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Abstract

Given a redundant dictionary of basis vectors (or atoms), our goal is to
find maximally sparse representations of signals. Previously, we have
argued that a sparse Bayesian learning (SBL) framework is particularly
well-suited for this task, showing that it has far fewer local minima than
other Bayesian-inspired strategies. In this paper, we provide further evi-
dence for this claim by proving a restricted equivalence condition, based
on the distribution of the nonzero generating model weights, whereby the
SBL solution will equal the maximally sparse representation. We also
prove that if these nonzero weights are drawn from an approximate Jef-
freys prior, then with probability approaching one, our equivalence con-
dition is satisfied. Finally, we motivate the worst-case scenario for SBL
and demonstrate that it is still better than the most widely used sparse rep-
resentation algorithms. These include Basis Pursuit (BP), which is based
on a convex relaxation of theℓ0 (quasi)-norm, and Orthogonal Match-
ing Pursuit (OMP), a simple greedy strategy that iteratively selects basis
vectors most aligned with the current residual.

1 Introduction

In recent years, there has been considerable interest in finding sparse signal representations
from redundant dictionaries [1, 2, 3, 4, 5]. The canonical form of this problem is given by,

min
w

‖w‖0, s.t. t = Φw, (1)

whereΦ ∈ R
N×M is a matrix whose columns represent an overcomplete or redundant

basis (i.e., rank(Φ) =N andM > N ), w ∈ R
M is the vector of weights to be learned,

andt is the signal vector. The cost function being minimized represents theℓ0 (quasi)-norm
of w (i.e., a count of the nonzero elements inw).

Unfortunately, an exhaustive search for the optimal representation requires the solution of
up to

(

M
N

)

linear systems of sizeN × N , a prohibitively expensive procedure for even
modest values ofM andN . Consequently, in practical situations there is a need for ap-
proximate procedures that efficiently solve (1) with high probability. To date, the two most
widely used choices are Basis Pursuit (BP) [1] and Orthogonal Matching Pursuit (OMP)
[5]. BP is based on a convex relaxation of theℓ0 norm, i.e., replacing‖w‖0 with ‖w‖1,
which leads to an attractive, unimodal optimization problem that can be readily solved via
linear programming. In contrast, OMP is a greedy strategy that iteratively selects the basis

∗This work was supported by DiMI grant 22-8376, Nissan, and NSF grant DGE-0333451.



vector most aligned with the current signal residual. At each step, a new approximant is
formed by projectingt onto the range of all the selected dictionary atoms.

Previously [9], we have demonstrated an alternative algorithm for solving (1) using a sparse
Bayesian learning (SBL) framework [6] that maintains several significant advantages over
other, Bayesian-inspired strategies for finding sparse solutions [7, 8]. The most basic for-
mulation begins with an assumed likelihood model of the signalt given weightsw,

p(t|w) = (2πσ2)−N/2 exp

(

− 1

2σ2
‖t − Φw‖2

2

)

. (2)

To provide a regularizing mechanism, SBL uses the parameterized weight prior

p(w;γ) =

M
∏

i=1

(2πγi)
−1/2

exp

(

−w2
i

2γi

)

, (3)

whereγ = [γ1, . . . , γM ]T is a vector ofM hyperparameters controlling the prior variance
of each weight. These hyperparameters can be estimated from the data by marginalizing
over the weights and then performing ML optimization. The cost function for this task is

L(γ) = − log

∫

p(t|w)p(w;γ)dw ∝ log |Σt| + tT Σ−1
t t, (4)

whereΣt , σ2I + ΦΓΦT and we have introduced the notationΓ , diag(γ). This pro-
cedure, which can be implemented via the EM algorithm (or some other technique), is
referred to as evidence maximization or type-II maximum likelihood [6]. Onceγ has been
estimated, a closed-form expression for the posterior weight distribution is available.

