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Abstract

We study the statistical convergence and consistency of regularized
Boosting methods, where the samples are not independent and identi-
cally distributed (i.i.d.) but come from empirical processes of stationary
B-mixing sequences. Utilizing a technique that constructs a sequence of
independent blocks close in distribution to the original samples, we prove
the consistency of the composite classifiers resulting from a regulariza-
tion achieved by restricting the 1-norm of the base classifiers’ weights.
When compared to the i.i.d. case, the nature of sampling manifests in the
consistency result only through generalization of the original condition
on the growth of the regularization parameter.

1 Introduction

A significant development in machine learning for classification has been the emergence
of boosting algorithms [1]. Simply put, a boosting algorithm is an iterative procedure that
combines weak prediction rules to produce a composite classifier, the idea being that one
can obtain very precise prediction rules by combining rough ones. It was shown in [2] that
AdaBoost, the most popular Boosting algorithm, can be seen as stage-wise fitting of addi-
tive models under the exponential loss function and it effectively minimizes an empirical
loss function that differs from the probability of incorrect prediction. From this perspec-
tive, boosting can be seen as performing a greedy stage-wise minimization of various loss
functions empirically. The question of whether boosting achieves Bayes-consistency then
arises, since minimizing an empirical loss function does not necessarily imply minimizing
the generalization error. When run a very long time, the AdaBoost algorithm, though resis-
tant to overfitting, is notimmune to it [2, 3]. There also exist cases where running Adaboost



forever leads to a prediction error larger than the Bayes error in the limit of infinite sample
size. Consequently, one approach for the study of consistency is to modify the original Ad-
aboost algorithm by imposing some constraints on the weights of the composite classifier
to avoid overfitting. In this regularized version of Adaboost, the 1-norm of the weights of
the base classifiers is restricted to a fixed value. The minimization of the loss function is
performed over the restricted class [4, 5].

In this paper, we examine the convergence and consistency of regularized boosting algo-
rithms with samples that are no longer i.i.d. but come from empirical processes of station-

ary weakly dependent sequences. A practical motivation for our study of non i.i.d. sam-

pling is that in many learning applications observations are intrinsically temporal and hence

often weakly dependent. Ignoring this dependency could seriously undermine the perfor-

mance of the learning process (for instance, information related to the time-dependent or-
dering of samples would be lost). Recognition of this issue has led to several studies of non
i.i.d. sampling [6, 7, 8, 9, 10, 11, 12].

To cope with weak dependence we apply mixing theory which, through its definition of
mixing coefficients, offers a powerful approach to extend results for the traditional i.i.d.
observations to the case of weakly dependent or mixing sequences. We consider the
mixing coefficients, whose mathematical definition is deferred to Sec. 2.1. Intuitively, they
provide a “measure” of how fast the dependence between the observations diminishes as
the distance between them increases. If certain conditions on the mixing coefficients are
satisfied to reflect a sufficiently fast decline in the dependence between observations as
their distance grows, counterparts to results for i.i.d. random processes can be established.
A comprehensive review of mixing theory results is provided in [13].

Our principal finding is that consistency of regularized Boosting methods can be established
in the case of non-i.i.d. samples coming from empirical sequences of statjémaiying
sequences. Among the conditions that guarantee consistency, the mixing nature of sam-
pling appears only through a generalization of the one on the growth of the regularization
parameter originally stated for the i.i.d. case [4].

2 Background and Setup

2.1 Mixing Sequences

LetW = (W,-,)i21 be a strictly stationary sequence of random variables, each having the
same distribution® on D C R%. Leto! = o (W, Wa,...,W;) be theo-field generated
by Wy,...,W;. Similarly, letoi¥, = o (Wiyx, Witry1,...,). The following mixing
coefficients characterize how close to independent a seqiErise
Definition 1. For any sequenc®/, the 3-mixing' coefficient is defined by

Bw (n) = sup, E sup {|P (A|a’f) —P(A)|: A€ U,‘zjn} ,
where the expectation is taken w.ut.

