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Juan Jośe Murillo-Fuentes, Sebastian Caro
Dept. Signal Theory and Communications

University of Seville
{murillo,scaro}@us.es

Fernando Ṕerez-Cruz
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Abstract

In this paper we propose a new receiver for digital communications. We
focus on the application of Gaussian Processes (GPs) to the multiuser
detection (MUD) in code division multiple access (CDMA) systems to
solve the near-far problem. Hence, we aim to reduce the interference
from other users sharing the same frequency band. While usual ap-
proaches minimize the mean square error (MMSE) to linearly retrieve
the user of interest, we exploit the same criteria but in the design of a
nonlinear MUD. Since the optimal solution is known to be nonlinear, the
performance of this novel method clearly improves that of the MMSE de-
tectors. Furthermore, the GP based MUD achieves excellent interference
suppression even for short training sequences. We also include some ex-
periments to illustrate that other nonlinear detectors such as those based
on Support Vector Machines (SVMs) exhibit a worse performance.

1 Introduction

One of the major issues in present wireless communications is how users share the re-
sources. And particularly, how they access to a common frequency band. Code division
multiple access (CDMA) is one of the techniques exploited in third generation communica-
tions systems and is to be employed in the next generation. In CDMA each user uses direct
sequence spread spectrum (DS-SS) to modulate its bits with an assigned code, spreading
them over the entire frequency band. While typical receivers deal only with interferences
and noise intrinsic to the channel (i.e. Inter-Symbolic Interference, intermodulation prod-
ucts, spurious frequencies, and thermal noise), in CDMA we also have interference pro-
duced by other users accessing the channel at the same time. Interference limitation due to
the simultaneous access of multiple users systems has been the stimulus to the development
of a powerful family of Signal Processing techniques, namely Multiuser Detection (MUD).
These techniques have been extensively applied to CDMA systems. Thus, most of last gen-
eration digital communication systems such as Global Positioning System (GPS), wireless
802.11b, Universal Mobile Telecommunication System (UMTS), etc, may take advantage
of any improvement on this topic.

In CDMA, we face the retrieval of a given user, the user of interest (UOI), with the knowl-
edge of its associated code or even the whole set of users codes. Hence, we face the
suppression of interference due to others users. If all users transmit with the same power,
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Figure 1: Synchronous CDMA system

but the UOI is far from the receiver, most users reach the receiver with a larger amplitude,
making it more difficult to detect the bits of the UOI. This is well-known as the near-far
problem. Simple detectors can be designed by minimizing the mean square error (MMSE)
to linearly retrieve the user of interest [5]. However, these detectors need large sequences
of training data. Besides, the optimal solution is known to be nonlinear.

There has been several attempts to solve the problem using nonlinear techniques. There are
solutions based on Neural Networks such as multilayer perceptron or radial basis functions
[1, 3], but training times are long and unpredictable. Recently, support vector machines
(SVM) have been also applied to CDMA MUD [4]. This solution need very long training
sequences (a few hundreds bits) and they are only tested in toy examples with very few
users and short spreading sequences (the code for each user). In this paper, we will present
a multiuser detector based on Gaussian Processes [7]. The MUD detector is inspired by
the linear MMSE criteria, which can be interpreted as a Bayesian linear regressor. In this
sense, we can extend the linear MMSE criteria to nonlinear decision functions using the
same ideas developed in [6] to present Gaussian Processes for regression.

The rest of the paper is organised as follows. In Section 2, we present the multiuser de-
tection problem in CDMA communication systems and the widely used minimum mean
square error receiver. We propose a nonlinear receiver based on Gaussian Processes in Sec-
tion 3. Section 4 is devoted to show, through computer experiments, the advantages of the
GP-MUD receiver with short training sequences. We compare it to the linear MMSE and
the nonlinear SVM MUD. We conclude the paper in Section 5 presenting some remarks
and future work.