Although SBL was initially developed in a regression context, it can be easily adapted to
handle (1) in the limit asσ2 → 0. To accomplish this we must reexpress the SBL iterations
to handle the low noise limit. Applying various matrix identities to the EM algorithm-based
update rules for each iteration, we arrive at the modified update [9]

γ(new) = diag

(

ŵ(old)ŵ
T
(old) +

[

I − Γ
1/2
(old)

(

ΦΓ
1/2
(old)

)†
Φ

]

Γ(old)

)

ŵ(new) = Γ
1/2
(new)

(

ΦΓ
1/2
(new)

)†
t, (5)

where(·)† denotes the Moore-Penrose pseudo-inverse. Given thatt ∈ range(Φ)and as-
sumingγ is initialized with all nonzero elements, then feasibility is enforced at every itera-
tion, i.e.,t = Φŵ. We will henceforth refer towSBL as the solution of this algorithm when
initialized atΓ = IM andŵ = Φ†t.1 In [9] (which extends work in [10]), we have argued
why wSBL should be considered a viable candidate for solving (1).

In comparing BP, OMP, and SBL, we would ultimately like to know in what situations a
particular algorithm is likely to find the maximally sparse solution. A variety of results stip-
ulate rigorous conditions whereby BP and OMP are guaranteed to solve (1) [1, 4, 5]. All
of these conditions depend explicitly on the number of nonzero elements contained in the
optimal solution. Essentially, if this number is less than someΦ-dependent constantκ, the
BP/OMP solution is proven to be equivalent to the minimumℓ0-norm solution. Unfortu-
nately however,κ turns out to be restrictively small and, for a fixed redundancy ratioM/N ,
grows very slowly asN becomes large [3]. But in practice, both approaches still perform
well even when these equivalence conditions have been grossly violated. To address this
issue, a much looser bound has recently been produced for BP, dependent only onM/N .
This bound holds for “most” dictionaries in the limit asN becomes large [3], where “most”

1Based on EM convergence properties, the algorithm will converge monotonically to a fixed point.



is with respect to dictionaries composed of columns drawn uniformly from the surface of
anN -dimensional unit hypersphere. For example, withM/N = 2, it is argued that BP is
capable of resolving sparse solutions with roughly0.3N nonzero elements with probability
approaching one asN → ∞.

Turning to SBL, we have neither a convenient convex cost function (as with BP) nor a
simple, transparent update rule (as with OMP); however, we can nonetheless come up with
an alternative type of equivalence result that is neither unequivocally stronger nor weaker
than those existing results for BP and OMP. This condition is dependent on the relative
magnitudes of the nonzero elements embedded in optimal solutions to (1). Additionally,
we can leverage these ideas to motivate which sparse solutions are the most difficult to find.
Later, we provide empirical evidence that SBL, even in this worst-case scenario, can still
outperform both BP and OMP.

2 Equivalence Conditions for SBL

In this section, we establish conditions wherebywSBL will minimize (1). To state these
results, we require some notation. First, we formally define a dictionaryΦ = [φ1, . . . ,φM ]
as a set ofM unit ℓ2-norm vectors (atoms) inRN , with M > N and rank(Φ) =N . We
say that a dictionary satisfies the unique representation property (URP) if every subset of
N atoms forms a basis inRN . We definew(i) as thei-th largest weight magnitude and̄w
as the‖w‖0-dimensional vector containing all the nonzero weight magnitudes ofw. The
set of optimal solutions to (1) isW∗ with cardinality|W∗|. Thediversity(or anti-sparsity)
of eachw∗ ∈ W∗ is defined asD∗ , ‖w∗‖0.

Result 1. For a fixed dictionaryΦ that satisfies the URP, there exists a set ofM −1 scaling
constantsνi ∈ (0, 1] (i.e., strictly greater than zero) such that, for anyt = Φw′ generated
with

w′
(i+1) ≤ νiw

′
(i) i = 1, . . . ,M − 1, (6)

SBL will produce a solution that satisfies‖wSBL‖0 = min(N, ‖w′‖0) andwSBL ∈ W∗.

Do to space limitations, the proof has been deferred to [11]. The basic idea is that, as
the magnitude differences between weights increase, at any given scale, the covariance
Σt embedded in the SBL cost function is dominated by a single dictionary atom such that
problematic local minimum are removed. The unique, global minimum in turn achieves the
stated result.2 The most interesting case occurs when‖w′‖0 < N , leading to the following:

Corollary 1. Given the additional restriction‖w′‖0 < N , thenwSBL = w′ ∈ W∗ and
|W∗| = 1, i.e., SBL will find the unique, maximally sparse representation of the signalt.