Hencegy, (n) quantifies the degree of dependence between 'future’ observations and 'past’
ones separated by a distance of at leadh this study, we will assume that the sequences

170 gain insight into the notion g8-mixing, it is useful to think of ther-field generated by a ran-
dom variableX as the “body of information” carried b . This leads to the following interpretation
of 8-mixing. Suppose that the indéxn W; is the time index. Letd be an event happening in the
future within the period of time between= k + n andt = co. |P(A|o}) — P(A)] is the absolute
difference between the probability that evenoccurs, given the knowledge of the information gener-
ated by the past up to= k, and the probability of evermt occurring without this knowledge. Then,
the greater the dependence betwegr@he information generated ¥V, . .., Wy)) andos.,, (the
information generated b{\Vj.+», . .., Ws)), the larger the coefficiertw (n).



weconsider are algebraicallfrmixing. This property implies that the dependence between
observations decreases fast enough as the distance between them increases.

Definition 2. A sequencédV is called 5-mixing if lim,_.. 8w (n) = 0. Further, it is
algebraically 5-mixing if there is a positive constant such thaty (n) = O (n=7%).

The choice of3-mixing appears appropriate given previous results that showed “uniform
convergence of empirical means uniformly in probability” and “probably approximately
correct” properties to be preserved féimixing inputs [11]. Some examples Gimixing
sequences that fit naturally in a learning scenario are certain Markov processes and Hidden
Markov Models [11]. In practice, if the mixing properties are unknown, they need to be
estimated. Although it is difficult to find them in general, there exist simple methods to
determine the mixing rates for various classes of random processes (e.g. Gaussian, Markov,
ARMA, ARCH, GARCH). Hence the assumption of a known mixing rate is reasonable and
has been adopted by many studies [6, 7, 8, 9, 10, 12].

2.2 Classification with Stationary 3-Mixing Training Data

In the standard binary classification problem, the training data consist of &,set
{(X1,Y1),...,(X,,Y,)}, where X, belongs to some measurable spa¢eandY; is

in {—1,1}. Using.S,, a classifiet,, : X — {—1,1} is built to predict the label” of an
unlabeled observatioX. Traditionally, the samples are assumed to be i.i.d., and to our
knowledge, this assumption is made by all the studies on boosting consistency. In this pa-
per, we suppose that the sampling is no longer i.i.d. but corresponds to an empirical process
of stationary3-mixing sequences. More precisely, Bt= X x Y, where) = {-1,+1}.

Let W; = (X;,Y;). We suppose thal” = (WW;),, is a strictly stationary sequence of
random variables, each having the same distribuBcom D and thati¥ is 3-mixing (see
Definition 2). This setup is in line with [7]. We assume that the unlabeled observation is
such tha{ X, Y") is independent of,, but with the same marginal.

3 Statistical Convergence and Consistency of Regularized Boosting
for Stationary -Mixing Sequences

3.1 Regularized Boosting

We adopt the framework of [4] which we now recall. LAt denote the class of base
classifiersh : X — {—1, 1}, which usually consists of simple rules (for instance decision
stumps). This class is required to have finite VC-dimension. £athe class of functions
f: X — [-1,1] obtained as convex combinations of the classifiefq:in

t t
F = {f(X)_jzla]hJ (X) :tEN,al,..‘,at ZO;ZQj:17h17~~«>ht GH}

j=1
1)

Eachf, € F defines a classifiet;, = sign(f,) and for simplicity the generalization

error L (hy, ) is denoted byL (f,). Then the training error is denoted Wy, (f,) =

1/nY 20 I, (x,)+v, DefineZ (f) = —f(X)Y andZ; (f) = —f (X;) Y;. Instead of

minimizing the indicator of misclassificatiod|( (x)y~oj), boosting methods are shown

to effectively minimize a smooth convex cost functionff). For instance, Adaboost

is based on the exponential function. Consider a positive, differentiable, strictly in-

creasing, and strictly convex function : R — R*™ and assume that (0) = 1 and

that lim, .., ¢ (x) = 0. The corresponding cost function and empirical cost func-

tion are respectively’ (f) = E¢ (Z (f)) andC,, (f) = 1/n>."_, ¢(Z; (f)). Note that

L(f) < C(f), sinceljzsq < ¢ ().



