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Abstract

Humans make optimal perceptual decisions in noisy and ambiguous
conditions. Computations underlying such optimal behavior have been
shown to rely on probabilistic inference according to generative models
whose structure is usually taken to be known a priori. We argue that
Bayesian model selection is ideal for inferring similar and even more
complex model structures from experience. We find in experiments that
humans learn subtle statistical properties of visual scenes in a completely
unsupervised manner. We show that these findings are well captured by
Bayesian model learning within a class of models that seek to explain
observed variables by independent hidden causes.

1 Introduction

There is a growing number of studies supporting the classical view of perception as prob-
abilistic inference [1, 2]. These studies demonstrated that human observers parse sensory
scenes by performing optimal estimation of the parameters of the objects involved [3, 4, 5].
Even single neurons in primary sensory cortices have receptive field properties that seem to
support such a computation [6]. A core element of this Bayesian probabilistic framework is
an internal model of the world, the generative model, that serves as a basis for inference. In
principle, inference can be performed on several levels: the generative model can be used
for inferring the values of hidden variables from observed information, but also the model
itself may be inferred from previous experience [7].

Most previous studies testing the Bayesian framework in human psychophysical experi-
ments used highly restricted generative models of perception, usually consisting of a few



observed and latent variables, of which only a limited number of parameters needed to
be adjusted by experience. More importantly, the generative models considered in these
studies were tailor-made to the specific pscychophysical task presented in the experiment.
Thus, it remains to be shown whether more flexible, ‘open-ended’ generative models are
used and learned by humans during perception.

Here, we use an unsupervised visual learning task to show that a general class of gener-
ative models, sigmoid belief networks (SBNs), perform similarly to humans (also repro-
ducing paradoxical aspects of human behavior), when not only the parameters of these
models but also their structure is subject to learning. Crucially, the applied Bayesian model
learning embodies the Automatic Occam’s Razor (AOR) effect that selects the models that
are ‘as simple as possible, but no simpler’. This process leads to the extraction of inde-
pendent causes that efficiently and sufficiently account for sensory experience, without a
pre-specification of the number or complexity of potential causes.

In section 2, we describe the experimental protocol we used in detail. Next, the mathemat-
ical framework is presented that is used to study model learning in SBNs (Section 3). In
Section 4, experimental results on human performance are compared to the prediction of
our Bayes-optimal model learning in the SBN framework. All the presented human experi-
mental results were reproduced and had identical roots in our simulations: the modal model
developed latent variables corresponding to the unknown underlying causes that generated
the training scenes.

In Section 5, we discuss the implications of our findings. Although structure and parame-
ter learning are not fundamentally different computations in Bayesian inference, we argue
that the natural integration of these two kinds of learning lead to a behavior that accounts
for human data which cannot be reproduced in some simpler alternative learning models
with parameter but without structure learning. Given the recent surge of biologically plau-

sible neural network models performing inference in belief networks we also point out

challenges that our findings present for future models of probabilistic neural computations.

2 Experimental paradigm

Human adult subjects were trained and then tested in an unsupervised learning paradigm
with a set of complex visual scenes consisting of 6 of 12 abstract unfamiliar Steqles
arranged on a 3x3 (Exp 1) or 5x5 (Exps 2-4) white grid (Fig. 1, left panel). Unbeknownst to
subjects, various subsets of the shapes were arranged into fixed spatial comb{oations

bos) (doublets, triplets, quadruplets, depending on the experiment). Whenever a combo
appeared on a training scene, its constituent shapes were presented in an invariant spatial
arrangement, and in no scenes elements of a combo could appear without all the other ele-
ments of the same combo also appearing. Subjects were presented with 100-200 training
scenes, each scene was presented for 2 seconds with a 1-second pause between scenes. No
specific instructions were given to subjects prior to training, they were only asked to pay
attention to the continuous sequence of scenes.

The test phase consisted of 2AFC trials, in which two arrangements of shapes were shown
sequentially in the same grid that was used in the training, and subjects were asked which
of the two scenes was more familiar based on the training. One of the presented scenes
was either a combo that was actually used for constructing the trainiigistombo), or

a part of it(embedded combdg.g., a pair of adjacent shapes from a triplet or quadruplet
combo). The other scene consisted of the same number of shapes as the first scene in
an arrangement that might or might not have occurred during training, but was in fact a
mixture of shapes from different true comi{@sixture combo).

Here four experiments are considered that assess various aspects of human observational
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Figure 1: Experimental design (left pajpahd explanation of graphical model parameters
(right pane).

learning, the full set of experiments are presented elsewhere [8, 9]. Each experiment was
run with 20 néve subjects.

1.