See [11] for the proof. These results are restrictive in the sense that the dictionary dependent
constantsνi significantly confine the class of signalst that we may represent. Moreover,
we have not provided any convenient means of computing what the different scaling con-
stants might be. But we have nonetheless solidified the notion that SBL is most capable of
recovering weights of different scales (and it must still find allD∗ nonzero weights no mat-
ter how small some of them may be). Additionally, we have specified conditions whereby
we will find the uniquew∗ even when the diversity is as large asD∗ = N − 1. The tighter
BP/OMP bound from [1, 4, 5] scales asO

(

N−1/2
)

, although this latter bound is much
more general in that it is independent of the magnitudes of the nonzero weights.

In contrast, neither BP or OMP satisfy a comparable result; in both cases, simple 3D
counter examples suffice to illustrate this point.3 We begin with OMP. Assume the fol-

2Because we have effectively shown that the SBL cost function must be unimodal, etc., any proven
descent method could likely be applied in place of (5) to achieve the same result.

3While these examples might seem slightly nuanced, the situations being illustrated can occur
frequently in practice and the requisite column normalization introduces some complexity.



lowing:

w∗ =







1
ǫ
0
0






Φ =







0 1√
2

0 1√
1.01

0 0 1 0.1√
1.01

1 1√
2

0 0






t = Φw∗ =





ǫ√
2

0
1 + ǫ√

2



 , (7)

whereΦ satisfies the URP and has columnsφi of unit ℓ2 norm. Given anyǫ ∈ (0, 1),
we will now show that OMP will necessarily fail to findw∗. Providedǫ < 1, at the first
iteration OMP will selectφ1, which solvesmaxi |tT φi|, leaving the residual vector

r1 =
(

I − φ1φ
T
1

)

t = [ ǫ/
√

2 0 0 ]T . (8)

Next, φ4 will be chosen since it has the largest value in the top position, thus solving
maxi |rT

1 φi|. The residual is then updated to become

r2 =
(

I − [ φ1 φ4 ][ φ1 φ4 ]T
)

t =
ǫ

101
√

2
[ 1 −10 0 ]T . (9)

From the remaining two columns,r2 is most highly correlated withφ3. Onceφ3 is se-
lected, we obtain zero residual error, yet we did not findw∗, which involves onlyφ1 and
φ2. So for allǫ ∈ (0, 1), the algorithm fails. As such, there can be no fixed constantν > 0
such that ifw∗

(2) ≡ ǫ ≤ νw∗
(1) ≡ ν, we are guaranteed to obtainw∗ (unlike with SBL).

We now give an analogous example for BP, where we present a feasible solution with
smallerℓ1 norm than the maximally sparse solution. Given

w∗ =







1
ǫ
0
0






Φ =







0 1 0.1√
1.02

0.1√
1.02

0 0 −0.1√
1.02

0.1√
1.02

1 0 1√
1.02

1√
1.02






t = Φw∗ =

[

ǫ
0
1

]

, (10)

it is clear that ‖w∗‖1 = 1 + ǫ. However, for all ǫ ∈ (0, 0.1), if we form a
feasible solution using onlyφ1, φ3, and φ4, we obtain the alternate solutionw =
[

(1 − 10ǫ) 0 5
√

1.02ǫ 5
√

1.02ǫ
]T

with ‖w‖1 ≈ 1 + 0.1ǫ. Since this has a smaller
ℓ1 norm for all ǫ in the specified range, BP will necessarily fail and so again, we cannot
reproduce the result for a similar reason as before.

At this point, it remains unclear what probability distributions are likely to produce weights
that satisfy the conditions of Result 1. It turns out that the Jeffreys prior, given by
p(x) ∝ 1/x, is appropriate for this task. This distribution has the unique property that
the probability mass assigned to any given scaling is equal. More explicitly, for anys ≥ 1,

P
(

x ∈
[

si, si+1
])

∝ log(s) ∀i ∈ Z. (11)

For example, the probability thatx is between1 and10 equals the probability that it lies
between10 and100 or between0.01 and0.1. Because this is an improper density, we
define an approximate Jeffreys prior with range parametera ∈ (0, 1]. Specifically, we say
thatx ∼ J(a) if

p(x) =
−1

2 log(a)x
for x ∈ [a, 1/a]. (12)

With this definition in mind, we present the following result.