2 CDMA Communication System Model and MUD

Consider a synchronous CDMA digital communication system [5] as depicted in Figure
1. Its main goal is to share the channel between different users, discriminating between
them by different assigned codes. Each transmitted bit is upsampled and multiplied by
the users’ spreading codes and then the chips for each bit are transmitted into the channel
(each element of the spreading code is either +1 or−1 and they are known as chips). The
channel is assumed to be linear and noisy, therefore the chips from different users are added
together, plus Gaussian noise. Hence, the MUD has to recover from these chips the bits
corresponding to each user. At each time stept, the signal in the receiver can be represented



in matrix notation as:
xt = HAbt + nt (1)

wherebt is a column vector that contains the bits (+1or −1) for theK users at timek.
TheK × K diagonal matrixA contains the amplitude of each user, which represents the
attenuation that each user’s transmission suffers through the channel (this attenuation de-
pends on the distance between the user and the receiver).H is anL × K matrix which
contains in each column theL-dimensional spreading code for each of theK users. The
spreading codes are designed to present a low cross-correlation between them and between
any shifted version of the codes, to guarantee that the bits from each user can be readily
recovered. The codes are known as spreading sequences, because they augment the occu-
pied bandwidth of the transmitted signal byL. Finally, xt represents theL received chips
to which Gaussian noise has been added, which is denoted bynt.

At reception, we aim to estimate the original transmitted symbols of any useri, bt(i),
hereafter the user of interest. Linear MUDs estimate these bits as

b̂t(i) = sgn{w⊤

i xt} (2)

The matched filter (MF)wi = hi, a simple correlation betweenxt and theith spread-
ing code, is the optimal receiver if there were no additional users in the system, i.e. the
received signal is only corrupted by Gaussian noise. The near-far problem arises when re-
maining users, apart from the UOI, are received with significantly higher amplitude. While
the optimal solution is known to be nonlinear [5], some linear receivers such as the mini-
mum mean square error (MMSE) present good performances and are used in practice. The
MMSE receiver for theith user solves:

w
∗

i = arg min
wi

E
[

(bt(i) − w
⊤

i xt)
2
]

= arg min
wi

E
[

(bt(i) − w
⊤

i (HAbt + νk))2
]

(3)

wherewi represents the decision function of the linear classifier. We can derive the MMSE
receiver by taking derivatives with respect towi and equating to zero, obtaining:

w
MMSEde

i = R−1
xx hi (4)

whereRxx = E[xtx
⊤

t ] is the correlation between the received vectors andhi represents the
spreading sequence of the UOI. This receiver is known as the decentralized MMSE receiver
as it can be implemented without knowing the spreading sequences of the remaining users.
Its main limitation is its performance, which is very low even for high signal to noise ratio,
and it needs many examples (thousands) before it can recover the received symbols.

If the spreading codes of all the users are available, as in the base station, this information
can be used to improve the performance of the MMSE detector. We can definezk =
H⊤xt, which is a vector of sufficient statistics for this problem [5]. The vectorzk is
the matched-filter output for each user and it reduces the dimensionality of our problem
from the number of chipsL to the number of usersK, which is significantly lower in most
applications. In this case the receiver is known as the centralized detector and it is defined
as:

w
MMSEcent

i = HR−1
zz H⊤hi (5)

whereRzz = E[ztz
⊤

t ] is the correlation matrix of the received chips after the MFs.

These MUDs have good convergence properties and do not need a training sequence to
decode the received bits, but they need large training sequences before their probability of
error is low. Therefore the initially received bits will present a very high probability of
error that will make impossible to send any information on them. Some improvements can
be achieved by using higher order statistics [2], but still the training sequences are not short
enough for most applications.



3 Gaussian Processes for Multiuser Detection

The MMSE detector minimizes the functional in (3), which gives the best linear classi-
fier. As we know, the optimal classifier is nonlinear [5], and the MMSE criteria can be
readily extended to provide nonlinear models by mapping the received chips to a higher
dimensional space. In this case we will need to solve:

w
∗

i = arg min
wi

{

N
∑

k=1

(

bt(i) − w
⊤

i φ(xt)
)2

+ λ‖wi‖
2

}

(6)

in which we have changed the expectation by the empirical mean over a training set and we
have incorporated a regularizer to avoid overfitting.φ(·) represents the nonlinear mapping
of the received chips. Thewi that minimizes (6) can be interpreted as the mode of the
parameters in a Bayesian linear regressor, as noted in [6], and since the likelihood and the
prior are both Gaussians, so it will be the posterior. For any received symbolx∗, we know
that it will be distributed as a Gaussian with mean:

µ(x∗) =
1

λ
φ⊤(x∗)A

−1
Φ

⊤
b (7)

and variance
σ2(x∗) = φ⊤(x∗)A

−1φ(x∗) (8)

whereΦ = [φ(x1),φ(x2), . . . ,φ(xN )]⊤, b = [b1(i), b2(i), . . . , bN (i)]⊤ and A =

Φ
⊤
Φ + 1

λ
I.

