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Abstract

We present a non-linear, simple, yet effective, feature subset selection
method for regression and use it in analyzing cortical neural activity. Our
algorithm involves deature-weightedersion of the k-nearest-neighbor
algorithm. It is able to capture complex dependency of the target func-
tion on its input and makes use of the leave-one-out error as a natural
regularization. We explain the characteristics of our algorithm on syn-
thetic problems and use it in the context of predicting hand velocity from
spikes recorded in motor cortex of a behaving monkey. By applying fea-
ture selection we are able to improve prediction quality and suggest a
novel way of exploring neural data.

1 Introduction

In many supervised learning tasks the input is represented by a very large number of fea-
tures, many of which are not needed for predicting the labels. Feature selection is the task
of choosing a small subset of features that is sufficient to predict the target labels well. Fea-
ture selection reduces the computational complexity of learning and prediction algorithms
and saves on the cost of measuring non selected features. In many situations, feature se-
lection can also enhance the prediction accuracy by improving the signal to noise ratio.
Another benefit of feature selection is that the identity of the selected features can provide
insights into the nature of the problem at hand. Therefiagure selectiofis an important

step in efficient learning of large multi-featured data sets.

Feature selection (variously knownsasbset selectigmttribute selectioror variable selec-

tion) has been studied extensively both in statistics and by the machine learning community
over the last few decades. In the most common selection paradigm an evaluation function
is used to assign scores to subsets of features and a search algorithm is used to search for
a subset with a high score. The evaluation function can be based on the performance of a
specific predictorfrappermodel, [1]) or on some general (typically cheaper to compute)
relevance measure of the features to the predicfiber(model). In any case, an exhaustive
search over all feature sets is generally intractable due to the exponentially large number of
possible sets. Therefore, search methods are employed which apply a variety of heuristics,
such as hill climbing and genetic algorithms. Other methods simply rank individual fea-
tures, assigning a score to each feature independently. These methods are usually very fast,



but inevitably fail in situations where only a combined sefa#tures is predictive of the
target function. See [2] for a comprehensive overview of feature selection and [3] which
discusses selection methods lioear regression.

A possible choice of evaluation function is the leave-one-out (LOO) mean square error
(MSE) of thek-Nearest-NeighbotkNN) estimator ([4, 5]). This evaluation function has

the advantage that it both gives a good approximation of the expected generalization error
and can be computed quickly. [6] used this criterion on small synthetic problems (up to 12
features). They searched for good subsets usingard selectionbackward elimination

and an algorithm (calledchematajhatracesfeature sets against each other (eliminating
poor sets, keeping the fittest) in order to find a subset with a good score. All these algo-
rithms perform a local search by flipping one or more features at a time. Since the space
is discrete the direction of improvement is found by trial and error, which slows the search
and makes it impractical for large scale real world problems involving many features.

In this paper we develop a novel selection algorithm. We extend the LOO-kNN-MSE
evaluation function to assign scoresvieight vectorover the features, instead of just to
feature subsets. This results in a smooth (“almost everywhere”) function over a continuous
domain, which allows us to compute the gradient analytically and to employ a stochastic
gradient ascent to find a locally optimal weight vector. The resulting weights provide a
ranking of the features, which we can then threshold in order to produce a subset. In this
way we can apply an easy-to-compute, gradient directed search, without relearning of a
regression model at each step but while employing a strong non-linear function estimate
(kNN) that can capture complex dependency of the function on its fedtures

Our motivation for developing this method is to address a major computational neuro-
science question: which features of the neural code are relevant to the observed behavior.
This is an important element of enabling interpretability of neural activity. Feature selec-
tion is a promising tool for this task. Here, we apply our feature selection method to the
task of reconstructing hand movements from neural activity, which is one of the main chal-
lenges in implementing brain computer interfaces [8]. We look at neural population spike
counts, recorded in motor cortex of a monkey while it performed hand movements and lo-
cate the most informative subset of neural features. We show that it is possible to improve
prediction results by wisely selecting a subset of cortical units and their time lags, relative
to the movement. Our algorithm, which considers feature subsets, outperforms methods
that consider features on an individual basis, suggesting that complex dependency on a set
of features exists in the code.

