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Abstract

The problem of resource allocation in sparse graphs withreal variables
is studied using methods of statistical physics. An efficient distributed
algorithm is devised on the basis of insight gained from the analysis and
is examined using numerical simulations, showing excellent performance
and full agreement with the theoretical results.

1 Introduction

Optimal resource allocation is a well known problem in the area of distributed comput-
ing [1, 2] to which significant effort has been dedicated within the computer science com-
munity. The problem itself is quite general and is applicable to other areas as well where a
large number of nodes are required to balance loads/resources and redistribute tasks, such
as reducing internet traffic congestion [3]. The problem has many flavors and usually refers,
in the computer science literature, to finding practical heuristic solutions to the distribution
of computational load between computers connected in a predetermined manner.

The problem we are addressing here is more generic and is represented by nodes of some
computational power that should carry out tasks. Both computational powers and tasks will
be chosen at random from some arbitrary distribution. The nodes are located on a randomly
chosen sparse graph of some given connectivity. The goal is to migrate tasks on the graph
such that demands will be satisfied while minimizing the migration of (sub-)tasks. An
important aspect of the desired algorithmic solution is that decisions on messages to be
passed are carried out locally; this enables an efficient implementation of the algorithm in
large non-centralized distributed networks. We focus here on the satisfiable case where the
total computing power is greater than the demand, and where the number of nodes involved
is very large. The unsatisfiable case can be addressed using similar techniques.

We analyze the problem using the Bethe approximation of statistical mechanics in Sec-
tion 2, and alternatively a new variant of the replica method [4, 5] in Section 3. We then
present numerical results in Section 4, and derive a new message passing distributed algo-



rithm on the basis of the analysis (in Section 5). We conclude the paper with a summary
and a brief discussion on future work.

2 The statistical physics framework: Bethe approximation

We consider a typical resource allocation task on a sparse graph ofN nodes, labelledi = 1; ::; N . Each nodei is randomly connected to
 other nodes1, and has a capacity�i
randomly drawn from a distribution�(�i). The objective is to migrate tasks between nodes
such that each node will be capable of carrying out its tasks. Thecurrent yij � �yji drawn
from nodej to i is aimed at satisfying the constraintXj Aijyij +�i � 0 ; (1)

representing the ’revised’ assignment for nodei, where Aij = 1=0 for con-
nected/unconnected node pairsi andj, respectively. To illustrate the statistical mechanics
approach to resource allocation, we consider the load balancing task of minimizing the en-
ergy function (cost)E = P(ij)Aij�(yij), where the summation(ij) runs over all pairs
of nodes, subject to the constraints (1);�(y) is a general function of the currenty. For
load balancing tasks,�(y) is typically a convex function, which will be assumed in our
study. The analysis of the graph is done by introducing the free energyF = �T lnZy for
a temperatureT � ��1, whereZy is the partition functionZy =Y(ij) Z dyijYi �0�Xj Aijyij +�i1A exp24��X(ij) Aij�(yij)35 : (2)

The� function returns 1 for a non-negative argument and 0 otherwise.

When the connectivity
 is low, the probability of finding a loop of finite length on the
graph is low, and the Bethe approximation well describes the local environment of a node.
In the approximation, a node is connected to
 branches in a tree structure, and the corre-
lations among the branches of the tree are neglected. In each branch, nodes are arranged
in generations. A node is connected to an ancestor node of the previous generation, and
another
� 1 descendent nodes of the next generation.

Consider a vertexV (T) of capacity�V (T), and a currenty is drawn from the vertex.
One can write an expression for the free energyF (yjT) as a function of the free energiesF (ykjTk) of its descendants, that branch out from this vertexF (yjT) = �T ln(
�1Yk=1�Z dyk�� 
�1Xk=1 yk� y +�V!� exp"�� 
�1Xk=1 (F (ykjTk) + �(yk))#); (3)

whereTk represents the tree terminated at thekth descendent of the vertex. The free
energy can be considered as the sum of two parts,F (yjT)=NTFav+FV (yjT), whereNT
is the number of nodes in the treeT, Fav is the average free energy per node, andFV (yjT)
is referred to as thevertex free energy2. Note that when a vertex is added to a tree, there is a

1Although we focus here on graphs of fixed connectivity, one can easily accommodate any con-
nectivity profile within the same framework; the algorithms presented later are completely general.

