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Abstract

We extend a previously developed Bayesian framework for perception
to account for sensory adaptation. We first note that the perceptual ef-
fects of adaptation seems inconsistent with an adjustment of the inter-
nally represented prior distribution. Instead, we postulate that adaptation
increases the signal-to-noise ratio of the measurements by adapting the
operational range of the measurement stage to the input range. We show
that this changes the likelihood function in such a way that the Bayesian
estimator model can account for reported perceptual behavior. In particu-
lar, we compare the model’s predictions to human motion discrimination
data and demonstrate that the model accounts for the commonly observed
perceptual adaptation effects of repulsion and enhanced discriminability.

1 Motivation

A growing number of studies support the notion that humans are nearly optimal when per-
forming perceptual estimation tasks that require the combination of sensory observations
with a priori knowledge. The Bayesian formulation of these problems defines the optimal
strategy, and provides a principled yet simple computational framework for perception that
can account for a large number of known perceptual effects and illusions, as demonstrated
in sensorimotor learning [1], cue combination [2], or visual motion perception [3], just to
name a few of the many examples.

Adaptation is a fundamental phenomenon in sensory perception that seems to occur at all
processing levels and modalities. A variety of computational principles have been sug-
gested as explanations for adaptation. Many of these are based on the concept of maximiz-
ing the sensory information an observer can obtain about a stimulus despite limited sensory
resources [4, 5, 6]. More mechanistically, adaptation can be interpreted as the attempt of
the sensory system to adjusts its (limited) dynamic range such that it is maximally infor-
mative with respect to the statistics of the stimulus. A typical example is observed in the
retina, which manages to encode light intensities that vary over nine orders of magnitude
using ganglion cells whose dynamic range covers only two orders of magnitude. This is
achieved by adapting to the local mean as well as higher order statistics of the visual input
over short time-scales [7].
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If a Bayesian framework is to provide a valid computational explanation of perceptual
processes, then it needs to account for the behavior of a perceptual system, regardless of
its adaptation state. In general, adaptation in a sensory estimation task seems to have two
fundamental effects on subsequent perception:

e Repulsion: The estimate of parameters of subsequent stimuli are repelled by
those of the adaptor stimulus, i.e. the perceived values for the stimulus variable
that is subject to the estimation task are more distant from the adaptor value after
adaptation. This repulsive effect has been reported for perception of visual speed
(eq. [8, 9]), direction-of-motion [10], and orientation [11].

e Increased senditivity:  Adaptation increases the observer’s discrimination ability
around the adaptor (e.g. for visual speed [12, 13]), however it also seems to de-
crease it further away from the adaptor as shown in the case of direction-of-motion
discrimination [14].

In this paper, we show that these two perceptual effects can be explained within a Bayesian
estimation framework of perception. Note that our description is at an abstract functional
level - we do not attempt to provide a computational model for the underlying mechanisms
responsible for adaptation, and this clearly separates this paper from other work which
might seem at first glance similar [e.g., 15].

2 Adaptive Bayesian estimator framewor k

Suppose that an observer wants to estimate a property of a stimulus denoted by the variable
6, based on a measurement m. In general, the measurement can be vector-valued, and
is corrupted by both internal and external noise. Hence, combining the noisy information
gained by the measurement 1 with a priori knowledge about 6 is advantageous. According
to Bayes’ rule

p(Olm) = ~p(ml0)p(0). @

That is, the probability of stimulus value 6 given m (posterior) is the product of the likeli-
hood p(m|6@) of the particular measurement and the prior p(6). The normalization constant
« Serves to ensure that the posterior is a proper probability distribution. Under the assump-
tion of a squared-error loss function, the optimal estimate é(m) is the mean of the posterior,
thus

O(m) = /Oooap(mm) de . )

Note that é(m) describes an estimate for a single measurement m. As discussed in [16],
the measurement will vary stochastically over the course of many exposures to the same
stimulus, and thus the estimator will also vary. We return to this issue in Section 3.2.

Figure 1a illustrates a Bayesian estimator, in which the shape of the (arbitrary) prior dis-
tribution leads on average to a shift of the estimate toward a lower value of € than the true
stimulus value 6g;,,. The likelihood and the prior are the fundamental constituents of the
Bayesian estimator model. Our goal is to describe how adaptation alters these constituents
S0 as to account for the perceptual effects of repulsion and increased sensitivity.

Adaptation does not changetheprior ...