The remainder of the paper is organized as follows: we describe the problem setting in
section 2. Our method is presented in section 3. Next, we demonstrate its ability to cope
with a complicated dependency of the target function on groups of features using synthetic
data (section 4). The results of applying our method to the hand movement reconstruction
problem is presented in section 5.

2 Problem Setting

First, let us introduce some notation. Vectorsif are denoted by boldface small letters
(e.g.x, w). Scalars are denoted by small letters (e.gy). The:’th element of a vectox
is denoted byz;. Let f(x), f : R* — R be a function that we wish to estimate. Given

a setS C R", the empiricmean square errofMSE) of an estimatoy for f is defined as

X N2
MSEs(f) = ‘—é‘ ers (f(x) - f(X))

1The design of this algorithm was inspired by work done by Gilad-Bachrach et al. ([7]) which
used a large margin based evaluation function to derive feature selection algorithms for classification.



KNN Regression k-Nearest-NeighbotkNN) is a simple, intuitive and efficient way to es-
timate the value of an unknown function in a given point using its values in other (training)
points. LetS = {x1,...,x,,} be a set of training points. The kNN estimator is defined

as the mean function value of the nearest neighbgts) = %Zx'ezv(x) f(z") where

N(x) C S is the set ofk nearest points ta in S andk is a parameter([4, 5]). A softer
version takes aveightedaverage, where the weight of each neighbor is proportional to its
proximity. One specific way of doing this is

~ 1 ’
fo =2 D e Cx)re (1)
x'€N (x)
whered (x,x’) = ||x — x’H; isthel; norm,Z = 3- ¢y ¢~4(<x')/8 is a normalization
factor andg is a parameter. The soft KNN version will be used in the remainder of this
paper. This regression method is a special fordooélly weighted regressio(See [5] for
an overview of the literature on this subject.) It has the desirable property that no learning
(other than storage of the training set) is required for the regression. Also note that the
Gaussian Radial Basis Function has the formldianel([9]) and can be replaced with any
operator on two data points that decays as a function of the difference between them (e.g.
kernelinduced distances). As will be seen in the next section, we use the MSE of a modified
kNN regressor to guide the search for a set of featéres {1, ...n} that achieves a low
MSE. However, the MSE and the Gaussian kernel can be replaced by other loss measures
and kernels (respectively) as long as they are differentiable almost everywhere.

3 TheFeature Selection Algorithm

In this section we present our selection algorithm cal&5(Regression, Gradient guided,
feature Selection). It can be seen as a filter method for general regression algorithms or as
a wrapper for estimation by the kNN algorithm.

Our goal is to find subsets of features that induce a small estimation error. As in most super-
vised learning problems, we wish to find subsets that induce a small generalization error,
but since it is not known, we use amaluation functioron the training set. This evaluation
function is defined not only for subsets but for any weight vector over the features. This

is more general because a feature subset can be represented by a binary weight vector that
assigns a value of one to features in the set and zero to the rest of the features.

For a given weights vector over the featuves R", we consider the weighted squared
norm induced byw, defined a3\z||fv = >, z2w?. Given a training sef, we denote by

fw(x) the value assigned to by a weighted kNN estimator, defined in equation 1, using
the weighted squared-norm as the distancel$x, x’) and the nearest neighbors are found
among the points of excludingx. The evaluation function is defined as the negative
(halved) square error of the weighted kNN estimator:
1 . 2
e(w) = =5 3 (F60 = ful0) - @)

xeS

This evaluation function scores weight vectovg)( A change of weights will cause a
change in the distances and, possibly, the identity of each point’'s nearest neighbors, which
will change the function estimates. A weight vector that induces a distance measure in
which neighbors have similar labels would receive a high score. The ni@g1, is re-

placed with al /2 to ease later differentiation. Note that there is no explicit regularization
term ine(w). This is justified by the fact that for each point, the estimate of its function
value does notinclude that point as part of the training set. Thus, equation 2 is a leave-one-
out cross validation error. Clearly, it is impossible to go over all the weight vectors (or even
over all the feature subsets), and therefore some search technique is required.