The iterative aspect of boosting methods is ignored to consider only their performing an
(approximate) minimization of the empirical cost function or, as we shall see, a series of
cost functions. To avoid overfitting, the following regularization procedure is developed for
the choice of the cost functions. Defigg such thatvA > 0 ¢, (z) = ¢ (Az). The cor-
responding empirical and expected cost functions beaBhef) = X 37" | i (Z; (f))
andC* (f) = Eg¢x (Z (f)). The minimization of a series of cost functio6s' over the
convex hull ofH is then analyzed.

3.2 Statistical Convergence

The nature of the sampling intervenes in the following two lemmas that relate the empirical
costC) (f) and true cosC* (f).

Lemma 1. Suppose that for any, the training data (X;,Y7),...(X,,Y,) comes from
a stationary algebraically3-mixing sequence witB-mixing coefficients (m) satisfying
B (m) =0 (m~"8), m € Nandrg a positive constant. Then for any> 0 andb € [0, 1),

) 1 2
Esup|C* () = O () | < 0 () i 200 (S + o). @

Lemma 2. Let the training data be as in Lemma 1. For any [0,1), anda € (0,1 — b),
lete, = 3(2¢c; +n®/?)A¢'(N)/n(1=2)/2 Then for anyA > 0

P(sup [C* (f) = Cp (f)] > €en) < exp(—dean®) + O(n' "+, ©)
fer

The constantg; andcs in the above lemmas are given in the proofs of Lemma 1 (Sec-
tion 4.2) and Lemma 2 (Section 4.3) respectively.

3.3 Consistency Result

The following summarizes the assumptions that are made to prove consistency.

Assumption 1.

I- Properties of the sample sequenc&he sample$X,,Y),...,(X,,Y,) are assumed
to come from a stationary algebraicallg-mixing sequence witl#-mixing coefficients
Bx,y (n) = O (n~"%), rg being a positive constant.

lI- Properties of the cost functionp: ¢ is assumed to be a differentiable, strictly convex,
strictly increasing cost function such tha{0) = 1 andlim,_._, ¢ (z) = 0.

IlI- Properties of the base hypothesis spacé{ has finite VC dimension. The distri-
bution of (X,Y") and the classH are such thaflimy_, infrerz C (f) = C*, where
AF ={\f:f € F}andC* = inf C (f) over all measurable functions: X — R.

IV- Properties of the smoothing parameterWe assume thak;, o, ... is a sequence
of positive numbers satisfying, — oo asn — oo, and that there exists a constant
¢ € (1357, 1) sudrthath, ¢ (A,) /n1=9/2 — 0asn — .

Call f the function inF which approximatively minimize€’» (f), i.e. f is such that
C,)L‘( 7)1‘) < inffelf C,)L\ (f) + €, = inffey: % 211:1 QZ))\ (Z, (f)) + €n, with €np — 0 as
n — oo. The main result is the following.

Theorem 1. Consistency of regularized boosting methods for stationghymixing se-

quences. Let f, = f) € F, where f)» (approximatively) minimize€~ (f). Un-

der Assumption 1lim,, . L (hy, = sign(f,)) = L* almost surely and:y, is strongly
Bayes-risk consistent.

Cost functions satisfying Assumption 1.1l include the exponential function and the logit
functionlog, (1 + ¢*). Regarding Assumption 1.11, the reader is referred to [4](Remark on



(densenesassumption)). In Assumption 1.1V, notice that the nature of sampling leads to
a generalization of the condition on the growth)of¢’ (\,,) already present in the i.i.d.
setting [4]. More precisely, the nature of sampling manifests through parameteich is
limited by rg. The assumption thais is known is quite strict but cannot be avoided (for
instance this assumption is widely made in the field of time series analysis). On a positive
note, if unknown,rz can be determined for various classes of processes as mentioned
Section 2.1.

