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Abstract

Our motor system changes due to causes that span multiple timescales. For ex-
ample, muscle response can change because of fatigue, a condition where the
disturbance has a fast timescale or because of disease where the disturbance is
much slower. Here we hypothesize that the nervous system adapts in a way
that reflects the temporal properties of such potential disturbances. According
to a Bayesian formulation of this idea, movement error results in a credit assign-
ment problem: what timescale is responsible for this disturbance? The adaptation
schedul e influences the behavior of the optimal learner, changing estimates at dif-
ferent timescales as well as the uncertainty. A system that adapts in this way
predicts many properties observed in saccadic gain adaptation. It well predicts
the timecourses of motor adaptation in cases of partial sensory deprivation and
reversals of the adaptation direction.

1 Introduction

Saccades are rapid eye movements that shift the direction of gaze from one target to another. The
eyes move so fast [1] that visual feedback can not usually be used during the movement. For that
reason, without adaptation any changesin the properties of the oculomotor plant would lead to inac-
curate saccades [2]. Motor gain is the ratio of actual and desired movement distances. If the motor
gain decreases to below one then the nervous system must send a stronger command to produce
a movement of the same size. Indeed, it has been observed that if saccades overshoot the target,
the gain tends to decrease and if they undershoot, the gain tends to increase. The saccadic jump
paradigm [3] is often used to probe such adaptation [4]: while the subject movesits eyes towards a
target, the target is moved. Thisis not distinguishable to the subject from a change in the proper-
ties of the oculomotor plant [5]. Using this paradigm it is possible to probe the mechanism that is
normally used to adapt to ongoing changes of the oculomotor plant.

1.1 Disturbancestothe motor plant

Properties of the oculomotor plant may change due to a variety of disturbances, such as various
kinds of fatigue and disease. The fundamental characteristic of these disturbancesisthat their effects
unfold over awide range of timescales. Here we model each disturbance as a random walk with a



characteristic timescale (Figures 1A and B) over which the disturbance is expected to go away.

disturbance,(t + A) = (1 — 1/7)disturbance,(t) + €, (1)

where e, is drawn from a mean zero normal distribution of width o, and 7 is the timescale. The
larger 7 thecloser (1 — 1/7 isto 1 and the longer does a disturbance typically last.

1.2 Parameter choice

For the experiments that we want to explain only those timescales will matter that are not much
longer than the overall time of the experiments (because they would aready have been integrated
out) and that are not much shorter than the time of an individual saccade (becausethey would average
out). For that reason we chose the distribution of 7 to be 30 values exponentially scaled between
1 and 33333 saccades. The distribution of expected gains thus only depends on the distribution of
o-, acharacterization of how important disturbances are at various timescales. It seems plausible
that disturbances that have a short timescale tend to be more variable than those that have a long
timescale, and we choose: o, = ¢/ where c is one of the two free parameters of our model.
Moreover, as we expect each disturbance to be relatively small, we assume linearity and that the
motor gain is simply one plus the sum of al the disturbances:

gain(t) =1+ Z disturbance (t) 2

If the motor plant underwent such changesin its properties, and if the nervous system produced the
same motor commands without adaptation, then saccade gain would differ from one, resulting in
motor error. However, with each saccade, the brain observes consequences of the motor commands.
We assume that this observation is corrupted by noise:

observation(t) = gain(t) + w (3)

wherew isthe second free parameter of our model, the observation noise with awidth o ,,. Through-
out this paper we choose o, = 0.05 which we estimated from the spread of saccade gains over typ-
ical periods of 200 saccades and ¢ = 0.002 because that yielded good fits to the data by Hopp and
Fuchs[2]. We choseto model al data using the same set of parametersto avoid issues of overfitting.

1.3 Inference

Given this explicit model, Bayesian statistics allows deriving an optimal adaptation strategy. We
observethat the system is equivalent to the generative model of the Kalman filter [6] with adiagonal
transition matrix M = diag(1 —1/7) and an observation matrix H that is avector consisting of one
1 for each of the 30 potential disturbances, and a diagonal process noise matrix of Q = diag(r ~1).
Process noise is what is driving the changes of each of the disturbances. We obtain the solution that
iswell known from the Kalman Filter literature. We use the Kalman filter toolbox written by Kevin
Murphy to numerically solve these equations.