In the case the nonlinear mapping is unknown, we can still obtain the mean and variance
for each received sample using the kernel of the transformation, being the mean:

µ(x∗) = k
⊤
P

−1
b (9)

and variance
σ2(x∗) = k(x∗,x∗) + k

⊤
P

−1
k (10)

where k(·, ·) = φ⊤(·)φ(·) is the kernel of the nonlinear transformation,k =
[k(x∗,x1), k(x∗,x2), . . . , k(x∗,xN )], and

P = ΦΦ
⊤ + λI = K + λI (11)

where(K)kℓ = k(xt,xℓ). The kernel that we will use in our experiments are:

k(xt,xℓ) = eθ[1] exp(−eθ[4]‖xt − xℓ‖
2) + eθ[3]x⊤

t xℓ + eθ[2]δr,ℓ (12)

The covariance function in (12) is a good kernel for solving the GP-MUD, because it con-
tains a linear and a nonlinear part. The optimal decision surface for MUD is nonlinear,
unless the spreading codes are orthogonal to each other, and its deviation from the linear
solution depends on how strong the correlations between codes are. In most cases, a linear
detector is very close to the optimal decision surface, as spreading codes are almost orthog-
onal, and only a minor correction is needed to achieve the optimal decision boundary. In
this sense the proposed GP covariance function is ideal for the problem. The linear part can
mimic the best linear decision boundary and the nonlinear part modifies it, where the linear
explanation is not optimal. Also using a radial basis kernel for the nonlinear part is a good
choice to achieve nonlinear decisions. Because, the received chips form a constellation of
2K clouds of points with Gaussian spread around its centres.

Picturing the receiver as a Gaussian Process for regression, instead of a Regularised Least
Square functional, allows us to either obtain the hyperparameters by maximizing the likeli-
hood or marginalised them out using Monte Carlo techniques, as explained in [6]. For the
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Figure 2: Bit Error Rate versus Signal to Noise ratio for the MF(▽), MMSE-
Centralized (�), MMSE-Decentralized (◦), SVM-centralized (⊲), GP-Centralized (⋄) and
GP-Decentralized (∗) withk = 8 users andn = 30 training samples. The powers of the
interfering users is distributed homogeneously between0 and30 dB above that of the UOI.

problem at hand speed is a must and we will be using the maximum likelihood hyperpara-
meters.

We have just shown above how we can make predictions in the nonlinear case (9) using
the received symbols from the channel. In an analogy with the MMSE receiver, this will
correspond to the decentralized GP-MUD detector as we will not need to know the other
users’ codes to detect the bits sent to us. It is also relevant to notice that we do not need our
spreading code for detection, as the decentralized MMSE detector did. We can also obtain
a centralized GP-MUD detector using as input vectorszt = H⊤xt.

4 Experiments

In this section we include the typical evaluation of the performance in a digital communi-
cations system, i.e., Bit Error Rate (BER). The test environment is a synchronous CDMA
system in which the users are spread using Gold sequences with spreading factorL = 31
andK = 8 users, which are typical values in CDMA based mobile communication sys-
tems. We consider the same amplitude matrix in all experiments. These amplitudes are
random values to achieve an interferer to signal ratio of 30 dB. Hence, the interferers are
30 dB over the UOI. We study the worse scenario and hence we will detect the user which
arrives to the receiver with the lowest amplitude.