Our first goal was to establish that humans are sensitive to the statistical struc-
ture of visual experience, and use this experience for judging familiarity. In the
baseline experiment 6 doublet combos were defined, three of which were pre-
sented simultaneously in any given training scene, allowing 144 possible scenes
[8]. Because the doublets were not marked in any way, subjects saw only a group
of random shapes arranged on a grid. The occurrence frequency of doublets and
individual elements was equal across the set of scenes, allowing no obvious bias
to remember any element more than others. In the test phase a true and a mixture
doublet were presented sequentially in each 2AFC trial. The mixture combo was
presented in a spatial position that had never appeared before.

In the previous experiment the elements of mixture doublets occurred together
fewer times than elements of real doublets, thus a simple strategy based on track-
ing co-occurrence frequencies of shape-pairs would be sufficient to distinguish
between them. The second, frequency-balanced experiment tested whether hu-
mans are sensitive to higher-order statistics (at least cross-correlations, which are
co-occurence frequencies normalized by respective invidual occurence frequen-
cies).

The structure of Experiment 1 was changed so that while the 6 doublet combo ar-
chitecture remained, their appearance frequency became non-uniform introducing
frequentandrare combos. Frequent doublets were presented twice as often as rare
ones, so that certain mixture doublets consisting of shapes from frequent doublets
appeared just as often as rare doublets. Note, that the frequency of the constituent
shapes of these mixture doublets was higher than that of rare doublets. The train-
ing session consisted of 212 scenes, each scene being presented twice. In the test
phase, the familiarity of both single shapes and doublet combos was tested. In the
doublet trials, rare combos with low appearance frequency but high correlations
between elements were compared to mixed combos with higher element and equal
pair appearance frequency, but lower correlations between elements.

The third experiment tested whether human performance in this paradigm can
be fully accounted for by learning cross-correlations. Here, four triplet combos
were formed and presented with equal occurrence frequencies. 112 scenes were
presented twice to subjects. In the test phase two types of tests were performed. In
the first type, the familiarity of a true triplet and a mixture triplet was compared,
while in the second type doublets consisting of adjacent shapes embedded in a
triplet combo(embedded doublet)ere tested against mixture doublets.

The fourth experiment compared directly how humans treat embedded and in-
dependent (non-embedded) combos of the same spatial dimensions. Here two



quadruplet combos and two doublet combos were defined and presented with
equal frequency. Each training scene consisted of six shapes, one quadruplet and
one doublet. 120 such scenes were constructed. In the test phase three types of
tests were performed. First, true quadruplets were compared to mixture quadru-
plets; next, embedded doublets were compared to mixture doublets, finally true
doublets were compared to mixture doublets.

3 Modeling framework

The goal of Bayesian learning is to ‘reverse-engineer’ the generative model that could have
generated the training data. Because of inherent ambiguity and stochasticity assumed by the
generative model itself, the objective is to establighabability distributionover possible
models. Importantly, because models with parameter spaces of different dimensionality are
compared, the likelihood term (Eq. 3) will prefer the simplest model (in our case, the one
with fewest parameters) that can effectively account for (generate) the training data due to
the AOR effect in Bayesian model comparison [7].

Sigmoid belief networks The class of generative models we consider is that of two-layer
sigmoid belief networks (SBNs, Fig. 1). The same modelling framework has been success-
fully aplied to animal learning in classical conditioning [10, 11]. The SBN architecture
assumes that the state of observed binary variablgsngur case: shapes being present

or absent in a training scene) depends through a sigmoidal activation function on the state
of a set of hidden binary variables (x), which are not directly observable:

-1
P (y; = 1%, Wp,,m) = (1 + exp (— szjﬂ?i - wyj>> 1)

wherew;; describes the (real-valued) influence of hidden variaklen observed vari-
abley;, w,, determines the spontaneous activation biag;pndm indicates the model
structure, Including the number of latent variables and identity of the observeds they can
influence (thew;; weights that are allowed to have non-zero value).

Observed variables are independent conditioned on the latents (i.e. any correlation between
them is assumed to be due to shared causes), and latent variables are marginally indepen-
dent and have Bernoulli distributions parametrisedsiy

P (y1%, Wy, m) = [ P (9515, %, m) , P (X|wynym) = [] (1 4 exp (—15,,)) "
’ l %)

Finally, scenes (§) are assumed to be iid samples from the same generative distribution,
and so the probability of the training data)(@iven a specific model is:

P (D|wy, m HP(“>|wm m) = HZHP( L Xwam) (3)

The ‘true’ generative model that was actually used for generating training data in the ex-
periments (Section 2) is closely related to this model, with the combos corresponding to
latent variables. The main difference is that here we ignore the spatial aspects of the task,
i.e. only the occurrence of a shape matters butviwreit appears on the grid. Although in
general, space is certainly not a negligible factor in vision, human behavior in the present
experiments depended on the fact of shape-appearances sufficiently strongly so that this
simplification did not cause major confounds in our results.