4 Proofs

4.1 Preparation to the Proofs: the Blocking Technique
The key issue resides in upper bounding

sup [C2 () = C ()| = sup [1/n Y~ 6 (<A (X0) Vi) = Eo (~\f (X)) V1) |, (4)
feF fer i=1

whereF is given by (1). LetW = (X,Y), W; = (X;,Y;). Define the functiory, by
gx (W) = gx (X,Y) = Qﬁ(—)\f (X) Y) and the clasg, by g\ = {g)\ L g (X,Y) =
o (=Af(X)Y),f € F}.Then (4) can be rewritten as

supser [ (f) = CM ()| = supy,eq, |n" Sy gn (W) — Bgy (W) |.
Note that the clas§,, is uniformly bounded by (). Besides, if is a class of measurable
functions, therg, is also a class of measurable functions, by measurabilify. of

As theW;’s are not i.i.d, we propose to use the blocking technique developed in [12, 14] to
construct i.i.d blocks of observations which are close in distribution to the original sequence
Wy, ..., W,. This enables us to work on the sequence of independent blocks instead of the
original sequence. We use the same notation as in [12]. The protocol is the following. Let
(bn, pry) be a pair of integers, such that

(n —2by,) < 2b,y < n. (5)

Divide the segmentV; = (X;,Y7),..., W, = (X,,Y,) of the mixing sequence into

21, blocks of sizeb,, followed by a remaining block (of size at mog8b,). Con-

sider the odd blocks only. If their size, is large enough, the dependence between
them is weak, since two odd blocks are separated by an even block of the same size
b,. Therefore, the odd blocks can be approximated by a sequence of independent blocks
with the same within-block structure. The same holds if we consider the even blocks.
Let (&1, .., &) s Eontts-- o &200) sy (E@un—1)bns - - -+ E20mb,, ) DE independent blocks

such that(fjbnﬂ, . 7§(j+1)bn) =D (ijn-‘rlv ey W(j-l—l)bn)! fij =0,...,u, — L
Forj=1,...,2u,,and anyy € G,, define

Zjg = Zz:zjfmb,ﬂﬂ 9(&) —buEg (&), Zj4:= Zgirzjfmb,ﬂq g (Wi) — bpEg (Wh) .

LetO,, ={1,3,...,2u, — 1} and&,, ={2,4,...,2u,}.

Define Z; ;(f) as Zi ;(f) == —f (§2j-2)bn+i1) - E2j—2)bn+i2, Where&y 1 and & o

are respectively the 1st and 2nd coordinate of the vegtor These correspond to the
Zx(f) = —f (Xy) Yj for k in the odd blockg, ..., b,,,2b, + 1, ..., 3bn, ....

4.2 Proof sketch of Lemma 1
A. Working with Independent Blocks. We show that

DY Za‘,g‘+¢ (A) (unﬁw (bn)+%).
(@

n ‘ )
4 (6)

1
E sup |- Zg(Wi)—]Eg (Wy) | < 2E sup

n
ISIN i=1 ISIN

-76 Hn



Proof. Without loss of generality, assume thgyg (W7) = Eg (&1) = 0.

Then,Esup, |+ 31", g (W;) ’ = Esup, ‘ (ZOM Zjg+ De,. Zjg+ R) ’, whereR
is the remainder term consisting of a sum of at m2ist terms. Noting thatvg €
Gr lgl < @ (N), it follows that Esup, |1 377, g (Wi)| < E(sup, |+ Y0, Zjql) +
E(sup, | de,. ZiqD) + %. We use the following intermediary lemma.

