
A General andEfficient Multiple Kernel
Learning Algorithm

Sören Sonnenburg∗

Fraunhofer FIRST
Kekuléstr. 7
12489 Berlin

Germany
sonne@first.fhg.de

Gunnar Rätsch
Friedrich Miescher Lab

Max Planck Society
Spemannstr. 39

Tübingen, Germany
raetsch@tue.mpg.de

Christin Schäfer
Fraunhofer FIRST

Kekuléstr. 7
12489 Berlin

Germany
christin@first.fhg.de

Abstract

While classical kernel-based learning algorithms are based on a single
kernel, in practice it is often desirable to use multiple kernels. Lankriet
et al. (2004) considered conic combinations of kernel matrices for classi-
fication, leading to a convex quadratically constraint quadratic program.
We show that it can be rewritten as a semi-infinite linear program that
can be efficiently solved by recycling the standard SVM implementa-
tions. Moreover, we generalize the formulation and our method to a
larger class of problems, including regression and one-class classifica-
tion. Experimental results show that the proposed algorithm helps for
automatic model selection, improving the interpretability of the learn-
ing result and works for hundred thousands of examples or hundreds of
kernels to be combined.

1 Introduction
Kernel based methods such as Support Vector Machines (SVMs) have proven to be pow-
erful for a wide range of different data analysis problems. They employ a so-called kernel
functionk(xi,xj) which intuitively computes the similarity between two examplesxi and
xj . The result of SVM learning is aα-weighted linear combination of kernel elements and
the biasb:

f(x) = sign

(
N∑

i=1

αiyik(xi,x) + b

)

, (1)

where thexi’s areN labeled training examples (yi ∈ {±1}).

Recent developments in the literature on the SVM and other kernel methods have shown
the need to consider multiple kernels. This provides flexibility, and also reflects the fact
that typical learning problems often involve multiple, heterogeneous data sources. While
this so-called “multiple kernel learning” (MKL) problem can in principle be solved via
cross-validation, several recent papers have focused on more efficient methods for multiple
kernel learning [4, 5, 1, 7, 3, 9, 2].

One of the problems with kernel methods compared to other techniques is that the resulting
decision function (1) is hard to interpret and, hence, is difficult to use in order to extract rel-

∗For more details, datasets and pseudocode seehttp://www.fml.tuebingen.mpg.de
/raetsch/projects/mkl silp.

evant knowledge about the problem at hand. One can approach this problem by considering
convex combinations ofK kernels, i.e.

k(xi,xj) =
K∑

k=1

βkkk(xi,xj) (2)

with βk ≥ 0 and
∑

k βk = 1, where each kernelkk uses only a distinct set of features
of each instance. For appropriately designed sub-kernelskk, the optimized combination
coefficients can then be used to understand which features of the examples are of impor-
tance for discrimination: if one would be able to obtain an accurate classification by a
sparseweightingβk, then one can quite easily interpret the resulting decision function. We
will illustrate that the considered MKL formulation provides useful insights and is at the
same time is very efficient. This is an important property missing in current kernel based
algorithms.

We consider the framework proposed by [7], which results in a convex optimization prob-
lem - a quadratically-constrained quadratic program (QCQP). This problem is more chal-
lenging than the standard SVM QP, but it can in principle be solved by general-purpose
optimization toolboxes. Since the use of such algorithms will only be feasible for small
problems with few data points and kernels, [1] suggested an algorithm based on sequential
minimization optimization (SMO) [10]. While the kernel learning problem is convex, it
is also non-smooth, making the direct application of simple local descent algorithms such
as SMO infeasible. [1] therefore considered a smoothed version of the problem to which
SMO can be applied.

In this work we follow a different direction: We reformulate the problem as a semi-infinite
linear program (SILP), which can be efficiently solved using an off-the-shelf LP solver and
a standard SVM implementation (cf. Section 2 for details). Using this approach we are
able to solve problems with more than hundred thousand examples or with several hundred
kernels quite efficiently. We have used it for the analysis of sequence analysis problems
leading to a better understanding of the biological problem at hand [16, 13]. We extend
our previous work and show that the transformation to a SILP works with a large class of
convex loss functions (cf. Section 3). Our column-generation based algorithm for solving
the SILP works by repeatedly using an algorithm that can efficiently solve the single kernel
problem in order to solve the MKL problem. Hence, if there exists an algorithm that solves
the simpler problem efficiently (like SVMs), then our new algorithm can efficiently solve
the multiple kernel learning problem.