2This term is marginalized over all inputs to the current vertex, leaving the difference in chemical
potentialy as its sole argument, hence the terminology used.



change in the free energy due to the added vertex. Since the number of nodes increases by
1, the vertex free energy is obtained by subtracting the free energy change by the average
free energy. This allows us to obtain the recursion relationFV (yjT) = �T ln(
�1Yk=1�Z dyk�� 
�1Xk=1 yk � y +�V (T)!� exp"�� 
�1Xk=1 (FV (ykjTk) + �(yk))#)� Fav; (4)

and the average free energy per node is given byFav = �T*ln( 
Yk=1�Z dyk�� 
Xk=1 yk +�V!� exp"�� 
Xk=1 (FV (ykjTk) + �(yk))#)+�; (5)

where�V is the capacity of the vertexV fed by
 treesT1; : : : ;T
, andh: : : i� represents
the average over the distribution�(�). In the zero temperature limit, Eq. (4) reduces toFV (yjT) = minfykjP
�1k=1 yk�y+�V (T)�0g"
�1Xk=1 (FV (ykjTk) + �(yk))#� Fav: (6)

The current distribution and the average free energy per link can be derived by integrating
the currenty0 in a link from one vertex to another, fed by the treesT1 andT2, respectively;
the obtained expressions areP (y)=hÆ(y � y0)i? andhEi=h�(y0)i? whereh�i? = �R dy0 exp [�� (FV (y0jT1) + FV (�y0jT2) + �(y0))℄ (�)R dy0 exp [�� (FV (y0jT1) + FV (�y0jT2) + �(y0))℄ �� : (7)

3 The statistical physics framework: replica method

In this section, we sketch the analysis of the problem using the replica method, as an alter-
native to the Bethe approximation. The derivation is rathe involved, details will be provided
elsewhere. To facilitate derivations, we focus on the quadratic cost function�(y) = y2=2.
The results confirm the validity of the Bethe approximation on sparse graphs.

An alternative formulation of the original optimization problem is to consider its
dual. Introducing Lagrange multipliers, the function to be minimized becomesL =P(ij)Aijy2ij=2 +Pi �i(Pj Aijyij + �i). OptimizingL with respect toyij , one ob-
tainsyij = �j � �i, where�i is referred to as thechemical potential of nodei, and the
current is driven by the potential difference.

Although the analysis has also been carried out in the space of currents, we focus here on
the optimization problem in the space of the chemical potentials. Since the energy function
is invariant under the addition of an arbitrary global constant to the chemical potentials of
all nodes, we introduce an extra regularization term�Pi �2i =2 to break the translational
symmetry, where� ! 0. To study the characteristics of the problem one calculates the
averaged free energy per nodeFav = �T hlnZ�iA;�=N , whereZ� is the partition functionYi 24Z d�i �0�Xj Aij(�j��i) + �i1A35 exp24��2 0�X(ij) Aij(�j��i)2 + �Xi �2i1A35 :



The calculation follows the main steps of a replica based calculation in diluted systems [6],
using the identitylnZ = limn!0[Zn � 1℄=n. The replicated partition function [5] is av-
eraged over all network configurations with connectivity and capacity distributions�(�i).
We consider the case of intensive connectivity
�O(1)�N . Extending the analysis of [6]
and averaging over all connectivity matrices, one findshZn� i = expN( 
2 � 
Xr;s Q̂r;sQr;s + ln Z d��(�)Y�  Z d�� Z 1� d�� Z d�̂�2� !� exp"X� �i�̂�(�� + 
��)� �2 (
+ �)�2��#X
); (8)

whereX = Pr;s Q̂r;sQ�(�i�̂�)r��s�� +Pr;s Qr;s2Q� r�!s�! Q� �r�� (��� � i�̂�)s� . The

order parametersQr;s and Q̂r;s, are labelled by the somewhat unusual indicesr ands,
representing then-component integer vectors(r1; ::; rn) and(s1; ::; sn) respectively. This
is a result of the specific interaction considered which entangles nodes of different indices.
The order parametersQr;s andQ̂r;s are given by the extremum condition of Eq. (8), i.e., via
a set of saddle point equations w.r.t the order parameters. Assuming replica symmetry, the
saddle point equations yield a recursion relation for a two-component functionR, which is
related to the order parameters via the generating functionPs(z) =Xr Qr;sY� (z�)r�r�! = *Y� �Z d� R(z�; �jT)e���2=2�s��+� : (9)