An optimally adapting system needs to explicitly represent contribution of each timescale. Because
the contribution of each timescale can never be known precisely, the Bayesian learner represents
what it knows as a probability distribution. As the model is linear and the noises are Gaussian, it
is sufficient to keep first and second order statistics. And so the learner represents what it knows
about the contribution of each timescale as a best estimate, but also keeps a measure of uncertainty
around this estimate (Fig 1C). Any point along the +0% gain line is a point where the fast and slow
timescal e cancel each other. Thereisaline associated with any possible gain (e.g. +30% and -30%).
Every timestep the system starts with its belief that it has from the previous timestep (sketched in
yellow) and combines this with information from the current saccade (sketched in blue) to come up
with a new estimate (sketched in red). Two important changes happen to the belief of the learner
over time. (1) When time passes, disturbances can be expected to get smaller but at the same time
our uncertainty about them increases. (2) when a movement error is observed then this biases the
sum of the disturbances to the observed error value and it also decreases the uncertainty. These
effects are sketched in Figure 1D. Normally the adaptation mechanism is responding to the small
drifts that happen to the oculomotor plant and the estimate from the saccade is largely overlapping
with the prior belief and with the new belief. When the light is turned off the estimate of each of the
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Figure 1. A generative model for changes in the motor plant and the corresponding optimal in-
ference. A) Various disturbances d evolve over time as independent random walks. The gain is a
linear function of all these random walks. The observed error is a noisy version of the gain. B)
An example of a system with two timescales (fast and slow), and the resulting gain. C) Optimal
inference during a saccade adaptation experiment. For illustrative purposes, here we assume only
two timescales. The yellow cloud represents the learners belief about the current combination of
disturbances (prior). The system observes a saccade with an error of +30%. The region about the
blue line is the uncertainty about the observation (i.e., the likelihood). Combining this information
with the prior belief (yellow) leads to the posterior estimate (red). After a single observation of the
+30% condition the most probable estimate thus is that it is a fast disturbance. D) The changes
of estimates under various perturbations. Here we simulated a saccade on every 10th time step of
the model. Each column shows three consecutive trials (top to bottom). Only in the darkness case
saccades 1 3 and 50 are shown. In the dark, parameter uncertainties increase because the learner is
not allowed to make observations (sensory noiseis effectively infinite). In again increase paradigm,
initially most of the error is associated with the fast perturbations. After 30 saccadesin the gainin-
crease paradigm, most of the error is associated with slow perturbations. Washout trials that follow
gain increase do not return the system to a naive state. Rather, estimates of fast and slow perturba-
tions cancel each other. Gain decrease following gain increase training will mostly affect the fast
system.
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Figure 2: Saccadic gain adaptation in a target jump paradigm. A) Data replotted from Hopp and
Fuchs[2] with permission. Each dot is one saccade, thethick lines are exponential fitsto theintervals
[01400] and [1400:2800]. Starting at saccade number O thetarget isjumping 30% short of the target
giving theimpression of muscles that are too strong. The gain then decreases until the manipulation
is ended at saccade number 1400. B) The same plot is shown for the optimal Bayesian learner.
Changes without feedback. C) Data reprinted from [7]. Normal saccadic gain change paradigm as
in Figure 2, however now the monkey spendsits nightswithout vision and the paradigm is continued
for many days. D) The same plot as in C) but for the Bayesian learner. E) Comparison of the
saccadic gain change timecourses obtained by fitting an exponential. F) the sasme figure asin E) for
the Bayesian learner

disturbances slowly creeps towards zero. At the same time, however the uncertainty increases alot
and larger uncertainty allows faster learning because the new information is more precise than the
prior information. In the saccadic jump paradigm the error is much larger than it would be during
normal life and thisisfirst interpreted by the learner as afast change and as it persists progressively
interpreted as a slow change. When the saccadic jumps ends then the fast timescale goes negative
fast and the slow timescale slowly approaches zero. In areversal setting the fast timescale becomes
very negative and the slow timescale goes towards zero. Already with two timescales the optimal
learner can thus exhibit alarge number of interesting properties.