We conclude the paper by illustrating the usefulness of our algorithms in several examples
relating to the interpretation of results and to automatic model selection.

2 Multiple Kernel Learning for Classification using SILP
In the Multiple Kernel Learning (MKL) problem for binary classification one is givenN
data points(xi, yi) (yi ∈ {±1}), wherexi is translated via a mappingΦk(x) 7→ R

Dk , k =
1 . . . K from the input intoK feature spaces(Φ1(xi), . . . ,ΦK(xi)) whereDk denotes
the dimensionality of thek-th feature space. Then one solves the following optimization
problem [1], which is equivalent to the linear SVM forK = 1:1

min
wk∈R

Dk ,ξ∈R
N

+
,β∈R

K

+
,b∈R

1

2

(
K∑

k=1

βk‖wk‖2

)2

+ C
N∑

i=1

ξi (3)

s.t. yi

(
K∑

k=1

βkw
⊤
k Φk(xi) + b

)

≥ 1 − ξi and
K∑

k=1

βk = 1.

1[1] used a slightly different but equivalent (assumingtr(Kk) = 1, k = 1, . . . , K) formulation
without theβ’s, which we introduced for illustration.

Note that theℓ1-norm ofβ is constrained to one, while one is penalizing theℓ2-norm of
wk in each blockk separately. The idea is thatℓ1-norm constrained or penalized variables
tend to have sparse optimal solutions, whileℓ2-norm penalized variables do not [11]. Thus
the above optimization problem offers the possibility to find sparse solutions on the block
level with non-sparse solutions within the blocks.

Bach et al. [1] derived the dual for problem (3), which can be equivalently written as:

min
γ∈R,1C≥α∈R

N

+

γ s.t.
1

2

N∑

i,j=1

αiαjyiyjkk(xi,xj) −

N∑

i=1

αi

︸ ︷︷ ︸

=:Sk(α)

≤ γ and
∑

i=1

αiyi = 0 (4)

for k = 1, . . . ,K, wherekk(xi,xj) = (Φk(xi),Φk(xj)). Note that we have one quadratic
constraint per kernel (Sk(α) ≤ γ). In the case ofK = 1, the above problem reduces to the
original SVM dual.

In order to solve (4), one may solve the following saddle point problem (Lagrangian):

L := γ +

K∑

k=1

βk(Sk(α) − γ) (5)

minimized w.r.t.α ∈ R
N
+ , γ ∈ R (subject toα ≤ C1 and

∑

i αiyi = 0) and maximized
w.r.t.β ∈ R

K
+ . Setting the derivative w.r.t. toγ to zero, one obtains the constraint

∑

k βk =

1 and (5) simplifies to:L = S(α,β) :=
∑K

k=1 βkSk(α) and leads to a min-max problem:

max
β∈R

k

+

min
1C≥α∈R

N

+

K∑

k=1

βkSk(α) s.t.
N∑

i=1

αiyi = 0 and
K∑

k=1

βk = 1. (6)

Assumeα∗ would be the optimal solution, thenθ∗ := S(α∗,β) is minimal and, hence,
S(α,β) ≥ θ∗ for all α (subject to the above constraints). Hence, finding a saddle-point of
(5) is equivalent to solving the following semi-infinite linear program:

max
θ∈R,β∈R

M

+

θ s.t.
∑

k

βk = 1 and
K∑

k=1

βkSk(α) ≥ θ (7)

for all α with 0 ≤ α ≤ C1 and
∑

i

yiαi = 0

Note that this is a linear program, asθ andβ are only linearly constrained. However
there are infinitely many constraints: one for eachα ∈ R

N satisfying0 ≤ α ≤ C and
∑N

i=1 αiyi = 0. Both problems (6) and (7) have the same solution. To illustrate that,
considerβ is fixed and we maximizeα in (6). Letα∗ be the solution that maximizes (6).
Then we can decrease the value ofθ in (7) as long as noα-constraint (7) is violated, i.e.
down toθ =

∑K
k=1 βkSk(α∗). Similarly, as we increaseθ for a fixedα the maximizingβ

is found. We will discuss in Section 4 how to solve such semi infinite linear programs.