Lemma 3 (adapted from [15], Lemma 4.1). Call Q the distribu-

tion of (Wi,...,Ws, ,Wap,41,...,Ws,,...) and Q the distribution of
(€1, &, 6,415+ E3p,,...). For any measurable functioh on R®»#» with

boundH, |Qh (W1,...) — Qh(&1,...) | < H (un — 1) Bw (by) . The same result holds
for (an_,_l, ey ngn7W3b"+1, ceey W4b" .. )

Using this withn(W1,...) = sup, |%ZOH, Z; 4l andh(W,,,,,,...) = sup, B Zil
respectively, and noting thaf = ¢ ()\)/2, we have]Ebung gy | <

Esup, |3 o, Zigl+ 25 mnbw (bn) +Esupy |5 X, Zigl+ 25 B (bn) + 222522
AstheZ; ,'s from odd and even blocks have the same distribution, we obtain (6). O

B. Symmetrization. The odd blocksZ; ,'s being independent, we can use the standard
symmetrization techniques. Let; 's be i.i.d. copies of theZ; ;'s. Let Z; ;(f)'s be the

corresponding copies of thg; ;(f). Let (o) be a Rademacher sequence, i.e. a sequence
of independent random variables taking the valttésvith probability1/2. Then by [16],
Lemma 6.3 (Proof is omitted due to space constraints), we have

]Esup‘f Jg‘ <Esup‘f o; (Zj’g—ZJ’A’g)‘. @)
J€0um, €0,
C. Contraction PrinC|pIe. We now show that
Hn

Z Zig| <2506 (V) Esup 32%% ol ®)

feFin

E sup
ISI9N

Proof. As Z; , = Zigl qu(Zi,j(f)), and theZ; ;(f)'s andZ’; ;(f)'s are i.i.d., with (7)
Esup, |% Zjeom ZJ?Q’ < Esup, |% 5;1 g3 2?21 (¢>\ (Zij(f)) — x (Zz/,g(f))) | =
2b,Esup,[2 34" 05 (4a (Z1,;(f))—1)|. By applying the “Comparison Theorem”, The-
orem 7 in [17], to the contraction (z) = (1/A¢" (\)) (éa (z) — 1), we obtain (8). O

D. Maximal Inequality. We show that there exists a constant> 0 such that

1 4 c1/Tim

Esup |- Z ’< Vin 9

up | 2, AN £ = ©

Proof. Denote(hy,...,hy) by hN One can wr|teEsuprf| " 052 5(f)] =

FESUD o1 SUPLN epon SUDG, oy [ 2000 Sy ko€ ) 2P (5(2]—2)bn+1,1) |. Since
§(QJ 2)bn+1,2 andg(Qj,_2 by 41,2 Arei.i. d for all j # j’ (they come from different blocks),

and (c;) is a Rademacher sequence, thens ;2 +1.2Mk (§2j—2)b,+1,1))

J=1,pn
has the same distribution s/, (g(zj,g)bnﬂ}l))j:l ..... ., Hence
1 un N
E sup VAN ‘ —Esup sup sup ojohi (&25-2)pn+1,1) |-
feF Z ’ 7 n N>1hN€HNa1 ..... an JZ:IkZ:l g ((J ) )

By the same argument as used in [4], p.53 on the maximum of a linear function over
a convex polygon, the supremum is achieved whgn= 1 for somek. Hence we get



ESUPfef’%Z”" 921, j(f)) = +Esupj,cy ‘ S oih (Ea), 1)’ Noting that for all
J#3' h€2j—2)bp+1,1) @ndh(§(2j: 2y, +1,1) are i.i.d. and that Rademacher processes
are sub gaussian, we have by [18], Corollary 2.2.8

bn
Z oih (§2j—2)bn+1,1)
j=1

Hn

ZU] 5(2; 2)bp 41, 1)

1
—E sup
N heru{o}

IA

1
—E sup
n H

< D [ Gogsup N (e U {01) 2
0 P

wherec’ is a constant andV (e, p2 p,, H U {0}) is the empiricalC, covering number.
As H has finite VC-dimension (see Assumption 1.11I), there exists a positive constant
w such thatsupp N (e, p2 p,,H U {0}) = Op(e ")(see [18], Theorem 2.6.1). Hence

