w | ∆G(s)(u,w) = ∆G(s)(u, v) + ∆G(s)(v, w)}. We start by
providing a technical lemma.

Lemma 3.4 Let G(s) be an equilibrium or link stable graph. Letu, v ∈ V be an arbitrary pair of
players. If(u, v) /∈ E(s) then| TG(s)(u, v) | ≤ δ(u,v)α

∆G(s)(u,v)−1 .

Proof: Buying the edge(u, v) (at a cost ofδ(u, v)α) makes the distance fromu to everyw ∈
TG(s)(u, v) shorter by∆G(s)(u, v) − 1. However,s is a Nash equilibrium, thus we know that the



edge(u, v) was not bought. This implies that the benefit(∆G(s)(u, v) − 1) · |TG(s)(u, v)| from
buying the edge is bounded byδ(u, v)α.

Lemma 3.5 LetG(s) = (V,E(s)) be an equilibrium graph and letu, v ∈ V .

• If α < 1 then∆G(s)(u, v) ≤ 5.

• If α = 1 then∆G(s)(u, v) ≤ 2da2 + 4e
Proof: We prove for the case that the cost functions isaδ(u, v) and omit the proof for the case where
α < 1 which is similar. Assume for contradiction that there exist a nodev such that∆G(s)(u, v) ≥
da2 + 4e + 1, whereu is the grid center node (note that the grid distance fromu is bounded by√

n). Let S2
u = {w|∆G(s)(u,w) ≤ 2} be the set of nodes at a distance of at most2 from u

(See Figure 3.1) includingu. We first bound the size ofS2
u. For every nodew ∈ S2

u we have
∆G(s)(u,w) ≥ da2+4e−1. Buying the edge(v, u) makes the distance betweenv and everyw ∈ S2

u

at most3. Thus, the benefit from buying the edge(v, u) is at least(da2+4e−1−3)|S2
u| = da2e|S2

u|.
However, the edge(v, u) /∈ E(s) and is not part of the equilibrium graph. Therefore, the benefit
from buying it is at mostδ(v, u). This implies thatda2e|S2

u| ≤ δ(v, u) ≤ a
√

n. Now we look on a
shortest paths tree rooted atu. There are at most

√
n/da2e−2 nodes at a distance of2 from u. Each

one of them has at mosta
√

n descendantsby Lemma 3.4. Since the graph is connected, we get that
a
√

n/da2e(a√n− 2) + a
√

n/da2e ≥ n, which is a contradiction.

3.2 The Caseα = 2

In this case we obtain neither a constant upper bound nor a polynomial lower bound. We show that

for α = 2 the diameter is bounded byO(
√

n
2/
√

logn), which is bounded by
√

n
c for every constant

c (i.e. this bound is very small as well); however it bounds from above any polylogarithmic function.

Theorem 3.6 Let the edge cost bec((u, v) = δ(u, v)2, and letG(s) = (V, E(s)) be an equilibrium

or link stable graph . Then the graph diameter is bounded byO(
√

n
2/
√

logn).

Proof: We again apply Lemma 3.2 repeatedly, but now withα = 2. After applying it for the first
time we have that all nodes which are in grid distance(d

3 )3/2 from u thegrid center are within graph
distanced. Recall thatSu = {w|∆G(s)(u,w) ≤ d/3}. Using the same arguments we construct a
series of distancesxk, such that ifδ(u, v) ≤ xk then∆G(s)(u, v) ≤ d. We begin withx1 as(d

3 )3/2

andnow computex2:

x2
2 >

d

3
|Su| = d

3
(
d3/2

33/2
/33/2)2

Solvingit we obtain thatx2 = d4/2

37/2 . Suppose that after repeating the argument for thekth time we
have thatxk is at leastdak/3bk . Using this bound we derive a lower bound on the size ofSu and
obtain the following bound for thek + 1 iteration:

x2
k+1 >

d

3
|Su| = d

3
(
dak/3ak

3bk
)2

Thuswe obtain thatxk+1 = dak+1/2

3bk+ak+1/2 and

ak+1 = ak + 1/2
bk+1 = bk + ak + 1/2.