3 Multiple Kernel Learning with General Cost Functions
In this section we consider the more general class of MKL problems, where one is given
anarbitrary strictly convex differentiable loss function, for which we derive its MKL SILP
formulation. We will then investigate in this general MKL SILP using different loss func-
tions, in particular the soft-margin loss, theǫ-insensitive loss and the quadratic loss.

We define the MKL primal formulation for a strictly convex and differentiable loss function
L as: (for simplicity we omit a bias term)

min
wk∈R

Dk

1

2

(
K∑

k=1

‖wk‖

)2

+
N∑

i=1

L(f(xi), yi) s.t. f(xi) =
K∑

k=1

(Φk(xi),wk) (8)

In analogy to [1] we treat problem (8) as a second order cone program (SOCP)
leading to the following dual (see Supplementary Website or [17] for details):

min
γ∈R,α∈RN

γ −
N∑

i=1

L(L′−1(αi, yi), yi) +
N∑

i=1

αiL
′−1(αi, yi) (9)

s.t. :
1

2

∥
∥
∥
∥
∥

N∑

i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

≤ γ, ∀k = 1 . . . K

To derive the SILP formulation we follow the same recipe as in Section 2: deriving the La-
grangian leads to a max-min problem formulation to be eventually reformulated to a SILP:

max
θ∈R,β∈RK

θ s.t.
K∑

k=1

βk = 1 and
∑K

k=1 βkSk(α) ≥ θ, ∀α ∈ R
N ,

whereSk(α) = −
N∑

i=1

L(L′−1(αi, yi), yi) +
N∑

i=1

αiL
′−1(αi, yi) +

1

2

∥
∥
∥
∥
∥

N∑

i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

We assumed thatL(x, y) is strictly convex and differentiable inx. Unfortunately, the soft
margin andǫ-insensitive loss do not have these properties. We therefore consider them
separately in the sequel.

Soft Margin Loss We use the following loss in order to approximate the soft margin
loss:Lσ(x, y) = C

σ
log(1 + exp((1− xy)σ)). It is easy to verify thatlimσ→∞ Lσ(x, y) =

C(1−xy)+. Moreover,Lσ is strictly convex and differentiable forσ < ∞. Using this loss
and assumingyi ∈ {±1}, we obtain :

Sk(α) = −

N
X

i=1

C

σ

„

log

„

Cyi

αi + Cyi

«

+ log

„

−
αi

αi + Cyi

««

+

N
X

i=1

αiyi +
1

2

‚

‚

‚

‚

‚

N
X

i=1

αiΦk(xi)

‚

‚

‚

‚

‚

2

2

.

If σ → ∞, then the first two terms vanish provided that−C ≤ αi ≤ 0 if yi = 1 and
0 ≤ αi ≤ C if yi = −1. Substitutingα = −α̃iyi, we then obtainSk(α̃) = −

∑N
i=1 α̃i +

1
2

∥
∥
∥
∑N

i=1 α̃iyiΦk(xi)
∥
∥
∥

2

2
, with 0 ≤ α̃i ≤ C (i = 1, . . . , N), which is very similar to (4):

only the
∑

i αiyi = 0 constraint is missing, since we omitted the bias.

One-Class Soft Margin Loss The one-class SVM soft margin (e.g. [15]) is very similar

to the two class case and leads toSk(α) = 1
2

∥
∥
∥
∑N

i=1 αiΦk(xi)
∥
∥
∥

2

2
subject to0 ≤ α ≤ 1

νN
1

and
∑N

i=1 αi = 1.