An intuitively sensible hypothesis is that adaptation changes the prior distribution. Since
the prior is meant to reflect the knowledge the observer has about the distribution of occur-
rences of the variable 0 in the world, repeated viewing of stimuli with the same parameter
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Figure 1: Hypothetical model in which adaptation alters the prior distribution. a) Un-
adapted Bayesian estimation configuration in which the prior leads to a shift of the estimate

0, relative to the stimulus parameter 6., Both the likelihood function and the prior distri-

bution contribute to the exact value of the estimate  (mean of the posterior). b) Adaptation
acts by increasing the prior distribution around the value, 6,4ap¢, Of the adapting stimulus

parameter. Consequently, an subsequent estimate ¢’ of the same stimulus parameter value
Osim IS attracted toward the adaptor. This is the opposite of observed perceptual effects,
and we thus conclude that adjustments of the prior in a Bayesian model do not account for
adaptation.

value 8,q.p¢ Should presumably increase the prior probability in the vicinity of 6xga. Fig-
ure 1b schematically illustrates the effect of such a change in the prior distribution. The
estimated (perceived) value of the parameter under the adapted condition is attracted to the
adapting parameter value. In order to account for observed perceptual repulsion effects,
the prior would have to decrease at the location of the adapting parameter, a behavior that
seems fundamentally inconsistent with the notion of a prior distribution.

... but increasesthereliability of the measurements

Since a change in the prior distribution is not consistent with repulsion, we are led to the
conclusion that adaptation must change the likelihood function. But why, and how should
this occur?

In order to answer this question, we reconsider the functional purpose of adaptation. We as-
sume that adaptation acts to allocate more resources to the representation of the parameter
values in the vicinity of the adaptor [4], resulting in a local increase in the signal-to-noise
ratio (SNR). This can be accomplished, for example, by dynamically adjusting the opera-
tional range to the statistics of the input. This kind of increased operational gain around
the adaptor has been effectively demonstrated in the process of retinal adaptation [17]. In
the context of our Bayesian estimator framework, and restricting to the simple case of a
scalar-valued measurement, adaptation results in a narrower conditional probability den-
sity p(m|0) in the immediate vicinity of the adaptor, thus an increase in the reliability of
the measurement m. This is offset by a broadening of the conditional probability den-
sity p(m/|0) in the region beyond the adaptor vicinity (we assume that total resources are
conserved, and thus an increase around the adaptor must necessarily lead to a decrease
elsewhere).

Figure 2 illustrates the effect of this local increase in signal-to-noise ratio on the likeli-
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Figure 2: Measurement noise, conditionals and likelihoods. The two-dimensional condi-
tional density, p(m|#), is shown as a grayscale image for both the unadapted and adapted
cases. We assume here that adaptation increases the reliability (SNR) of the measurement
around the parameter value of the adaptor. This is balanced by a decrease in SNR of the
measurement further away from the adaptor. Because the likelihood is a function of & (hor-
izontal slices, shown plotted at right), this results in an asymmetric change in the likelihood
that is in agreement with a repulsive effect on the estimate.
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Figure 3: Repulsion: Model predictions vs. human psychophysics. a) Difference in per-
ceived direction in the pre- and post-adaptation condition, as predicted by the model. Post-
adaptive percepts of motion direction are repelled away from the direction of the adaptor.
b) Typical human subject data show a qualitatively similar repulsive effect. Data (and fit)
are replotted from [10].

hood function. The two gray-scale images represent the conditional probability densities,
p(m|@), in the unadapted and the adapted state. They are formed by assuming additive
noise on the measurement m of constant variance (unadapted) or with a variance that
decreases symmetrically in the vicinity of the adaptor parameter value Oqqt, and grows
slightly in the region beyond. In the unadapted state, the likelihood is convolutional and
the shape and variance are equivalent to the distribution of measurement noise. However,
in the adapted state, because the likelihood is a function of & (horizontal slice through the
conditional surface) it is no longer convolutional around the adaptor. As a result, the mean
is pushed away from the adaptor, as illustrated in the two graphs on the right. Assuming
that the prior distribution is fairly smooth, this repulsion effect is transferred to the posterior
distribution, and thus to the estimate.

3 Simulation Results

We have qualitatively demonstrated that an increase in the measurement reliability around
the adaptor is consistent with the repulsive effects commonly seen as a result of percep-
tual adaptation. In this section, we simulate an adapted Bayesian observer by assuming a
simple model for the changes in signal-to-noise ratio due to adaptation. We address both
repulsion and changes in discrimination threshold. In particular, we compare our model
predictions with previously published data from psychophysical experiments examining
human perception of motion direction.