We compare the performance of the GP centralized and decentralized MUDs to the per-
formance of the MMSE detectors, the Matched Filter detector and the (centralized) SVM-
MUD in [4]. The SVM-MUD detector uses a Gaussian kernel and its width is adapted
incorporating knowledge of the noise variance in the channel. We found that this setting
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Figure 3: Bit Error Rate versus Signal to Noise ratio for the MF(▽), MMSE-
Centralized (�), MMSE-Decentralized (◦), SVM-centralized (⊲), GP-Centralized (⋄) and
GP-Decentralized (∗) withk = 8 users andn = 80 training samples. The powers of the
interfering users is distributed homogeneously between0 and30 dB above that of the UOI.

usually does not perform well for this experimental specification and we have set them us-
ing validation. We believe this might be due to either the reduced number of users in their
experiments (2 or 3) or because they used the same amplitude for all the users, so they did
not encounter the near-far problem.

We have included three experiments in which we have defined the number of training ex-
periments equal to 30, 80 and 160. For each training set we have computed the BER for
106 bits. The reported results are mean curves for 50 different trials.

The results in Figure 2 show that the detectors based on GPs are able to reduce the prob-
ability of error as the signal to noise ratio in the channel decreases with only 30 samples
in the training sequence. The GP centralized MUD is only 1.5-2dB worse than the best
achievable probability of error, which is obtained in absence of interference (indicated by
the dashed line). The GP decentralized MUD reduces the probability of error as the signal
to noise increases, but it remains between 3-4dB from the optimal performance. The other
detectors are not able to decrease the BER even for a very high signal to noise ratio in the
channel. These figures show that the GP based MUD can outperform the other MUD when
very short training sequences are available.

Figure 3 highlights that the SVM-MUD (centralized) and the MSSE centralized detectors
are able to reduce the BER as the SNR increases, but they are still far from the performance
of the GP-MUD. The centralized GP-MUD basically provides optimal performance as it is
less than 0.3db from the possible achieved BER when there is no interference in the chan-
nel. The decentralized GP-MUD outperforms the other two centralized detectors (SVM
and MMSE) since it is able to provide lower BER without needing to know the code of the
remaining users.
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Figure 4: Bit Error Rate versus Signal to Noise ratio for the MF(▽), MMSE-
Centralized (�), MMSE-Decentralized (◦), SVM-centralized (⊲), GP-Centralized (⋄) and
GP-Decentralized (∗) withk = 8 users andn = 160 training samples. The powers of the
interfering users is distributed homogeneously between0 and30 dB above that of the UOI.

Finally, in Figure 4 we include the results for 160 training samples. In this case, the central-
ized GP-MUD lies above the optimal BER curve and the decentralized GP-MUD performs
as the SVM-MUD detector. The centralized MMSE detector still presents very high prob-
ability of error for high signal to noise ratios and we need over 500 samples to obtain a
performance similar to the centralized GP with 80 samples. For 160 samples the MMSE
decentralized is already able to slightly reduce the bit error rate for very high signal to noise
ratios. But to achieve the performance showed by the decentralized GP-MUD it needs sev-
eral thousands samples.

5 Conclusions and Further Work

We propose a novel approach based on Gaussian Processes for regression to solve the near-
far problem in CDMA receivers. Since the optimal solution is known to be nonlinear the
Gaussian Processes are able to obtain this nonlinear decision surface with very few training
examples. This is the main advantage of this method as it only requires a few tens training
examples instead of the few hundreds needed by other nonlinear techniques as SVMs.
This will allow its application in real communication systems, as training sequence of 26
samples are typically used in the GSM standard for mobile Telecommunications.

The most relevant result of this paper is the performance shown by the decentralized GP-
MUD receiver, since it can be directly used over any CDMA system. The decentralized
GP-MUD receiver does not need to know the codes from the other users and does not
require the users to be aligned, as the other methods do. While the other receiver will
degrade its performance if the users are not aligned, the decentralized GP-MUD receiver
will not, providing a more robust solution to the near far problem.



We have presented some preliminary work, which shows that GPsfor regression are suit-
able for the near-far problem in MUD. We have left for further work a more extensive set
of experiments changing other parameters of the system such as: the number of users, the
length of the spreading code, and the interferences with other users. But still, we believe
the reported results are significant since we obtain low bit error rates for training sequences
as short as 30 bits.
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