ǫ-insensitive Loss Using the same technique for the epsilon insensitive lossL(x, y) =
C(1 − |x − y|)+, we obtain

Sk(α,α∗) =
1

2

∥
∥
∥
∥
∥

N∑

i=1

(αi − α∗
i)Φk(xi)

∥
∥
∥
∥
∥

2

2

−

N∑

i=1

(αi + α∗
i)ǫ −

N∑

i=1

(αi − α∗
i)yi,

with 0 ≤ α,α∗ ≤ C1. When including a bias term, we additionally have the constraint∑N
i=1(αi − α∗

i)yi = 0.

It is straightforward to derive the dual problem for other loss functions such as the quadratic
loss. Note that the dual SILP’s only differ in the definition ofSk and the domains of the
α’s.

4 Algorithms to solve SILPs
The SILPs considered in this work all have the following form:

max
θ∈R,β∈R

M

+

θ s.t.
∑K

k=1 βk = 1 and
∑M

k=1 βkSk(α) ≥ θ for all α ∈ C (10)

for some appropriateSk(α) and the feasible setC ⊆ R
N of α depending on the choice of

the cost function. Using Theorem 5 in [12] one can show that the above SILP has a solution
if the corresponding primal is feasible and bounded. Moreover, there is no duality gap, if
M = co{[S1(α), . . . , SK(α)]⊤ | α ∈ C} is a closed set. For all loss functions considered
in this paper this holds true. We propose to use a technique called Column Generation to
solve (10). The basic idea is to compute the optimal(β, θ) in (10) for a restricted subset of
constraints. It is called therestricted master problem. Then a second algorithm generates
a new constraint determined byα. In the best case the other algorithm finds the constraint
that maximizes the constraint violation for the given intermediate solution(β, θ), i.e.

αβ := argmin
α∈C

∑

k

βkSk(α). (11)

If αβ satisfies the constraint
∑K

k=1 βkSk(αβ) ≥ θ, then the solution is optimal. Other-
wise, the constraint is added to the set of constraints.

Algorithm 1 is a special case of the set of SILP algorithms known asexchange methods.
These methods are known to converge (cf. Theorem 7.2 in [6]). However, no convergence
rates for such algorithm are so far known.2 Since it is often sufficient to obtain an approxi-
mate solution, we have to define a suitable convergence criterion. Note that the problem is
solved when all constraints are satisfied. Hence, it is a natural choice to use the normalized

maximal constraint violation as a convergence criterion, i.e.ǫ :=
∣
∣
∣1 −

P

K

k=1
βt

k
Sk(αt)

θt

∣
∣
∣ ,

where(βt, θt) is the optimal solution at iterationt − 1 andαt corresponds to the newly
found maximally violating constraint of the next iteration.

We need an algorithm to identify unsatisfied constraints, which, fortunately, turns out to be
particularly simple. Note that (11) is for all considered cases exactly the dual optimization
problem of the single kernel case for fixedβ. For instance for binary classification, (11)
reduces to the standard SVM dual using the kernelk(xi,xj) =

∑

k βkkk(xi,xj):

min
α∈RN

N∑

i,j=1

αiαjyiyjk(xi,xj) −
N∑

i=1

αi with 0 ≤ α ≤ C1 and
N∑

i=1

αiyi = 0.

We can therefore use a standard SVM implementation in order to identify the most violated
constraint. Since there exist a large number of efficient algorithms to solve the single
kernel problems for all sorts of cost functions, we have therefore found an easy way to
extend their applicability to the problem of Multiple Kernel Learning. In some cases it
is possible to extend existing SMO based implementations to simultaneously optimizeβ
andα. In [16] we have considered such an algorithm for the binary classification case
that frequently recomputes theβ’s.3 Empirically it is a few times faster than the column
generation algorithm, but it is on the other hand much harder to implement.

5 Experiments
In this section we will discuss toy examples for binary classification and regression, demon-
strating that MKL can recover information about the problem at hand, followed by a brief
review on problems for which MKL has been successfully used.

5.1 Classifications

In Figure 1 we consider a binary classification problem, where we used MKL-SVMs with
five RBF-kernels with different widths, to distinguish the dark star-like shape from the

2It has been shown that solving semi-infinite problems like (7), using a method related to boosting
(e.g. [8]) one requires at mostT = O(log(M)/ǫ̂2) iterations, wherêǫ is the remaining constraint
violation and the constants may depend on the kernels and the number of examplesN [11, 14]. At
least for not too small values ofǫ̂ this technique produces reasonably fast good approximate solutions.