In Eq. (9),T represents the tree terminated at the vertex node with chemical potential�, providing input to the ancestor node with chemical potentialz, andh: : : i� represents
the average over the distribution�(�). The resultant recursion relation forR(z; �jT) is
independent of the replica indices, and is given byR(z; �jT) = 1D 
�1Yk=1 �Z d�kR(�; �kjTk)�� 
�1Xk=1 �k�
�+z+�V (T)!� exp"��2  
�1Xk=1 (�� �k)2 + ��2!#; (10)

where the vertex node has a capacity�V (T); D is a constant.R(z; �jT) is expressed in
terms of
�1 functionsR(�; �kjTk) (k= 1; ::; 
�1), integrated over�k. This algebraic
structure is typical of the Bethe lattice tree-like representation of networks of connectivity
, where a node obtains input from its
�1 descendent nodes of the next generation, andTk represents the tree terminated at thekth descendent.

Except for the regularization factorexp(����2=2), R turns out to be a function ofy � � � z, which is interpreted as the current drawn from a node with chemical po-
tential� by its ancestor with chemical potentialz. One can then express the functionR
as the product of avertex partition function ZV and a normalization factorW , that is,R(z; �jT) = W (�)ZV (yjT). In the limit n! 0, the dependence on� andy are separa-
ble, providing a recursion relation forZV (yjT). This gives rise to thevertex free energyFV (yjT) = �T lnZV (yjT) when a currenty is drawn from the vertex of a treeT. The re-
cursive equation and the average free energy expression agrees with the results in the Bethe
approximation. These iterative equations can be directly linked to those obtained from a
principled Bayesian approximation, where the logarithms of the messages passed between
nodes are proportional to the vertex free energies.



4 Numerical solution

The solution of Eq. (6) is obtained numerically. Since the vertex free energy of a node de-
pends on its own capacity and the disordered configuration of its descendants, we generate
1000 nodes at each iteration of Eq. (6), with capacities randomly drawn from the distribu-
tion �(�), each being fed by
�1 nodes randomly drawn from the previous iteration.

We have discretized the vertex free energiesFV (yjT) function into a vector, whoseith
component is the value of the function corresponding to the currentyi. To speed up the
optimization search at each node, we first find thevertex saturation current drawn from
a node such that: (a) the capacity of the node is just used up; (b) the current drawn by
each of its descendant nodes is just enough to saturate its own capacity constraint. When
these conditions are satisfied, we can separately optimize the current drawn by each de-
scendant node, and the vertex saturation current is equal to the node capacity subtracted by
the current drawn by its descendants. The optimal solution can be found using an exhaus-
tive search, by varying the component currents in small discrete steps. This approach is
particularly convenient for
 = 3, where the search is confined to a single parameter.

To compute the average energy, we randomly draw 2 nodes, compute the optimal current
flowing between them, and repeat the sampling to obtain the average. Figure 1(a) shows
the results as a function of iteration stept, for a Gaussian capacity distribution�(�) with
variance 1 and averageh�i. Each iteration corresponds to adding one extra generation to
the tree structure, such that the iterative process corresponds to approximating the network
by an increasingly extensive tree. We observe that after an initial rise with iteration steps,
the average energies converges to steady-state values, at a rate which increases with the
average capacity.

To study the convergence rate of the iterations, we fit the average energy at iteration stept usinghE(t)�E(1)i � exp(�
t) in the asymptotic regime. As shown in the inset of
Fig. 1(a), the relaxation rate
 increases with the average capacity. It is interesting to note
that a cusp exists at the average capacity of about 0.45. Below that value, convergence
of the iteration is slow, since the average energy curve starts to develop a plateau before
the final convergence. On the other hand, the plateau disappears and the convergence is
fast above the cusp. The slowdown of convergence below the cusp is probably due to the
appearance of increasingly large clusters of nonzero currents on the network, since clus-
ters of nodes with negative capacities become increasingly extensive, and need to draw
currents from increasingly extensive regions of nodes with excess capacities to satisfy the
demand. Figure 1(b) illustrates the current distribution for various average capacities. The
distributionP (y) consists of a delta function component aty = 0 and a continuous com-
ponent whose breadth decreases with average capacity. The fraction of links with zero
currents increases with the average capacity. Hence at a low average capacity, links with
nonzero currents form a percolating cluster, whereas at a high average capacity, it breaks
into isolated clusters.