2 Results: Comparison with experimental data

2.1 Saccadic gain adaptation

In an impressive range of experiments started by Mclaughlin [3], investigators have examined how
monkeysadapt their saccadic gain. Figure 2A shows how the gain changesover time so that saccades
progressively become more precise. The rate of adaptation typicaly starts fast and then progres-
sively getsslower. Thisisaclassic pattern that is reflected in numerous motor adaptation paradigms
[8, 9]. The same patterns are seen for the Bayesian multiscale learner (Figure 2B). Fast timescale
disturbances are assumed to increase and decrease faster than slow timescale disturbances. There-
fore, when the gain rapidly changes, it is a priori most likely that it will go away fast. (Fig. 1D,
saccadic jump). Between trias, the estimates of the fast disturbances decay fast, but this decay is
smaller in the slower timescales. If the gain change is maintained, the relative contribution of the
fast timescales diminishes in comparison to the slow timescales (Fig. 1D, +30 saccades). As fast
timescal es adapt fast but decay fast as well and slow timescal es adapt and decay slowly, thisimplies
that the gain change is driven by progressively slower timescales resulting in the transition from
initial fast adapting to a progressively slower adapting.

2.2 Saccadic gain adaptation after sensory deprivation

The effects of awide range of timescales and uncertainty about the causes of changes of the oculo-
motor plant will largely be hiddenif experimentsare of arelatively short duration and no uncertainty



is produced. However, in a recent experiment Robinson et al analyzed saccadic gain adaptation [7]
inaway that allowed insight into many timescales aswell asinsight into the way the nervous system
deals with uncertainty. The adaptation target was set to -50%. The monkey adapted for about 1500
saccades every day for 21 consecutive days. Because of the long duration many different timescales
are involved in this process. Interestingly, during the rest of the day the monkey wore goggles that
blocked vision. During these breaks monkeys will accumulate uncertainty about the state of their
oculomotor plant. Figure 2C shows results from such an experiment and figure 2D shows the results
we are getting from the Bayesian learner. The results are surprisingly similar given that we used
the same parametersthat we had used the model parametersinferred from the Hopp and Fuchs data.
Two effects are visible in the data. (1) There are several timescales during adaptation: there is a
fast (100 saccades) and a slow (10 days) timescale. Closer examination of the data reveals a wide
spectrum of timescales. (2) The state estimate is affected by the periods of darkness. During the
breaks that are paired with darkness the system is decaying back to a gain of zero, as predicted by
the model. Moreover, darknessleads to increased uncertainty. Increased uncertainty means that new
information is relatively more precise than old information which in turn leads to faster learning.
Conseguently monkeyslearn faster during the second day (after spending a night without feedback)
than during the first (quantified in figure 2E and F). The finding that the Bayesian learner seems to
change faster than the monkey may be related to the context being somewhat different than in the
Hopp and Fuchs experiment. The system seems to represent uncertainty and clearly represents the
way the motor plant is expected to change in the absence of feedback. It has been proposed that
the nervous system may use a set of integrators where oneis learning fast and the other is learning
slowly [10, 11]. The Bayesian learner, however, keeps a measure of uncertainty about its estimates.
For that reason only the Bayesian learner can explain the fact that sensory deprivation appears to
enhance learning rates.

2.3 Gain adaptation with reversals

Kojimaet al [12] reported ahost of surprising behavioral results during saccade adaptation. In these
experimentsthe adaptati on direction was changed 3 times. The saccadic gain wasinitially increased,
then decreased until it reached unity, and finally increased again (Figure 3A). The saccadic gain
increased faster during the second gain-up session than during the first(Figure 3B). Therefore, the
reversal learning did not washout the system. The Bayesian learner shows asimilar phenomenon and
providesarationale: At the end of thefirst gain-up session for the Bayesian learner, most of the gain
changeis associated with a slow timescale (Figure 3C). In the subsequent gain-down session, errors
produce rapid changesin the fast timescales so that by the time the gain estimate reaches unity, the
fast and slow timescal es have opposite estimates. Therefore, the gain-down session did not reset the
system, but the latent variables store the history of adaptation. In the subsequent gain-up session,
the rate of re-adaptation is faster than initial adaptation because the fast timescales decay upwards
in between trials (Figure 3D). After about 100 saccades the speed gain from the low frequenciesis
over and is turned into a slowed increase due to the decreased error term.