3Simplex based LP solvers often offer the possibility to efficient restart the computation when
adding only a few constraints.

Algorithm 1 The column generation algorithm employs a linear programming solver to
iteratively solve the semi-infinite linear optimization problem (10). The accuracy parameter
ǫ is a parameter of the algorithm.Sk(α) andC are determined by the cost function.

S0 = 1, θ1 = −∞, β1
k = 1

K
for k = 1, . . . , K

for t = 1, 2, . . . do

Computeαt = argmin
α∈C

K
X

k=1

βt

kSk(α) by single kernel algorithm withK =

K
X

k=1

βt

kKk

St =

K
X

k=1

βt

kSk(αt)

if |1 −
St

θt
| ≤ ǫ then break

(βt+1, θt+1) = argmax θ

w.r.t. β ∈ R
K

+ , θ ∈ R with
K

X

k=1

βk = 1 and
K

X

k=1

βkSr

k ≥ θ for r = 1, . . . , t

end for

light star. (The distance between the stars increases from left to right.) Shown are the
obtained kernel weightings for the five kernels and the test error which quickly drops to
zero as the problem becomes separable. Note that the RBF kernel with largest width was
not appropriate and thus never chosen. Also with increasing distance between the stars
kernels with greater widths are used. This illustrates that MKL one can indeed recover
such tendencies.

5.2 Regression

We applied the newly derived MKL support vector regression formulation, to the task of
learning a sine function using three RBF-kernels with different widths. We then increased
the frequency of the sine wave. As can be seen in Figure 2, MKL-SV regression abruptly
switches to the width of the RBF-kernel fitting the regression problem best. In another
regression experiment, we combined a linear function with two sine waves, one of lower
frequency and one of high frequency, i.e.f(x) = c · x + sin(ax) + sin(bx). Using ten
RBF-kernels of different width (see Figure 3) we trained a MKL-SVR and display the
learned weights (a column in the figure). The largest selected width (100) models the linear
component (since RBF with large widths are effectively linear) and the medium width (1)
corresponds to the lower frequency sine. We varied the frequency of the high frequency
sine wave from low to high (left to right in the figure). One observes that MKL determines

Figure 1: A 2-class toy problem where the dark grey star-like shape is to be distinguished
from the light grey star inside of the dark grey star. For details see text.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
width 0.005
width 0.05
width 0.5
width 1
width 10

frequency

ker
nel

 we
igh

t

Figure 2: MKL-Support Vector Regression for the task of learning a sine wave (please see
text for details).

an appropriate combination of kernels of low and high widths, while decreasing the RBF-
kernel width with increased frequency. This shows that MKL can be more powerful than
cross-validation: To achieve a similar result with cross-validation one has to use 3 nested
loops to tune 3 RBF-kernel sigmas, e.g. train10·9·8/6 = 120 SVMs, which in preliminary
experiments was much slower then using MKL (800 vs. 56 seconds).

frequency

R
B

F
ke

rn
el

 w
id

th

2 4 6 8 10 12 14 16 18 20

0.001

0.005

0.01

0.05

0.1

1

10

50

100

1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3: MKL support vector regression on a linear combination of three functions:
f(x) = c · x + sin(ax) + sin(bx). MKL recovers that the original function is a com-
bination of functions of low and high complexity. For more details see text.

5.3 Applications in the Real World

MKL has been successfully used on real-world datasets in the field of computational biol-
ogy [7, 16]. It was shown to improve classification performance on the task of ribosomal
and membrane protein prediction, where a weighting over different kernels each corre-
sponding to a different feature set was learned. Random channels obtained low kernel
weights. Moreover, on a splice site recognition task we used MKL as a tool for interpreting
the SVM classifier [16], as is displayed in Figure 4. Using specifically optimized string
kernels, we were able to solve the classification MKL SILP forN = 1.000.000 examples
andK = 20 kernels, as well as forN = 10.000 examples andK = 550 kernels.

