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Abstract

The classical Bayes rule computes the posterior model probability
from the prior probability and the data likelihood. We generalize
this rule to the case when the prior is a density matrix (symmetric
positive definite and trace one) and the data likelihood a covariance
matrix. The classical Bayes rule is retained as the special case when
the matrices are diagonal.
In the classical setting, the calculation of the probability of the
data is an expected likelihood, where the expectation is over the
prior distribution. In the generalized setting, this is replaced by an
expected variance calculation where the variance is computed along
the eigenvectors of the prior density matrix and the expectation is
over the eigenvalues of the density matrix (which form a proba-
bility vector). The variances along any direction is determined
by the covariance matrix. Curiously enough this expected vari-
ance calculation is a quantum measurement where the co-variance
matrix specifies the instrument and the prior density matrix the
mixture state of the particle. We motivate both the classical and
the generalized Bayes rule with a minimum relative entropy prin-
ciple, where the Kullbach-Leibler version gives the classical Bayes
rule and Umegaki’s quantum relative entropy the new Bayes rule
for density matrices.

1 Introduction

In [TRW05] various on-line updates were generalized from vector parameters to
matrix parameters. Following [KW97], the updates were derived by minimizing the
loss plus a divergence to the last parameter. In this paper we use the same method
for deriving a Bayes rule for density matrices (symmetric positive definite matrices
of trace one). When the parameters are probability vectors over the set of models,
then the “classical” Bayes rule can be derived using the relative entropy as the
divergence (e.g.[KW99, SWRL03]). Analogously we now use the quantum relative
entropy, introduced by Umegaki, to derive the generalized Bayes rule.
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Figure 1: We update the prior four times
based on the same data likelihood vector
P (y|Mi). The initial posteriors are close
to the prior but eventually the posteriors
focus their weight on argmaxi P (y|Mi).
The classical Bayes rule may be seen as
a soft maximum calculation.

Figure 2: We depict seven iterations of the
generalized Bayes rule with the bold NW-
SE ellipse as the prior density and the bold-
dashed SE-NW ellipse as data covariance ma-
trix. The posterior density matrices (dashed)
gradually move from the prior to the longest
axis of the covariance matrix.

The new rule uses matrix logarithms and exponentials to avoid the fact that sym-
metric positive definite matrices are not closed under the matrix product. The rule
is strikingly similar to the classical Bayes rule and retains the latter as a special
case when the matrices are diagonal. Various cancellations occur when the classical
Bayes rule is applied iteratively and similar cancellations happen with the new rule.
We shall see that the classical Bayes rule may be seen a soft maximum calculation
and the new rule as a soft calculation of the eigenvector with the largest eigenvalue
(See figures 1 and 2).

The mathematics applied in this paper is most commonly used in quantum physics.
For example, the data likelihood becomes a quantum measurement. It is tempting
to call the new rule the “quantum Bayes rule”. However, we have no physical
interpretation of the this rule. The measurement does not collapse our state and
we don’t use the unitary evolution of a state to model the rule. Also, the term
“quantum Bayes rule” has been claimed before in [SBC01] where the classical Bayes
rule is used to update probabilities that happen to arise in the context of quantum
physics. In contrast, in this paper our parameters are density matrices.

Our work is most closely related to a paper by Cerf and Adam [CA99] who also
give a formula for conditional densities that relies on the matrix exponential and
logarithm. However they are interested in the multivariate case (which requires the
use of tensors) and their motivation is to obtain a generalization of a conditional
quantum entropy. We hope to build on the great body of work done with the
classical Bayes rule in the statistics community and therefore believe that this line
of research holds great promise.

2 The Classical Bayes Rule

To establish a common notation we begin by introducing the familiar Bayes rule.
Assume we have n models M1, . . . ,Mn. In the classical setup, model Mi is chosen
with prior probability P (Mi) and then Mi generates a datum y with probability
P (y|Mi). After observing y, the posterior probabilities of model Mi are calculated
via Bayes Rule:

P (Mi|y) =
P (Mi)P (y|Mi)∑
j P (Mj)P (y|Mj)

. (1)



Figure 3: An ellipse S in R2: The
eigenvectors are the directions of the axes
and the eigenvalues their lengths. El-
lipses are weighted combinations of the one-
dimensional degenerate ellipses (dyads) cor-
responding to the axes. (For unit u, the dyad
uu> is a degenerate one-dimensional ellipse
with its single axis in direction u.) The solid
curve of the ellipse is a plot of Su and the
outer dashed figure eight is direction u times
the variance u>Su. At the eigenvectors, this
variance equals the eigenvalues and touches
the ellipse.