A second difference between the model and the human experiments was that in the exper-
iments, combos were not presented completely randomly, because the number of combos



per scene was fixed (and not binomially distributed as implied by the model, Eq. 2). Nev-
ertheless, our goal was to demonstrate the use of a general-purpose class of generative
models, and although truly independent causes are rare in natural circumstances, always a
fixed number of them being present is even more so. Clearly, humans are able to capture
dependences between latent variables, and these should be modeled as well ([12]). Simi-
larly, for simplicity we also ignored that subsequent scenes are rarely independent (Eq. 3)
in natural vision.

Training Establishing the posterior probability of any given model is straightforward
using Bayes' rule:

P (W, m|D) x P (D|wy,,m) P(wp,,m) (4)

where the first term is the likelihood of the model (Eqg. 3), and the second term is the prior
distribution of models. Prior distributions for the weights welfe(w; ;) = Laplace (12, 2),

P (w,,) = Laplace (0,2), P (w,,) = & (—6). The prior over model structure preferred
simple models and was such that the distributions of the number of latents and of the
number of links conditioned on the number of latents were lathmetric (0.1). The

effect of this preference is ‘washed out’ with increasing training length as the likelihood
term (EqQ. 3) sharpens.

Testing When asked to compare the familiarity of two scene$ éndy?) in the testing
phase, the optimal strategy for subjects would be to compute the posterior probability of
both scenes based on the training data

P (yZ\D) = Z/dwm ZP (yZ,x|Wm,m) P (w,,,m|D) (5)

and always (ie, with probability one) choose the one with the higher probability. However,
as a phenomenological model of all kinds of possible sources of noise (sensory noise,
model noise, etc) we chose a soft threshold function for computing choice probability:

B -1
P (choose A) = <1 + exp (—5 log m>> (6)

and used = 1 (8 = oo corresponds to the optimal strategy).

Note that when computing the probability of a test scene, we seek the probability that
exactly the given scene was generated by the learned model. This means that we require
not only that all the shapes that are present in the test scene are present in the generated
data, but also that all the shapes that are absent from the test scene are absent from the
generated data. A different scheme, in which only the presence but not the absence of the
shapes need to be matched (i.e. absent observeds are marginalized out just as latents are in
Eq. 5) could also be pursued, but the results of the embedding experiments (Exp. 3 and 4,
see below) discourage it.

The model posterior in Eq. 4 is analytically intractable, therefore an exchange reversible-
jump Markov chain Monte Carlo sampling method [10, 13, 14] was applied, that ensured
fair sampling from a model space containing subspaces of differring dimensionality, and
integration over this posterior in Eq. 5 was approximated by a sum over samples.

4 Results

Pilot studies were performed with reduced training datasets in order to test the performance
of the model learning framework. First, we trained the model on data consisting of 8 ob-
served variables (‘shapes’). The 8 ‘shapes’ were partitioned into three ‘combos’ of different
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Figure 2: Bayesian learning in sigmoid belief networkeft panel: MAP model of a 30-
trial-long training with 8 observed variables and 3 combos. Latent variables of the MAP
model reflect the relationships defined by the combB$ght panel: Increasing model
complexity with increasing training experience. Average number of latent variables (+SD)
in the model posterior distribution as a function of the length of training data was obtained
by marginalizing Eq. 4 over weights.

sizes (5, 2, 1), two of which were presented simultaneously in each training trial. The AOR
effect in Bayesian model learning should select the model structure that is of just the right
complexity for describing the data. Accordingly, after 30 trials, i@ximum a posteri-

ori (MAP) model had three latents corresponding to the underlying ‘combos’ (Fig. 2, left
panel). Early on in training simpler model structures dominated because of the prior pref-
erence for low latent and link numbers, but due to the simple structure of the training data
the likelihood term won over in as few as 10 trials, and the model posterior converged to
the true generative model (Fig. 2, right panel, gray line). Importantly, presenting more data
with the same statistics did not encourage the fitting of over-complicated model structures.
On the other hand, if data was generated by using more ‘combos’ (4 ‘doublets’), model
learning converged to a model with a correspondingly higher number of latents (Fig. 2,
right panel, black line).

In the baseline experiment (Experiment 1) human subjects were trained with six equal-
sized doublet combos and were shown to recognize true doublets over mixture doublets
(Fig. 3, first column). When the same training data was used to compute the choice proba-
bility in 2AFC tests with model learning, true doublets were reliably preferred over mixture
doublets. Also, the MAP model showed that the discovered latent variables corresponded
to the combos generating the training data (data not shown).