5 Distributed algorithms

The local nature of the recursion relation Eq. (6) points to the possibility that the network
optimization can be solved by message passing approaches, which have been successful
in problems such as error-correcting codes [8] and probabilistic inference [9]. The major
advantage of message passing is its potential to solve a global optimization problem via
local updates, thereby reducing the computational complexity. For example, the compu-
tational complexity of quadratic programming for the load balancing task typically scales
asN3, whereas capitalizing on the network topology underlying the connectivity of the
variables, message passing scales asN . An even more important advantage, relevant to
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Figure 1: Results for system sizeN=1000 and�(y) = y2=2. (a)hEi obtained by iterating
Eq. (6) as a function oft for h�i=0.1, 0.2, 0.4, 0.6, 0.8 (top to bottom) and
=3. Dashed
line: The asymptotichEi for h�i=0:1. Inset:
 as a function ofh�i. (b) The distributionP (y) obtained by iterating Eq. (6) to steady states for the same parameters and average
capacities as in (a), from right to left. Inset:P (y=0) as a function ofh�i. Symbols:
=3
(
) and (�), 
=4 (�) and (4), 
=5 (C) and (r); each pair obtained from Eqs. (11) and
(14) respectively. Line:erf(h�i=p2). (c) hEi as a function ofh�i for 
=3; 4; 5. Symbols:
results of Eq. (6) (
), Eq.(11) (�), and Eq. (14) (�). Inset: hEi multiplied by(
�2) as
a function ofh�i for the same conditions. (d) The distributionP (�) obtained by iterating
Eq. (14) to steady states for the same parameters and average capacities as in (b), from left
to right. Inset:P (�=0) as a function ofh�i. Symbols: same as (b).

practical implementation, is its distributive nature; it does not require a global optimizer,
and is particularly suitable for distributive control in evolving networks.

However, in contrast to other message passing algorithms which pass conditional probabil-
ity estimates ofdiscrete variables to neighboring nodes, the messages in the present context
are more complex, since they arefunctionsFV (yjT) of the currenty. We simplify the mes-
sage to 2 parameters, namely, the first and second derivatives of the vertex free energies.
For the quadratic load balancing task, it can be shown that a self-consistent solution of the
recursion relation, Eq. (6), consists of vertex free energies which are piecewise quadratic
with continuous slopes. This makes the 2-parameter message a very precise approximation.

Let (Aij ; Bij) � (�FV (yij jTj)=�yij ; �2FV (yij jTj)=�y2ij) be the message passed from



nodej to i; using Eq.(6), the recursion relation of the messages becomeAij  ��ij ; Bij  �(��ij)24Xk 6=iAjk(�00jk +Bjk)�135�1 ; where (11)�ij = min "Pk 6=iAjk [yjk � (�0jk +Ajk)(�00jk +Bjk)�1℄ + �j � yijPk 6=iAjk(�00jk +Bjk)�1 ; 0# ; (12)

with �0jk and�00jk representing the first and second derivatives of�(y) at y = yjk respec-
tively. The forward passing of the message from nodej to i is then followed by a backward
message from nodej to k for updating the currentsyjk according toyjk  yjk � �0jk + Ajk + �ij�00jk +Bjk : (13)

We simulate networks with
 = 3, �(y) = y2=2 and compute their average energies. The
network configurations are generated randomly, with loops of lengths 3 or less excluded.
Updates are performed with random sequential choices of the nodes. As shown in Fig. 1(c),
the simulation results of the message passing algorithm have an excellent agreement with
those obtained by the recursion relation Eq.(6).

For the quadratic load balancing task considered here, an independent exact optimization
is available for comparison. The Kühn-Tucker conditions for the optimal solution yields�i = min241
 0�Xj Aij�j +�i1A ; 035 : (14)

It also provides a local iterative method for the optimization problem. As shown in
Fig. 1(c), both the recursion relation Eq.(6) and the message passing algorithm Eq.(11)
yield excellent agreement with the iteration of chemical potentials Eq.(14).

Both Eqs. (11) and (14) allow us to study the distributionP (�) of the chemical potentials�. As shown in Fig. 1(d),P (�) consists of a delta function and a continuous component.
Nodes with zero chemical potentials correspond to those with unsaturated capacity con-
straints. The fraction of unsaturated nodes increases with the average capacity, as shown in
the inset of Fig. 1(d). Hence at a low average capacity, saturated nodes form a percolating
cluster, whereas at a high average capacity, it breaks into isolated clusters. It is interesting
to note that at the average capacity of 0.45, below which a plateau starts to develop in the
relaxation rate of the recursion relation Eq. (6), the fraction of unsaturated nodes is about
0.53, close to the percolation threshold of 0.5 for
 = 3.