Result 2. For a fixedΦ that satisfies the URP, lett be generated byt = Φw′, wherew′

has magnitudes drawn iid fromJ(a). Then asa approaches zero, the probability that we
obtain aw′ such that the conditions of Result 1 are satisfied approaches unity.

Again, for space considerations, we refer the reader to [11]. However, on a conceptual
level this result can be understood by considering the distribution of order statistics. For



example, givenM samples from a uniform distribution between zero and someθ, with
probability approaching one, the distance between thek-th and(k+1)-th order statistic can
be made arbitrarily large asθ moves towards infinity. Likewise, with theJ(a) distribution,
the relative scaling between order statistics can be increased without bound asa decreases
towards zero, leading to the stated result.
Corollary 2. Assume thatD′ < N randomly selected elements ofw′ are set to zero.
Then asa approaches zero, the probability that we satisfy the conditions of Corollary 1
approaches unity.

In conclusion, we have shown that a simple, (approximate) noninformative Jeffreys prior
leads to sparse inverse problems that are optimally solved via SBL with high probability.
Interestingly, it is this same Jeffreys prior that forms the implicit weight prior of SBL (see
[6], Section 5.1). However, it is worth mentioning that other Jeffreys prior-based tech-
niques, e.g., direct minimization ofp(w) =

∏

i
1

|wi| subject tot = Φw, do not provide
any SBL-like guarantees. Although several algorithms do exist that can perform such a
minimization task (e.g., [7, 8]), they perform poorly with respect to (1) because of conver-
gence to local minimum as shown in [9, 10]. This is especially true if the weights are highly
scaled, and no nontrivial equivalence results are known to exist for these procedures.

3 Worst-Case Scenario

If the best-case scenario occurs when the nonzero weights are all of very different scales,
it seems reasonable that the most difficult sparse inverse problem may involve weights of
the same or even identical scale, e.g.,w̄∗

1 = w̄∗
2 = . . . w̄∗

D∗ . This notion can be formalized
somewhat by considering thēw∗ distribution that is furthest from the Jeffreys prior. First,
we note that both the SBL cost function and update rules are independent of the overall
scaling of the generating weights, meaningαw̄∗ is functionally equivalent tōw∗ provided
α is nonzero. This invariance must be taken into account in our analysis. Therefore, we
assume the weights are rescaled such that

∑

i w̄∗
i = 1. Given this restriction, we will find

the distribution of weight magnitudes that is most different from the Jeffreys prior.

Using the standard procedure for changing the parameterization of a probability density,
the joint density of the constrained variables can be computed simply as

p(w̄∗
1 , . . . , w̄∗

D∗) ∝ 1
∏D∗

i=1 w̄∗
i

for
D∗

∑

i=1

w̄∗
i = 1, w̄∗

i ≥ 0,∀i. (13)

From this expression, it is easily shown thatw̄∗
1 = w̄∗

2 = . . . = w̄∗
D∗ achieves the global

minimum. Consequently, equal weights are the absoluteleast likely to occur from the
Jeffreys prior. Hence, we may argue that the distribution that assignsw̄∗

i = 1/D∗ with
probability one is furthest from the constrained Jeffreys prior.

Nevertheless, because of the complexity of the SBL framework, it is difficult to prove ax-
iomatically thatw̄∗ ∼ 1 is overall the most problematic distribution with respect to sparse
recovery. We can however provide additional motivation for why we should expect it to
be unwieldy. As proven in [9], the global minimum of the SBL cost function is guaran-
teed to produce somew∗ ∈ W∗. This minimum is achieved with the hyperparameters
γ∗

i = (w∗
i )2, ∀i. We can think of this solution as forming a collapsed, or degenerate co-

varianceΣ∗
t = ΦΓ∗ΦT that occupies a properD∗-dimensional subspace ofN -dimensional

signal space. Moreover, this subspace must necessarily contain the signal vectort. Essen-
tially, Σ∗

t proscribes infinite density tot, leading to the globally minimizing solution.