Algorithm 1 RGYS, k, 3, T)
1. initializew = (1,1,...,1)
2. fort=1...T

(a) pick randomly an instancefrom S
(b) calculate the gradient efw):

Vew) = =3 (£6) = ful)) Ve fu(x)

x€ES
4 " /A A
Vi~ CEExwene @@ ) ua”)
Zx”,x’GN(x) a(xlv .I'”)

wherea(z/, 2"") = e~ (o=l Hle—="15)/8
andu(z’, ") € R™ is a vector withu; = w; [(x; — @)? + (x; — 2)?] .

() w=w+nVe(w) =w (1 + ntvwfw(x)) wherer, is a decay factor.

Our method finds a weight vectev that locally maximizes(w) as defined in (2) and

then uses a threshold in order to obtain a feature subset. The threshold can be set either
by cross validation or by finding a natural cutoff in the weight values. However, we later
show that using the distance measure induced iy the regression stage compensates for
taking too many features. Sineéw) is defined over a continuous domain and is smooth
almost everywhere we can use gradient ascent in order to maximiRe&g(algorithm 1)

is a stochastic gradient ascent ovéw). In each step the gradient is evaluated using one
sample point and is added to the current weight ved&@.Sconsiders the weights of all

the features at the same time and thus it can handle dependency on a group of features.
This is demonstrated in section 4. In this respect, it is superior to selection algorithms that
scores each feature independently. It is also faster than methods that try to find a good
subset directly by trial and error. Note, however, that convergence to global optima is not
guaranteed and standard techniques to avoid local optima can be used.

The parameters of the algorithm dr€number of neighbors); (Gaussian decay factor),

T (number of iterations) andin,}7_, (step size decay scheme). The valugkafan be
tuned by cross validation, however a proper choicg on compensate forfathat is too
large. It makes sense to tufeto a value that places most neighbors in an active zone of
the Gaussian. In our experiments, we 8eb half of the mean distance between points
and theirk neighbors. It usually makes sense to yse¢hat decays over time to ensure
convergence, however, on our data, convergence was also achieveg with

The computational complexity ®®GSis ©(7T'Nm) whereT is the number of iterations,

N is the number of features and is the size of the training s&t. This is correct for a

naive implementation which finds the nearest neighbors and their distances from scratch at
each step by measuring the distances between the current point to all the other points. RGS
is basically an on line method which can be used in batch mode by running it in epochs
on the training set. When it is run for only one epo&h,= m and the complexity is

O (m?N). Matlab code for this algorithm (and those that we compare with) is available at
http://ww. cs. huji.ac.il/labs/|earning/code/fsr/

4 Testing on synthetic data

The use of synthetic data, where we can control the importance of each feature, allows us
to illustrate the properties of our algorithm. We compare our algorithm with other common



Figure 1: (a)-(d): lllustration of the four synthetic tardaehctions. The plots shows the functions
value as function of the first two features. (e),(f): demonstration of the effect of feature selection on
estimating the second function using kNN regression=( 5, 3 = 0.05). (e) using both features
(mse = 0.03), (f) using the relevant feature onlynse = 0.004)

selection methodsnfoGain[10], correlation coefficientcprrcoef) andforward selection

(see [2]) .infoGainandcorrcoefsimply rank features according to the mutual information

or the correlation coefficient (respectively) between each feature and the labels (i.e. the
target function value). Forward selectiolw{Se) is a greedy method in which features

are iteratively added into a growing subset. In each step, the feature showing the greatest
improvement (given the previously selected subset) is added. This is a search method that
can be applied to any evaluation function and we use our criterion (equation 2 on feature
subsets). This well known method has the advantages of considering feature subsets and
that it can be used with non linear predictors. Another algorithm we compare with scores
each feature independently using our evaluation function (2). This helps us in analyzing
RGS as it may help single out the respective contributions to performance of the properties
of the evaluation function and the search method. We refer to this algorits&(Single
feature, kNN regression, feature Selection)

We look at four different target functions ov&°. The training sets includ20 to 100

points that were chosen randomly from thel, 1]°° cube. The target functions are given

in the top row of figure 2 and are illustrated in figure 1(a-d). A random Gaussian noise with
zero mean and a variance bf7 was added to the function value of the training points.
Clearly, only the first feature is relevant for the first two target functions, and only the first
two features are relevant for the last two target functions. Note also that the last function
is a smoothed version of parity function learning and is considered hard for many feature
selection algorithms [2].