Besides the case of
 = 3, Fig. 1(c) also shows the simulation results of the average energy
for 
 = 4; 5, using both Eqs. (11) and (14). We see that the average energy decreases
when the connectivity increases. This is because the increase in links connecting a node
provides more freedom to allocate resources. When the average capacity is 0.2 or above,
an exponential fithEi � exp(�kh�i) is applicable, wherek lies in the range 2.5 to 2.7.
Remarkably, multiplying by a factor of(
 � 2), we find that the 3 curves collapse in this
regime of average capacity, showing that the average energy scales as(
 � 2)�1 in this
regime, as shown in the inset of Fig. 1(c).

Further properties of the optimized networks have been studied by simulations, and will
be presented elsewhere. Here we merely summarize the main results. (a) When the av-
erage capacity drops below 0.1, the energy rises above the exponential fit applicable to
the average capacity above 0.2. (b) The fraction of links with zero currents increases with
the average capacity, and is rather insensitive to the connectivity. Remarkably, except for



very small average capacities, the functionerf(h�i=p2) has a very good fit with the data.
Indeed, in the limit of largeh�i, this function approaches the fraction of links with both
vertices unsaturated, that is,[R10 d��(�)℄2. (c) The fraction of unsaturated nodes increases
with the average capacity, and is rather insensitive to the connectivity. In the limit of large
average capacities, it approaches the upper bound of

R10 d��(�), which is the probability
that the capacity of a node is non-negative. (d) The convergence time of Eq. (11) can be
measured by the time for the r.m.s. of the changes in the chemical potentials to fall below
a threshold. Similarly, the convergence time of Eq. (14) can be measured by the time for
the r.m.s. of the sums of the currents in both message directions of a link to fall below a
threshold. When the average capacity is 0.2 or above, we find the power-law dependence
on the average capacity, the exponent ranging from�1 for 
 = 3 to �0:8 for 
 = 5 for
Eq. (14), and being about -0.5 for
 = 3; 4; 5 for Eq. (11). When the average capacity
decreases further, the convergence time deviates above the power laws.

6 Summary

We have studied a prototype problem of resource allocation on sparsely connected networks
using the replica method, resulting in recursion relations interpretable using the Bethe ap-
proximation. The resultant recursion relation leads to a message passing algorithm for
optimizing the average energy, which significantly reduces the computational complexity
of the global optimization task and is suitable for online distributive control. The suggested
2-parameter approximation produces results with excellent agreement with the original re-
cursion relation. For the simple but illustrative example in this letter, we have considered a
quadratic cost function, resulting in an exact algorithm based on local iterations of chem-
ical potentials, and the message passing algorithm shows remarkable agreement with the
exact result. The suggested simple message passing algorithm can be generalized to more
realistic cases of nonlinear cost functions and additional constraints on the capacities of
nodes and links. This constitutes a rich area for further investigations with many potential
applications.

Acknowledgments

This work is partially supported by research grants HKUST6062/02P and DAG04/05.SC25
of the Research Grant Council of Hong Kong and by EVERGROW, IP No. 1935 in the FET,
EU FP6 and STIPCO EU FP5 contract HPRN-CT-2002-00319.

References

[1] Peterson L. and Davie B.S.,Computer Networks: A Systems Approach, Academic Press, San
Diego CA (2000)

[2] Ho Y.C., Servi L. and Suri R.Large Scale Systems 1 (1980) 51
[3] Shenker S., Clark D., Estrin D. and Herzog S.ACM Computer Comm. Review 26 (1996) 19
[4] Nishimori H. Statistical Physics of Spin Glasses and Information Processing, OUP UK (2001)
[5] Mézard M., Parisi P. and Virasoro M.,Spin Glass Theory and Beyond, World Scientific, Singa-

pore (1987)
[6] Wong K.Y.M. and Sherrington D.J. Phys. A20(1987) L793
[7] Sherrington D. and Kirkpatrick S.Phys. Rev. Lett.35 (1975) 1792
[8] Opper M. and Saad D.Advanced Mean Field Methods, MIT press (2001)
[9] MacKay D.J.C.,Information Theory, Inference and Learning Algorithms, CUP UK(2003)