Iy (ogsupp, N (e, p2.p,, HU {0}))"2de < co. and (9) follows. 0

E. Establishing (2). Combining (6),(8), and (9), we have
Esupeg, |2 X, g (W) —Eg (W1)] < 4b,A¢" (A) S + 6 (A) fun By (50)+ 22)

Takeb,, = n®, with 0 < b < 1. By (5), we obtairn,, < n'~?/2. Besides, as we assumed
that the sequencl’ is algebraicallys-mixing (see Definition 2)8y (n) = O (n™7#).
Theny, Bw (by,) = O (n'~*0+7%)) and we arrive at (2). [ ]

4.3 Proof Sketch of Lemma 2

A. Working with Independent Blocks and Symmetrization. For anyb € [0,1),«a €
(0,1 —b), let

=321 +n2)AF (A) /02, (10)

We show n
sup —E W > € S 2P sup +O 1-b(1+4rg) )
P(sup| 30 0¥)-Bg W] > o)< 22 (smp 1 3750]> coss) 40107

(11)
Proof. By [12], Lemma 3.1, we have that for any, such thaté(A\)b, = o(ne,),
P<SngegA & i g(Wi) — Eg (Wl)‘ > en) < QP(Snge% %Zjeoﬂn ijg‘ >
en/3) + 44 By (by,). Seth,, = n®, with 0 < b < 1. Thenu,Bw (b,) = O(n!~t0+75))

(for the same reasons as in Section 4.2 E.). Wjtlas in (10), and since Assumption 1.11
implies that\¢’ (\) > ¢(\) — 1, we automatically obtaig(\)b,, = o(ne,,). O

B. McDiarmid’s Bounded Difference Inequality. Fore,, as in (10), there exists a constant
ce > 0 such that,

IF’( sup |— Z Zj,g‘ > en/3) < exp(—4ean®). (12)
gEGA nje@

Hn

Proof. TheZ; ,'s of the odd block being independent, we can apply McDiarmid’s bounded
difference inequality ([19], Theorem 9.2 p.136) on the functiopgng% Zje@,m Zj 4
which depends of, 4, Z3 4 . .., Z3,, —1,4- Noting that changing the value of one variable
does not change the value of the function by more ihat()\) /n,we obtain withb,, = n®

that for alle > 0,

62n1 b
]P(SuPQGQ% ’% > jeo,. ijg‘ > Esup,eg, |5 > jco,. Zj-g’ + 6) < exp (t&T)
Combining (8) and (9) from the proof of Lemma 1, and with, = n’, we have
Esup,cg, %Zjeou, Zj,g’ < 2M¢" (N) C/n(t=0)/2 With € = n®/2X¢/'(\) /n(1=0)/2 we

obtaine, as in (10). Pick\g such thal < Ay < A. Then, since\¢’(\) > ¢(A\) — 1, (12)
follows with c; = (1 — 1/¢(X\g))?. 0




C. Establishing (3). Combining (11) and (12) we obtain (3). |

4.4 Proof Sketch of Theorem 1 R
Let fy a function inF minimizing CA. With f,, = f,? we have

C (Aafn) = C* = (CP(fpm) = CM () + finfrexr O(f) - C)
Since )\, — oo, the second term on the right hand side converges to zero by Assump-

tion L.I1l. By [19], Lemma 8.2, we hav€™» (f)) — C*» (fy,) < 2supser |CM (f) —
Cym (f)|. By Lemma 2,sup ;2 [C* (f) — Cy» (f)| — 0 with probability 1 if, as

n — 00, A’ (A\n) n(@t0=1D/2 — 0 andb > 1/(1 + rg). Hence if Assumption 1.1V
holds,C (A, f,,) — C* with probability 1. By [4], Lemma 5, the theorem follows. W
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