−50 −40 −30 −20 −10 Exon

Start

+10 +20 +30 +40 +50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 4: The figure shows an importance weighting for each position in a DNA sequence
(around a so called splice site). MKL was used to learn these weights, each corresponding
to a sub-kernel which uses information at that position to discriminate true splice sites from
fake ones. Different peaks correspond to different biologically known signals (see [16] for
details). We used 65.000 examples for training with 54 sub-kernels.

6 Conclusion
We have proposed a simple, yet efficient algorithm to solve the multiple kernel learning
problem for a large class of loss functions. The proposed method is able to exploit the
existing single kernel algorithms, whereby extending their applicability. In experiments we
have illustrated that the MKL for classification and regression can be useful for automatic
model selection and for obtaining comprehensible information about the learning problem
at hand. It is future work to evaluate MKL algorithms for unsupervised learning such as
Kernel PCA and one-class classification.

Acknowledgments

The authors gratefully acknowledge partial support from the PASCAL Network of Ex-
cellence (EU #506778), DFG grants JA 379 / 13-2 and MU 987/2-1. We thank Guido
Dornhege, Olivier Chapelle, Olaf Weiss, Joaquin Quiñoñero Candela, Sebastian Mika and
K.-R. Müller for great discussions.

References
[1] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic

duality, and the SMO algorithm. InTwenty-first international conference on Machine learning.
ACM Press, 2004.

[2] Kristin P. Bennett, Michinari Momma, and Mark J. Embrechts. Mark: a boosting algorithm for
heterogeneous kernel models.KDD, pages 24–31, 2002.

[3] Jinbo Bi, Tong Zhang, and Kristin P. Bennett. Column-generation boosting methods for mixture
of kernels.KDD, pages 521–526, 2004.

[4] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines.Machine Learning, 46(1-3):131–159, 2002.

[5] I. Grandvalet and S. Canu. Adaptive scaling for feature selection in SVMs. InIn Advances in
Neural Information Processing Systems, 2002.

[6] R. Hettich and K.O. Kortanek. Semi-infinite programming: Theory, methods and applications.
SIAM Review, 3:380–429, September 1993.

[7] G.R.G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan, and W.S. Noble. A statistical framework
for genomic data fusion.Bioinformatics, 2004.

[8] R. Meir and G. R̈atsch. An introduction to boosting and leveraging. In S. Mendelson and
A. Smola, editors,Proc. of the first Machine Learning Summer School in Canberra, LNCS,
pages 119–184. Springer, 2003. in press.

[9] C.S. Ong, A.J. Smola, and R.C. Williamson. Hyperkernels. InIn Advances in Neural Information
Processing Systems, volume 15, pages 495–502, 2003.

[10] J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Scḧolkopf, C.J.C. Burges, and A.J. Smola, editors,Advances in Kernel Methods — Support
Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

[11] G. Rätsch. Robust Boosting via Convex Optimization. PhD thesis, University of Potsdam,
Computer Science Dept., August-Bebel-Str. 89, 14482 Potsdam, Germany, 2001.

[12] G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and finite hy-
pothesis spaces.Machine Learning, 48(1-3):193–221, 2002. Special Issue on New Methods for
Model Selection and Model Combination. Also NeuroCOLT2 Technical Report NC-TR-2000-
085.

[13] G. Rätsch, S. Sonnenburg, and C. Schäfer. Learning interpretable svms for biological sequence
classification.BMC Bioinformatics, Special Issue from NIPS workshop on New Problems and
Methods in Computational Biology Whistler, Canada, 18 December 2004, 7(Suppl. 1:S9), Febru-
ary 2006.

[14] G. Rätsch and M.K. Warmuth. Marginal boosting. NeuroCOLT2 Technical Report 97, Royal
Holloway College, London, July 2001.

[15] B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.
[16] S. Sonnenburg, G. R̈atsch, and C. Schäfer. Learning interpretable SVMs for biological se-

quence classification. InRECOMB 2005, LNBI 3500, pages 389–407. Springer-Verlag Berlin
Heidelberg, 2005.

[17] S. Sonnenburg, G. R̈atsch, S. Scḧafer, and B. Scḧolkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 2006. accepted.