Figure 4: When the ellipse S and T
don’t have the same span, then S � T
lies in the intersection of both spans
and is a degenerate ellipse of dimen-
sion one (bold line). This generalizes
the following intersection property of
the matrix product when S and T are
both diagonal (here of dimension four):
diag(S) diag(T ) diag(ST )

0 0 0
a 0 0
0 b 0
a b ab

.

See Figure 1 for a bar plot of the effect of the update on the posterior. By the
Theorem of Total Probability, the expected likelihood in the denominator equals
P (y). In a moment we will replace this expected likelihood by an expected variance.

3 Density Matrices as Priors

We now let our prior D be an arbitrary symmetric positive1 definite matrix of
trace one. Such matrices are called density matrices in quantum physics. An outer
product uuT , where u has unit length is called a dyad. Any mixture

∑
i αi aia

>
i of

dyads aia
>
i is a density matrix as long as the coefficients αi are non-negative and

sum to one. This is true even if the number of dyads is larger or smaller than the
dimension of D. The trace of such a mixture is one because dyads have trace one
and

∑
i αi = 1. Of course any density matrix D can be decomposed based on an

eigensystem. That is, D = DδD> where DD> = I. Now the vector of eigenvalues
(δi) forms a probability vector equal to the dimension of the density.

In quantum physics, the dyads are called pure states and density matrices are mix-
tures over such states. Note that in this paper we want to address the statistics
community and use linear algebra notation instead of Dirac notation. The prob-
ability vector (P (Mi)) can be represented as a diagonal matrix diag((P (Mi))) =∑

i P (Mi) eie
>
i , where ei denotes the ith standard basis vector. This means that

1We use the convention that positive definite matrices have non-negative eigenvalues
and strictly positive definite matrices have positive eigenvalues.



probability vectors are special density matrices where the eigenvectors are fixed to
the standard basis vectors.

4 Co-variance Matrices and Basic Notation

In this paper we replace the (conditional) data likelihoods P (y|Mi) by a data co-
variance matrix D(y|.) (symmetric positive definite matrix). We now discuss such
matrices in more detail.

A covariance matrix S can be depicted as an ellipse {Su : ||u||2 ≤ 1} centered
at the origin, where the eigenvectors form the principal axes and the eigenvalues
are the lengths of the axes (See Figure 3). Assume S is the covariance matrix
of some random cost vector c ∈ Rn, i.e. S = E

(
(c− E(c)(c− E(c))>

)
. Note

that a covariance matrix S is diagonal if the components of the cost vector are
independent. The variance of the cost vector c along a unit vector u has the form

V(c>u) = E(
(
c>u− E(c>u)

)2
) = E(

(
(c> − E(c>)) u

)2
) = u>Su

and the variance along an eigenvector is the corresponding eigenvalue (See Figure
3). Using this interpretation, the matrix S may be seen as a mapping S(.) from
the unit ball to R≥0, i.e. S(u) = u>Su.

A second interpretation of the scalar u>Su is the square length of u w.r.t. the
basis

√
S, that is u>Su = u>

√
S
√

Su = ||
√

Su||22. Thirdly, uT Su is a quantum
measurement of the pure state u with an instrument represented by S. Since the
square length of u w.r.t. any orthogonal basis S is one, any such basis turns the
unit vector into an n-dimensional probability vector ((u>si)2). Now u>Su is the
expected eigenvalue w.r.t. this probability vector: u>Su =

∑
i σi(u>si)2.

The trace tr(A) of a square matrix A is the sum of its diagonal elements Aii. Recall
that tr(AB) = tr(BA) for any matrices A ∈ Rn×m, B ∈ Rm×n. The trace is
unitarily invariant, i.e. for any orthogonal matrix U , tr(UAU>) = tr(U>UA) =
tr(A). Also, tr(uu>A) = tr(u>Au) = u>Au. Therefore the trace of a square
matrix may be seen as the total variance along any set of orthogonal directions:

tr(A) = tr(IA) = tr(
∑

i

uiu
>
i A) =

∑
i

u>i Aui.

In particular, the trace of a square matrix is the sum of its eigenvalues.

The matrix exponential exp(S) of the symmetric matrix S = SσS> is defined
as S exp(σ)S>, where exp(σ) is obtained by exponentiating the diagonal entries
(eigenvalues). The matrix logarithm log(S) is defined similarly but now S must
be strictly positive definite. Clearly, the two functions are inverses of each other. It
is important to remember that exp (S + T ) = exp(S) exp(T ) only holds iff the
two symmetric matrices commute2, i.e. ST = T S. However, the following trace
inequality, known as the Golden-Thompson inequality [Bha97], always holds:

tr(expS expT ) ≥ tr(exp (S + T )). (2)

5 The Generalized Bayes Rule

The following experiment underlies the more general setup: If the prior is D(.) =∑
i δi didi

>, then the dyad (or pure state) didi
> is chosen with probability δi and

a random variable c>di is observed where c has covariance matrix D(y|.).
2This occurs iff the two symmetric matrices have the same eigensystem.