3.1 Repulsion

In the unadapted state, we assume the measurement noise to be additive and normally
distributed, and constant over the whole measurement space. Thus, assuming that m and
0 live in the same space, the likelihood is a Gaussian of constant width. In the adapted
state, we assume a simple functional description for the variance of the measurement noise
around the adapter. Specifically, we use a constant plus a difference of two Gaussians,
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Figure 4: Discrimination thresholds: Model predictions vs. human psychophysics. a) The
model predicts that thresholds for direction discrimination are reduced at the adaptor. It
also predicts two side-lobes of increased threshold at further distance from the adaptor.
b) Data of human psychophysics are in qualitative agreement with the model. Data are
replotted from [14] (see also [11]).

each having equal area, with one twice as broad as the other (see Fig. 2). Finally, for
simplicity, we assume a flat prior, but any reasonable smooth prior would lead to results
that are qualitatively similar. Then, according to (2) we compute the predicted estimate of
motion direction in both the unadapted and the adapted case.

Figure 3a shows the predicted difference between the pre- and post-adaptive average esti-
mate of direction, as a function of the stimulus direction, fm. The adaptor is indicated with
an arrow. The repulsive effect is clearly visible. For comparison, Figure 3b shows human
subject data replotted from [10]. The perceived motion direction of a grating was estimated,
under both adapted and unadapted conditions, using a two-alternative-forced-choice exper-
imental paradigm. The plot shows the change in perceived direction as a function of test
stimulus direction relative to that of the adaptor. Comparison of the two panels of Figure 3
indicate that despite the highly simplified construction of the model, the prediction is quite
good, and even includes the small but consistent repulsive effects observed 180 degrees
from the adaptor.

3.2 Changesin discrimination threshold

Adaptation also changes the ability of human observers to discriminate between the di-
rection of two different moving stimuli. In order to model discrimination thresholds, we
need to consider a Bayesian framework that can account not only for the mean of the es-
timate but also its variability. We have recently developed such a framework, and used
it to quantitatively constrain the likelihood and the prior from psychophysical data [16].
This framework accounts for the effect of the measurement noise on the variability of the
estimate 6. Specifically, it provides a characterization of the distribution p(6|6gim) of the
estimate for a given stimulus direction in terms of its expected value and its variance as a
function of the measurement noise. As in [16] we write

00 (m)

vt (Bl8sm) = var(m)(“5 ) ©

Assuming that discrimination threshold is proportional to the standard deviation,



\/var<é|95nm>, we can now predict how discrimination thresholds should change after adap-

tation. Figure 4a shows the predicted change in discrimination thresholds relative to the un-
adapted condition for the same model parameters as in the repulsion example (Figure 3a).
Thresholds are slightly reduced at the adaptor, but increase symmetrically for directions
further away from the adaptor. For comparison, Figure 4b shows the relative change in dis-
crimination thresholds for a typical human subject [14]. Again, the behavior of the human
observer is qualitatively well predicted.

4 Discussion

We have shown that adaptation can be incorporated into a Bayesian estimation framework
for human sensory perception. Adaptation seems unlikely to manifest itself as a change
in the internal representation of prior distributions, as this would lead to perceptual bias
effects that are opposite to those observed in human subjects. Instead, we argue that adap-
tation leads to an increase in reliability of the measurement in the vicinity of the adapting
stimulus parameter. We show that this change in the measurement reliability results in
changes of the likelihood function, and that an estimator that utilizes this likelihood func-
tion will exhibit the commonly-observed adaptation effects of repulsion and changes in
discrimination threshold. We further confirm our model by making quantitative predictions
and comparing them with known psychophysical data in the case of human perception of
motion direction.

Many open questions remain. The results demonstrated here indicate that a resource alloca-
tion explanation is consistent with the functional effects of adaptation, but it seems unlikely
that theory alone can lead to a unique quantitative prediction of the detailed form of these
effects. Specifically, the constraints imposed by biological implementation are likely to
play a role in determining the changes in measurement noise as a function of adaptor pa-
rameter value, and it will be important to characterize and interpret neural response changes
in the context of our framework. Also, although we have argued that changes in the prior
seem inconsistent with adaptation effects, it may be that such changes do occur but are
offset by the likelihood effect, or occur only on much longer timescales.

Last, if one considers sensory perception as the result of a cascade of successive processing
stages (with both feedforward and feedback connections), it becomes necessary to expand
the Bayesian description to describe this cascade [e.g., 18, 19]. For example, it may be
possible to interpret this cascade as a sequence of Bayesian estimators, in which the mea-
surement of each stage consists of the estimate computed at the previous stage. Adaptation
could potentially occur in each of these processing stages, and it is of fundamental interest
to understand how such a cascade can perform useful stable computations despite the fact
that each of its elements is constantly readjusting its response properties.
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