Now consider an alternative covarianceΣ⋄
t that, although still full rank, is nonetheless ill-

conditioned (flattened), containingt within its high density region. Furthermore, assume
that Σ⋄

t is not well aligned with the subspace formed byΣ∗
t . The mixture of two flat-

tened, yet misaligned covariances naturally leads to a more voluminous (less dense) form



as measured by the determinant|αΣ∗
t + βΣ⋄

t |. Thus, as we transition fromΣ⋄
t to Σ∗

t , we
necessarily reduce the density att, thereby increasing the cost functionL(γ). So if SBL
converges toΣ⋄

t it has fallen into a local minimum.

So the question remains, what values ofw̄∗ are likely to create the most situations where
this type of local minima occurs? The issue is resolved when we again consider theD∗-
dimensional subspace determined byΣ∗

t . The volume of the covariancewithin this sub-
space is given by

∣

∣Φ̄Γ̄∗Φ̄∗T
∣

∣, whereΦ̄∗ andΓ̄∗ are the basis vectors and hyperparameters
associated with̄w∗. The larger this volume, the higher the probability that other basis vec-
tors will be suitably positioned so as to both (i), containt within the high density portion
and (ii), maintain a sufficient component that is misaligned with the optimal covariance.

The maximum volume of
∣

∣Φ̄∗Γ̄∗Φ̄∗T
∣

∣ under the constraints
∑

i w̄∗
i = 1 andγ̄∗

i = (w̄∗)2i
occurs withγ̄∗

i = 1/(D∗)2, i.e., all thew̄∗
i are equal. Consequently, geometric considera-

tions support the notion that deviance from the Jeffreys prior leads to difficulty recovering
w∗. Moreover, empirical analysis (not shown) of the relationship between volume and
local minimum avoidance provide further corroboration of this hypothesis.

4 Empirical Comparisons

The central purpose of this section is to present empirical evidence that supports our theo-
retical analysis and illustrates the improved performance afforded by SBL. As previously
mentioned, others have established deterministic equivalence conditions, dependent onD∗,
whereby BP and OMP are guaranteed to find the uniquew∗. Unfortunately, the relevant
theorems are of little value in assessing practical differences between algorithms. This is
because, in the cases we have tested where BP/OMP equivalence is provably known to hold
(e.g., via results in [1, 4, 5]), SBL always converges tow∗ as well.

As such, we will focuss our attention on the insights provided by Sections 2 and 3 as well
as probabilistic comparisons with [3]. Given a fixed distribution for the nonzero elements
of w∗, we will assess which algorithm is best (at least empirically) for most dictionaries
relative to a uniform measure on the unit sphere as discussed.

To this effect, a number of monte-carlo simulations were conducted, each consisting of the
following: First, a random, overcompleteN × M dictionaryΦ is created whose entries
are each drawn uniformly from the surface of anN -dimensional hypersphere. Next, sparse
weight vectorsw∗ are randomly generated withD∗ nonzero entries. Nonzero amplitudes
w̄∗ are drawn iid from an experiment-dependent distribution. Response values are then
computed ast = Φw∗. Each algorithm is presented witht andΦ and attempts to estimate
w∗. In all cases, we ran 1000 independent trials and compared the number of times each
algorithm failed to recoverw∗. Under the specified conditions for the generation ofΦ
and t, all other feasible solutionsw almost surely have a diversity greater thanD∗, so
our synthetically generatedw∗ must be maximally sparse. Moreover,Φ will almost surely
satisfy the URP.

With regard to particulars, there are essentially four variables with which to experiment: (i)
the distribution ofw̄∗, (ii) the diversityD∗, (iii) N , and (iv)M . In Figure 1, we display
results from an array of testing conditions. In eachrow of the figure,w̄∗

i is drawn iid from
a fixed distribution for alli; the first row uses̄w∗

i = 1, the second has̄w∗
i ∼ J(a = 0.001),

and the third uses̄w∗
i ∼ N(0, 1), i.e., a unit Gaussian. In all cases, the signs of the nonzero

weights are irrelevant due to the randomness inherent in the basis vectors.