First, to illustrate the importance of feature selection on regression quality we use kNN to
estimate the second target function. Figure 1(e-f) shows the regression results for target
(b), using either only the relevant feature or both the relevant and an irrelevant feature.
The addition of one irrelevant feature degrades the MSE ten fold. Next, to demonstrate
the capabilities of the various algorithms, we run them on each of the above problems with
varying training set size. We measure their success by counting the number of times that
the relevant features were assigned the highest rank (repeating the expéfitrines by
re-sampling the training set). Figure 2 presents success rate as function of training set size.
We can see that all the algorithms succeeded on the first function which is monotonic and
depends on one feature aloriafoGain andcorrcoef fail on the second, non-monotonic
function. The three kNN based algorithms succeed because they only depend on local
properties of the target function. We see, however, that RGS needs a larger training set to
achieve a high success rate. The third target function depends on two features but the de-
pendency is simple as each of them alone is highly correlated with the function value. The
fourth, XOR-like function exhibits a complicated dependency that requires consideration
of the two relevant features simultaneoushkSwhich considers features separately sees
the effect of all other features as noise and, therefore, has only marginal success on the third

2Feature and function values were “binarized” by comparing them to the median value.



(@) z? (b) sin(27zy + w/2) (c) sin(2mzy + 7/2) + xo (d) sin(27z;)sin(27z2)

100 100 100 100 corcest
WlinfoGain
80 80 80 80| WSKS
60| 60| 60| 60fOfwdsel
40 40 —

4.|D IHHH| r 0 gl DH DN I

20 20 2
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
# examples # examples # examples # examples

o

success rate

o

Figure 2: Success rate of the different algorithmstagnthetic regression tasks (averaged oy
repetitions) as a function of the number of training examples. Success is measured by the percent of
the repetitions in which the relevant feature(s) received first place(s).

function and fails on the fourth altogeth®&GSandfwdSelapply different search methods.
fwdSelconsiders subsets but can evaluate only one additional feature in each step, giving
it some advantage ov&GSon the third function but causing it to fail on the fourfRGS

takes a step in all features simultaneously. Only such an approach can succeed on the fourth
function.

5 Hand Movements Reconstruction from Neural Activity

To suggest an interpretation of neural coding we aif8Sand compare it with the alter-
natives presented in the previous section the hand movement reconstruction task. The
data sets were collected while a monkey performed a planar center-out reaching task with
one or both hands [11].6 electrodes, inserted daily into novel positions in primary motor
cortex were used to detect and sort spikes in updt@hannels 4 per electrode). Most

of the channels detected isolated neuronal spikes by template matching. Some, however,
had templates that were not tuned, producing spikes during only a fraction of the session.
Others (abouR5%) contained unused templates (resulting in a constant zero producing
channel or, possibly, a few random spikes). The rest of the channels (one per electrode)
produced spikes by threshold passing. We construct a labeled regression data set as fol-
lows. Each example corresponds to one time pointin a trial. It consists of the spike counts
that occurred in thé@0 previous consecutiveé00ms long time bins from all64 channels

(64 x 10 = 640 features) and the label is the X or Y component of the instantaneous hand
velocity. We analyze data collected ovedays. Each data set has an averag&0af)
examples collected during the movement periods of the successful trials.

In order to evaluate the different feature selection methods we separate the data into training
and test sets. Each selection method is used to produce a ranking of the features. We then
apply kNN (based on the training set) using different size groups of top ranking features to
the test set. We use the resulting MSE (or correlation coefficient between true and estimated
movement) as our measure of quality. To test the significance of the results wesapply
fold cross validation and repeat the procgganes on different permutations of the trial
ordering. Figure 3 shows the average (over permutations, folds and velocity components)
MSE as a function of the number of selected features on four of the different data sets
(results on the rest are similar and omitted due to lack of spade)s clear thatRGS
achieves better results than the other methods throughout the range of feature numbers.