In our generalization we replace the expected data likelihood P (y) =∑
i P (Mi)P (y|Mi) by the following trace:

tr(D(.)D(y|.)) = tr(
∑

i

δi didi
>D(y|.)) =

∑
i

δi di
>D(y|.)di.

Recall that di
>D(y|.)di is the variance of c in direction di: i.e. V(c>di). Therefore

the above trace is the expected variance along the eigenvectors of the density matrix
weighted by the eigenvalues. Curiously enough, this trace computation is a quantum
measurement, where D(y|.) represents the instrument and D(.) the mixture state
of the particle.

In the generalized Bayes rule we cannot simply multiply the prior density matrix
with the covariance matrix that corresponds to the data likelihood. This is because
a product of two symmetric positive definite matrices may be neither symmetric
nor positive definite. Instead we define the operation � on the cone of symmetric
positive definite matrices. We begin by defining this operation for the case when
the matrices S and T are strictly positive definite (and symmetric):

S � T := exp(log S + log T ). (3)

The matrix log of both matrices produces symmetric matrices that sum to a sym-
metric matrix. Finally the matrix exponential of the sum produces again a sym-
metric positive matrix. Note that the matrix log is not defined when the matrix
has a zero eigenvalue. However for arbitrary symmetric positive definite matrices
one can define the operation � as the following limit:

S � T := lim
n→∞

(S1/nT 1/n)n.

This limit is the Lie Product Formula [Bha97] when S and T are both strictly
positive, but it exists even if the matrices don’t have full rank and by Theorem 1.2
of [Sim79],

range(S � T ) = range(S) ∩ range(T ).
Assume that k is the dimension of range(S)∩ range(T ), that B is an orthonormal
basis of range(S) ∩ range(T ) (i.e. B ∈ Rn×k, BT B = Ik, and range(B) =
range(S) ∩ range(T )) and that log+ denotes the modified matrix logarithm that
takes logs of the non-zero eigenvalues but leaves zero eigenvalues unchanged. Then
by the same theorem3,

S � T = B exp(BT (log+ S + log+ T )B) BT . (4)

When both matrices have the same eigensystem, then � becomes the matrix prod-
uct. One can show that � is associative, commutative, has the identity matrix I as
its neutral element and for any strictly positive definite and symmetric matrix S,
S � S−1 = I. Finally, (cS)� T = c(S � T ), for any non-negative scalar.

Using this new product operation, the generalized Bayes rule becomes:

D(.|y) =
D(.)�D(y|.)

tr(D(.)�D(y|.))
. (5)

Normalizing by the trace assures that the trace of the posterior density matrix is
one. As we see in Figure 2, this posterior moves toward the largest axis of the data
covariance matrix and the new rule can be interpreted as a soft calculation of the

3The log+ S term in the formula can be replaced by B̃ log(B̃T SB̃)B̃T , where B̃ is
an orthonormal basis of range(S), and similarly for log+ T .



Figure 5: Assume the prior density matrix is the circle D(.) =
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eigenvector with maximum eigenvalue. When the matrices D(.) and D(y|.) have
the same eigensystem, then � becomes the matrix multiplication. In particular,
when the prior is diag((P (Mi))) and the covariance matrix diag((P (y|Mi)), then
the new rule realizes the classical rule and computes diag((P (Mi|y)). Figure 5 gives
an example that shows how the off-diagonal elements can be exploited by the new
rule.

In the classical Bayes rule, the normalization factor is the expected data likelihood.
In the case of the generalized Bayes rule, the expected variance only upper bounds
the normalization factor via the Golden-Thompsen inequality (2):

tr(D(.)D(y|.)) ≥ tr(D(.)�D(y|.)). (6)

The classical Bayes rule can be applied iteratively to a sequence of data and various
cancellations occur. For the sake of simplicity we only consider two data points
y1, y2:

P (Mi|y2y1) =
P (Mi|y1)P (y2|Mi, y1)

P (y2|y1)
=

P (Mi)P (y1|Mi)P (y2|Mi, y1)
P (y2y1)

.

P (y2|y1)P (y1) = (
∑

i

P (Mi|y1)︸ ︷︷ ︸
use(1)

P (y2|Mi, y1))(
∑

i

P (Mi)P (y1|Mi))

=
∑

i

P (Mi)P (y1|Mi)P (y2|Mi, y1) = P (y2y1). (7)

Analogously,

D(.|y2y1) =
D(.|y1)�D(y2|., y1)

tr(D(.|y1)�D(y2|., y1))
=

D(.)�D(y1|.)�D(y2|., y1)
tr(D(.)�D(y1|.)�D(y2|., y1))

.