Thecolumnsof Figure 1 are organized as follows: The first column is based on the values
N = 50, D∗ = 16, while M is varied fromN to 5N , testing the effects of an increasing
level of dictionary redundancy,M/N . The second fixesN = 50 andM = 100 while D∗

is varied from10 to 30, exploring the ability of each algorithm to resolve an increasing
number of nonzero weights. Finally, the third column fixesM/N = 2 andD∗/N ≈ 0.3



while N , M , andD∗ are increased proportionally. This demonstrates how performance
scales with larger problem sizes.
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Figure 1: Empirical results comparing the probability that OMP, BP, and SBL fail to find
w∗ under various testing conditions. Each data point is based on 1000 independent trials.
The distribution of the nonzero weight amplitudes is labeled on the far left for each row,
while the values forN , M , andD∗ are included on the top of each column. Independent
variables are labeled along the bottom of the figure.

The first row of plots essentially represents the worst-case scenario for SBL per our pre-
vious analysis, and yet performance is still consistently better than both BP and OMP. In
contrast, the second row of plots approximates the best-case performance for SBL, where
we see that SBL is almost infallible. The handful of failure events that do occur are because
a is not sufficiently small and therefore,J(a) was not sufficiently close to a true Jeffreys
prior to achieve perfect equivalence (see center plot). Although OMP also does well here,
the parametera can generally never be adjusted such that OMP always succeeds. Finally,
the last row of plots, based on Gaussian distributed weight amplitudes, reflects a balance
between these two extremes. Nonetheless, SBL still holds a substantial advantage.

In general, we observe that SBL is capable of handling more redundant dictionaries (col-
umn one) and resolving a larger number of nonzero weights (column two). Also, column
three illustrates that both BP and SBL are able to resolve a number of weights that grows
linearly in the signal dimension (≈0.3N ), consistent with the analysis in [3] (which applies
only to BP). In contrast, OMP performance begins to degrade in some cases (see the upper
right plot), a potential limitation of this approach. Of course additional study is necessary
to fully compare the relative performance of these methods on large-scale problems.

Finally, by comparing row one, two and three, we observe that the performance of BP is
roughly independent of the weight distribution, with performance slightly below the worst-



case SBL performance. Like SBL, OMP results are highly dependent on the distribution;
however, as the weight distribution approaches unity, performance is unsatisfactory. In
summary, while the relative proficiency between OMP and BP is contingent on experimen-
tal particulars, SBL is uniformly superior in the cases we have tested (including examples
not shown, e.g., results with other dictionary types).

5 Conclusions
In this paper, we have related the ability to find maximally sparse solutions to the partic-
ular distribution of amplitudes that compose the nonzero elements. At first glance, it may
seem reasonable that the most difficult sparse inverse problems occur when some of the
nonzero weights are extremely small, making them difficult to estimate. Perhaps surpris-
ingly then, we have shown that the exact opposite is true with SBL: The more diverse the
weight magnitudes, the better the chances we have of learning the optimal solution. In
contrast, unit weights offer the most challenging task for SBL. Nonetheless, even in this
worst-case scenario, we have shown that SBL outperforms the current state-of-the-art; the
overall assumption here being that, if worst-case performance is superior, then it is likely
to perform better in a variety of situations.

For afixeddictionary and diversityD∗, successful recovery of unit weights does not ab-
solutely guarantee that any alternative weighting scheme will necessarily be recovered as
well. However, a weaker result does appear to be feasible: For fixed values ofN , M ,
andD∗, if the success rate recovering unity weights approaches one for most dictionar-
ies, where most is defined as in Section 1, then the success rate recovering weights of any
other distribution (assuming they are distributed independently of the dictionary) will also
approach one. While a formal proof of this conjecture is beyond the scope of this paper,
it seems to be a very reasonable result that is certainly born out by experimental evidence,
geometric considerations, and the arguments presented in Section 3. Nonetheless, this re-
mains a fruitful area for further inquiry.
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