To test whether the performance RGSwas consistently better than the other methods
we counted winning percentages (the percent of the times in wi@8achieved lower
MSE than another algorithm) in all folds of all data sets and as a function of the number of

3twdSelwas not applied due to its intractably high run time complexity. Note that its run time is
at leastr times that oRGSwherer is the size of the optimal set and is longer in practice.

“We usek = 50 (approximatelyl% of the data points)3 is set automatically as described in
section 3. These parameters were manually tuned for good kNN results and were not optimized for
any of the feature selection algorithms. The number of epoctR&SBwas set tal (i.e. T' = m).
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Figure 3: MSE results for the different feature selectionlmads on the neural activity data sets. Each

sub figure is a different recording day. MSEs are presented as a function of the number of features
used. Each point is a mean over all 5 cross validation folds, 5 permutations on the data and the two
velocity component targets. Note that some of the data sets are harder than others.

features used. Figure 4 shows the winning percentagB&&versus the other methods.

For a very low number of features, while the error is still hifGSwinning scores are

only slightly better than chance but once there are enough features for good predictions
the winning percentages are higher than 90%. In figure 3 we see that the MSE achieved
when using only approximately)0 features selected HlRGSis better than when using alll

the features. This difference is indeed statistically significant (win scof@%. If the

MSE is replaced by correlation coefficient as the measure of quality, the average results
(not shown due to lack of space) are qualitatively unchanged.

RGSnot only ranks the features but also gives them weights that achieve locally optimal
results when using KNN regression. It therefore makes sense not only to select the features
but to weigh them accordingly. Figure 5 shows the winning percentagB&&using

the weighted features versR& Susing uniformly weighted features. The corresponding
MSEs (with and without weights) on the first data set are also displayed. It is clear that
using the weights improves the results in a manner that becomes increasingly significant as
the number of features grows, especially when the number of features is greater than the
optimal number. Thus, using weighted features can compensate for choosing too many by
diminishing the effect of the surplus features.

To take a closer look at what features are selected, figure 6 shows the 100 highest ranking
features for all algorithms on one data set. Similar selection results were obtained in the
rest of the folds. One would expect to find that well isolated cells (template matching) are
more informative than threshold based spikes. Indeed, all the algorithms select isolated
cells more frequently within the top00 features RGSdoes so irh5% of the time and the

rest in70%-80%). A human selection of channels, based only on looking at raster plots
and selecting channels with stable firing rates was also available to us. This selection was
independent of the template/threshold categorisation. Once again, the algorithms selected
the humanly preferred channels more frequently than the other channels. Another and more
interesting observation that can also be seen in the figure is that edrileoef, SKSand
infoGaintend to select all time lags of a chanfRSs selections are more scattered (more
channels and only a few time bins per channel). SRGSachieves best results, we
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conclude that this selection pattern is useful. AppareR@Sfound these patterns thanks
to its ability to evaluate complex dependency on feature subsets. This suggests that such
dependency of the behavior on the neural activity does exist.

6 Summary

In this paper we present a new method of selecting features for function estimation and use
it to analyze neural activity during a motor control task . We use the leave-one-out mean
squared error of the kNN estimator and minimize it using a gradient ascent on an “almost”
smooth function. This yields a selection method which can handle a complicated depen-
dency of the target function on groups of features yet can be applied to large scale problems.
This is valuable since many common selection methods lack one of these properties. By
comparing the result of our method to other selection methods on the motor control task,
we show that consideration of complex dependency helps to achieve better performance.
These results suggest that this is an important property of the code.

Our future work is aimed at a better understanding of neural activity through the use of
feature selection. One possibility is to perform feature selection on other kinds of neural
data such as local field potentials or retinal activity. Another promising option is to explore
the temporally changing properties of neural activity. Motor control is a dynamic process
in which the input output relation has a temporally varying structR®Scan be used in

on line (rather than batch) mode to identify these structures in the code.
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