Finally, the product of the expected variance for both trials combine in a similar
way, except that in the generalized case the equality becomes an inequality:

tr(D(.|y1)D(y2|., y1)) tr(D(.)D(y1|.))
≥ tr(D(.|y1)︸ ︷︷ ︸

use(5)

)�D(y2|., y1)) tr(D(.)�D(y1|.))

= − log tr(D(.)�D(y1|.)�D(y2|., y1)).

The above inequality is an instantiation of the Golden-Thompsen inequality (2) and
the above equality generalizes the middle equality in (7).

6 The Derivation of the Generalized Bayes Rule

The classical Bayes rule can be derived4 by minimizing a relative entropy to the
prior plus a convex combination of the log losses of the models (See e.g. [KW99,
SWRL03]):

inf
γi≥0,

P
i γi=1

∑
i

γi ln
γi

P (Mi)
−

∑
i

γi log P (y|Mi).

Without the relative entropy, the argument of the infimum is linear in the weights γi

and is minimized when all weight is placed on the maximum likelihood models, i.e.
the set of indices argmaxi P (y|Mi). The negative entropy ameliorates the maximum
calculation and pulls the optimal solution towards the prior. Observe that the
non-negativity constraints can be dropped since the entropy acts as a barrier. By
introducing a Lagrange multiplier for the remaining constraint and differentiating,
we obtain the solution γ∗i = P (Mi)P (y|Mi)P

j P (Mj)P (y|Mj)
, which is the classical Bayes rule (1).

By plugging γ∗i into the argument of the infimum we obtain the optimum value
− lnP (y). Notice that this is minus the logarithm of the normalization of the Bayes
rule (1) and is also the log loss associated the standard Bayesian setup.

To derive the new generalized Bayes rule in an analogous way, we use the quantum
physics generalizations of the relative entropy between two densities G and D (due
to Umegaki): tr(G(log G− log D)). We also need to replace the mixture of negative
log likelihoods by the trace −tr(G log D(y|.)). Now the matrix parameter G is
constrained to be a density matrix and the minimization problem becomes5 :

inf
G dens.matr.

tr(G(log G − log D(.)) − tr(G log D(y|.))

Except for the quantum relative entropy term, the argument of the infimum is again
linear in the variable G and is minimized when G is a single dyad uu>, where u
is the eigenvector belonging to maximum eigenvalue of the matrix log D(y|.). The
linear term pulls G toward a direction of high variance of this matrix, whereas the
quantum relative entropy pulls G toward the prior density matrix. The density
matrix constraint requires the eigenvalues of G to be non-negative and the trace to
G to be one. The entropy works as a barrier for the non-negativity constraints and
thus these constraints can be dropped. Again by introducing a Lagrange multiplier
for the remaining trace constraint and differentiating (following [TRW05]), we arrive
at a formula for the optimum G∗ which coincides with the formula for the D(.|y)
given in the generalized Bayes rule (5), where � is defined6 as in (3). Since the
quantum relative entropy is strictly convex [NC00] in G, the optimum G∗ is unique.

4For the sake of simplicity assume that for all i, P (Mi) and P (y|Mi) are non-negative.
5Assume here that D(.) and D(y|.) are both strictly positive definite.
6With some work, one can also derive the Bayes rule with the fancier � operation (4).



7 Conclusion

Our generalized Bayes rule suggests a definition of conditional density matrices and
we are currently developing a calculus for such matrices. In particular, a common
formalism is needed that includes the multivariate conditional density matrices de-
fined in [CA99] based on tensors.

In this paper we only considered real symmetric matrices. However, our methods
immediately generalize to complex Hermitian matrices, i.e square matrices in Cn×n

for which S = ST
= S∗. Now both the prior density matrix and the data covariance

matrix must be Hermitian instead of symmetric.

The generalized Bayes rule for symmetric positive definite matrices relies on com-
puting eigendecompositions (Ω(n3) time). Hopefully, there exist O(n2) versions of
the update that approximate the generalized Bayes rule sufficiently well.

Extensive research has been done in the so-called “expert framework” (see
e.g.[KW99] for a list of references) where a mixture over experts is maintained
by the on-line algorithm for the purpose of performing as well as the best expert
chosen in hindsight. In preliminary research we showed that one can maintain a
density matrix over the base experts instead and derive updates similar to the gen-
eralized Bayes rule given in this paper. Most importantly, the bounds generalize to
the case when mixtures over experts are replaced by density matrices.
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