Our next goal is to estimateak andbk. The estimation ofak is straight forward andak = k/2 + 1.
Forbk it is enough for our needs to consider an upper bound; since we havebk+1 = bk +k/2+3/2,
one can easily verify thatk2/2 is an upper bound fork ≥ 3. Therefore, in order to provide an upper
bound on the distance form the center gridu we would like to find an initiald such that

∃k such that
dk/2

3k2/2
≥ √

n

andd is minimal. This clearly holds ford = n2/
√

logn andk =
√

logn and can be shown to be
the minimal value for which it holds. Now using similar arguments to previous proofs we show that
every other node cannot be further away fromu.



4 Polynomial Diameter at Equilibrium for α > 2

We now give our second main result, which states that forα > 2 the diameter grows as a root ofn
and is thus unbounded.

Theorem 4.1 For anyα, the diameter of any Nash equilibrium or link stable graph isΩ(
√

n
α−2
α+1 ).

Beforegiving the proof we note that this bound implies a trivial lower bound of a constant forα ≤ 2,
and a polynomial forα > 2. For instance, settingα = 3 we obtain a lower bound ofΩ(

√
n

1/4).
We first provide a simple lemma (stated without proof) regarding the influence of one edge on a
connected graph’s diameter.

Lemma 4.2 LetG = (V, E) be a connected graph with diameterC, and LetG′ = (V, E
⋃{e}) for

any edgee then the diameter ofG′ is at leastC/2.

Proof: (Theorem 4.1) LetD be the diameter of an equilibrium graph, andd be the grid distance
of (w, v) the most expensive edge bought inG, note that the most expensive edge corresponds to
the longest edge in grid distance terms. First we observe thatD ≥ 2

√
n/d, as the grid diameter is

2
√

n andthe fastest way to traverse it is through edges of maximal length which isd. By Lemma
4.2 the benefit of buying an edge(u, v) is at most2D(n − 3), since the diameter before was at
most2D and the distance to your two neighbor and yourself has not been changed. Therefore, have
δ(u, v)α = dα ≤ 2D(n− 3). Next we use the two simple bounds

dα ≤ 2Dn (1)

2
√

n/d ≤ D (2)

Substitutingthe bound ofd in Equation 2 into equation 1 we obtain that

(2
√

n/D)α ≤ 2Dn

(2
√

n)α

2n
≤ D1+α

c(
√

n
α−2
1+α ) ≤ D

asrequired.

5 Simulations

The analyses we have considered so far examine static properties of equilibrium and link stable
graphs, and as such do not shed light on natural dynamics that might lead to them. In this section we
briefly describe dynamical simulations on a100× 100 grid (which has108 possible edges). At each
iteration a random vertexu is selected. With probability 1/2, an existing edge ofu (grid or long-
distance) is selected at random, and we compute whether (given the current global configuration of
the graph),u would prefernot to purchase this edge, in which case it is deleted. With probability 1/2,
we instead select a second random vertexv, and compute whether (again given the global graph)u
would like to purchase the edge(u, v), in which case it is added. Note that if this dynamic converges,
it is to a link stable graph and not necessarily a Nash equilibrium, since only single-edge deviations
are considered.

The left panel of Figure 3 shows the worst-case diameter as a function of the number of iterations,
and demonstrates the qualitative validity of our theory for this dynamic. Forα = 1, 2 the diameter
quickly falls to a rather small value (less than 10). The asymptotes forα = 3, 4 are considerably
higher.

The right panel revisits the question that was the primary interest of Kleinberg’s work [8], namely
the efficiency of “naive” or greedy navigation or routing. If we wish to route a message from the
grid center to a randomly chosen destination, and the message is always forwarded from its current
vertex to the graph neighbor whose grid address is closest to the destination, how long will it take?
Kleinberg was the first to observe and explain the fact that the mere existence of short paths (small
diameter) may not be sufficient for such greedy local routing algorithms tofind the short paths. In the



right panel of Figure 3 we show that the routing efficiency does in fact seem to echo our theoretical
results — for the aforementioned dynamic, very short paths (only slightly higher than the diameter)
are found for smallα, much longer paths for largerα.
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Figure 3: Left panel: graph diameter vs. iterations for a simple dynamic. Right panel: greedy
routing efficiency vs. iterations for the same dynamic.

6 Extensions

We conclude by briefly mentioning generalizations of our theoretical results that we omit detailing.
All of the results carry over higher dimensions, where the threshold phenomenon takes place atα
equaling the grid dimension. We can also easily handle the case where the grid wraps around rather
than having boundaries. We can also generalize to the pairwise link stability notion of [7], in which
that the cost of each link is shared between the end points of the edge. Finally, we can construct
network that are stable.
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