In Experiment 2, we sought to answer the question whether the statistical learning demon-
strated in Experiment 1 was solely relying on co-occurrence frequencies, or was us-
ing something more sophisticated, such as at least cross-correlations between shapes.
Bayesian model learning, as well as humans, could distinguish between rare doublet com-
bos and mixtures from frequent doublets (Fig. 3, second column) despite their balanced
co-occurrence frequencies. Furthermore, although in this comparison rare doublet combos
were preferred, both humans and the model learned about the frequencies of their con-
stituent shapes and preferred constituent single shapes of frequent doublets over those of
rare doublets. Nevertheless, it should be noted that while humans showed greater pref-
erend(L:e for frequent singlets than for rare doublets our simulations predicted an opposite
trend-.

We were interested whether the performance of humans could be fully accounted for by
the learning of cross-correlations, or they demonstrated more sophisticated computations.

1This discrepancy between theory and experiments may be explained by Gestalt effects in human
vision that would strongly prefer the independent processing of constituent shapes due to their clear
spatial separation in the training scenes. The reconciliation of such Gestalt effects with pure statistical
learning is the target of further investigations.
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Figure 3: Comparison of human and model performance in four experiments. Bars show
percent ‘correct’ values (choosing a true or embedded combo over a mixture combo, or a
frequent singlet over a rare singlet) for human experiments (average over sutffEeis),

and ‘correct’ choice probabilities (Eq. 6) for computer simulatioBegls: Single shapes;

dbls: Doublet combogypls: triplet combos;e’d dbls: embedded doublet combogpls:
guadruple combosdbls: independent doublet combos.

In Experiment 3, training data was composed of triplet combos, and beside testing true
triplets against mixture triplets, we also tested embedded doublets (pairs of shapes from
the same triplet) against mixture doublets (pairs of shapes from different triplets). If learn-
ing only depends on cross-correlations, we expect to see similar performance on these
two types of tests. In contrast, human performace was significantly different for triplets
(true triplets were preferred) and doublets (embedded and mixture doublets were not dis-
tinguished) (Fig. 3, third column). This may be seen as Gestalt effects being at work: once
the ‘whole’ triplet is learned, its constituent parts (the embedded doublets) loose their sig-
nificance. Our model reproduced this behavior and provided a straightforward explanation:
latent-to-observed weights (3} in the MAP model were so strong that whenever a latent
was switched on it could almost only produce triplets, therefore doublets were created by
spontaneous independent activation of observeds which thus produced embedded and mix-
ture doublets with equal chance. In other words, doublets were seen as mere noise under
the MAP model.

The fourth experiment tested explicitly whether embedded combos and equal-sized inde-
pendent real combos are distinguished and not only size effects prevented the recognition
of embedded small structures in the previous experiment. Both human experiments and
Bayesian model selection demonstrated that quadruple combos as well as stand-alone dou-
blets were reliably recognized (Fig. 3, fourth column), while embedded doublets were not.

5 Discussion

We demonstrated that humans flexibly yet automatically learn complex generative models
in visual perception. Bayesian model learning has been implicated in several domains of
high level human cognition, from causal reasoning [15] to concept learning [16]. Here we
showed it being at work already at a pre-verbal stage.

We emphasized the importance of learning strectureof the generative model, not only
its parameters, even though it is quite clear that the two cannot be formally distinguished.
Nevertheless we have two good reasons to believe that structure learning is indeed impor-



tantin our case. (1) Sigmoid belief networks identical to ours but without structure learning
have been shown to perform poorly on a task closely related to ours [didjak's bar test

[18]. More complicated models will of course be able to produce identical results, but we
think our model framework has the advantage of being intuitively simple: it seeks to find
the simplest possible explanation for the data assuming that it was generated by indepen-
dent causes. (2) Structure learning allows Occam’s automatic razor to come to play. This is
computationally expensive, but together with the generative model class we use provides a
neat and highly efficient way to discover ‘independent components’ in the data. We expe-
rienced difficulties with other models [17] developed for similar purposes when trying to
reproduce our experimental findings.

Our approach is very much in the tradition that sees the finding of independent causes be-
hind sensory data as one of the major goals of perception [2]. Although neural network
models that can produce such computations exist [6, 19], none of these does model selec-
tion. Very recently, several models have been proposed for doing inference in belief net-
works [20, 21] but parameter learning let alone structure learning proved to be non-trivial
in them. Our results highlight the importance of considering model structure learning in
neural models of Bayesian inference.
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