In a second experiment, Kojima et al [12] found that saccade gains could change despite the fact
that the animal was provided with no feedback to guide its performance. In this experiment the
monkeys were again trained in a gain-up following by a gain-down session. Afterwards they spent
some time in the dark. When they come out of the dark their gain had spontaneously increased
(Figure 3E). The same effect is seen for the Bayesian learner (Figure 3F). In the dark period, the
system makes no observations and therefore cannot learn from error. However, the estimates are
still affected by their timescales of change: the estimate moves up fast along the fast timescales but
slowly along the slow timescales. At the start of the darkness period there is a positive upward and
a negative downward disturbance inferred by the system (Figure 1C, reversal). Consequently, by
the end of the dark period, the estimate has become gain-up, the gain learned in the initial session.
This produces the apparent spontaneous recovery observed in Figure 3F. Updating without feedback
leads the system to infer unobserved dynamics of the oculomotor plant and these dynamics lead to
the observed changes.
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Figure 3: The double reversal paradigm. A) The gain is first adapted up until it reaches about 1.2
with a negative target jump of 35%. Then it is adapted down with a positive target jump of 35%.
Oncethe gainreaches 1 again it is adapted up with a positive target jump again. Datareprinted from
[12] with permission. B) The speed of adaptation is compared between the first adaptation and the
second positive adaptation. C) the same asin A) for the Bayesian learner. D) the sasme asin B for
the Bayesian learner. E) Double reversal paradigm with darkness, reprinted from [12]. The gain
used by the monkey is changing during this interval. F) The same graph is shown for the Bayesian
learner.



3 Discussion

Traditional models of adaptation simply change motor commands to reduce prediction errors [13].
Our approach differs from traditional approaches in three magjor ways. (1) The system represents
its knowledge of the properties of the motor system at different timescales and explicitly models
how these disturbances evolve over time. (2) It represents the uncertainty it has about the magnitude
of the disturbances. (3) It formulates the computational aim of adaptation in terms of optimally
predicting ongoing changesin the properties of the motor plant.

Multiple studies address each single of these pointsonitsown. Multi-timescalelearningisaclassical
phenomenon described frequently [14, 8]. Two timescales had been proposed in the context of
connectionist learning theory [11]. In the context of motor adaptation Smith et a. [10] proposed
a model where the motor system responds to error with two systems: one that is highly sensitive
to error but rapidly forgets and another that has poor sensitivity to error but has strong retention.
In the context of classical conditioning, it has been proposed that the nervous system should keep
ameasure of uncertainty about its current parameter estimates to allow an optimal combination of
new information with current knowledge [15]. Even the earliest studies of oculomotor adaptation
realized that the objective of adaptation is to allow precise movement with a relentlessly changing
motor plant [3]. Our approach unifies these ideas in a consistent computational framework and
explains awide range of experiments.

Multi timescale adaptation and learning is a near universal phenomenon [14, 8, 16, 17]. Within
the area of psychology it was found that learning follows multiscale behavior [17]. It has been
proposed that multiscale learning may arise from chunking effects [14, 18]. The work presented
here suggests a different interpretation. Multiscale learning in cognitive systems may be aresult of a
system that has originally evolved to deal with ever changing motor problems. Multiscale adaptation
can also be seen in the way visual neurons adapt to changing visual stimuli [16]. The phenomenon
of spontaneous recovery in classical conditioning [19, 20] is largely equivalent to the findings of
Kojimaet al [12] and can also be explained within the Bayesian multiscale learner framework.

The presented model obviously does not explain all known effects in motor or even saccadic gain
adaptation. For example it has been found that adapting up usually has a somewhat different time-
course to adapting down [21, 16, 12]. Moreover it seems that adaptation speed of monkeys can be
very different on one day than the other and from one experimental setting to the other (e.g. Figure
2E and F). In learning reach control, there is more direct evidence that people can actually modify
their rates of adaptation as a function of the auto-correlations of the perturbation [22]. This can be
seen as the system learning about the size of the change parameter o - in this theory. Moreover, we
certainly estimate the uncertainty we have about a visual stimulus in a continuous fashion: uncer-
tainty is smallest for a high contrast stimulus in our fovea and progressively larger with decreasing
contrast and increasing eccentricity.

An important question for further enquiry is how the nervous system solves problems that require
multiple timescal e adaptation. The necessary effects could potentially be implemented directly by
synapses that could exhibit LTP with powerlaw characteristics [23, 24]. Alternatively, small groups
of neurons may jointly represent the estimates along with their uncertainties.

Insummary, if we beginwith the assumption that the nervous system optimally solvesthe problem of
producing reliable movements with amotor plant that is affected by perturbationsthat have multiple
timescales, then the learner will exhibit numerous properties that appear to match those reported in
saccade and reach adaptation experiments.
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