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Abstract
Clustering is a fundamental problem in machine learning and has been
approached in many ways. Two general and quite different approaches
include iteratively fitting a mixture model (e.g., using EM) and linking to-
gether pairs of training cases that have high affinity (e.g., using spectral
methods). Pair-wise clustering algorithms need not compute sufficient
statistics and avoid poor solutions by directly placing similar examples
in the same cluster. However, many applications require that each cluster
of data be accurately described by a prototype or model, so affinity-based
clustering – and its benefits – cannot be directly realized. We describe a
technique called “affinity propagation”, which combines the advantages
of both approaches. The method learns a mixture model of the data by
recursively propagating affinity messages. We demonstrate affinity prop-
agation on the problems of clustering image patches for image segmen-
tation and learning mixtures of gene expression models from microar-
ray data. We find that affinity propagation obtains better solutions than
mixtures of Gaussians, theK-medoids algorithm, spectral clustering and
hierarchical clustering, and is both able to find a pre-specified number
of clusters and is able to automatically determine the number of clusters.
Interestingly, affinity propagation can be viewed as belief propagation
in a graphical model that accounts for pairwise training case likelihood
functions and the identification of cluster centers.

1 Introduction
Many machine learning tasks involve clustering data using a mixture model, so that the
data in each cluster is accurately described by a probability model from a pre-defined,
possibly parameterized, set of models [1]. For example, words can be grouped according to
common usage across a reference set of documents, and segments of speech spectrograms
can be grouped according to similar speaker and phonetic unit. As researchers increasingly
confront more challenging and realistic problems, the appropriate class-conditional models
become more sophisticated and much more difficult to optimize.

By marginalizing over hidden variables, we can still view many hierarchical learning prob-
lems as mixture modeling, but the class-conditional models become complicated and non-
linear. While such class-conditional models may more accurately describe the problem at
hand, the optimization of the mixture model often becomes much more difficult. Exact
computation of the data likelihoods may not be feasible and exact computation of the suf-
ficient statistics needed to update parameterized models may not be feasible. Further, the
complexity of the model and the approximations used for the likelihoods and the sufficient
statistics often produce an optimization surface with a large number of poor local minima.

A different approach to clustering ignores the notion of a class-conditional model, and



links together pairs of data points that have high affinity. The affinity or similarity (a real
number in[0, 1]) between two training cases gives a direct indication of whether they should
be in the same cluster. Hierarchical clustering and its Bayesian variants [2] is a popular
affinity-based clustering technique, whereby a binary tree is constructed greedily from the
leaves to the root, by recursively linking together pairs of training cases with high affinity.
Another popular method uses a spectral decomposition of thenormalizedaffinity matrix
[4]. Viewing affinities as transition probabilities in a random walk on data points, modes
of the affinity matrix correspond to clusters of points that are isolated in the walk [3,5].

We describe a new method that, for the first time to our knowledge, combines the advan-
tages of model-based clustering and affinity-based clustering. Unlike previous techniques
that construct and learn probability models oftransitionsbetween data points [6, 7], our
technique learns a probability model of the data itself. Like affinity-based clustering,
our algorithm directly examines pairs of nearby training cases to help ascertain whether
or not they should be in the same cluster. However, like model-based clustering, our
technique uses a probability model that describes the data as a mixture of class-conditional
distributions. Our method, called “affinity propagation”, can be viewed as the sum-product
algorithm or the max-product algorithm in a graphical model describing the mixture model.

2 A greedy algorithm: K-medoids

The first step in obtaining the benefit of pair-wise training case comparisons is to replace
the parameters of the mixture model with pointers into the training data. A similar rep-
resentation is used inK-medians clustering orK-medoids clustering, where the goal is
to identify K training cases, orexemplars, as cluster centers. Exact learning is known to
be NP-hard (c.f. [8]), but a hard-decision algorithm can be used to find approximate solu-
tions. While the algorithm makes greedy hard decisions for the cluster centers, it is a useful
intermediate step in introducing affinity propagation.

For training casesx1, . . . , xN , suppose the likelihood of training casexi given that training
casexk is its cluster center isP (xi|xi in xk) (e.g., a Gaussian likelihood would have the
form e−(xi−xk)2/2σ2

/
√

2πσ2). Given the training data, this likelihood depends only on
i andk, so we denote it byLik. Lii is set to the Bayesian prior probability thatxi is a
cluster center. Initially,K training cases are chosen as exemplars,e.g., at random. Denote
the current set of cluster center indices byK and the index of the current cluster center
for xi by si. K-medoids iterates between assigning training cases to exemplars (E step),
and choosing a training case as the new exemplar for each cluster (M step). Assuming for
simplicity that the mixing proportions are equal and denoting the responsibility likelihood
ratio byrik = P (xi|xi in xk)/P (xi|xi not in xk)1, the updates are

E step

For i = 1, . . . , N :
Fork ∈ K: rik ← Lik/(

∑
j:j 6=k Lij)

si ← argmaxk∈K rik

Greedy M step

Fork ∈ K: Replacek in K with argmaxj:sj=k (
∏

i:si=k Lij)

This algorithm nicely replaces parameter-to-training case comparisons with pair-wise
training case comparisons. However, in the greedy M step, specific training cases are
chosen as exemplars. By not searching over all possible combinations of exemplars, the
algorithm will frequently find poor local minima. We now introduce an algorithm that
does approximately search over all possible combinations of exemplars.

1Note that using the traditional definition of responsibility,rik ← Lik/(ΣjLij), will give the
same decisions as using the likelihood ratio.



3 Affinity propagation
The responsibilities in the greedyK-medoids algorithm can be viewed as messages that are
sent from training cases to potential exemplars, providing soft evidence of the preference
for each training case to be in each exemplar. To avoid making hard decisions for the
cluster centers, we introduce messages called “availabilities”. Availabilities are sent from
exemplars to training cases and provide soft evidence of the preference for each exemplar
to be available as a center for each training case.

Responsibilities are computed using likelihoods and availabilities, and availabilities are
computed using responsibilities, recursively. We refer to both responsibilities and avail-
abilities as affinities and we refer to the message-passing scheme as affinity propagation.
Here, we explain the update rules; in the next section, we show that affinity propagation
can be derived as the sum-product algorithm in a graphical model describing the mixture
model. Denote the availability sent from candidate exemplarxk to training casexi by aki.
Initially, these messages are set equal,e.g.,aki = 1 for all i andk. Then, the affinity
propagation update rules are recursively applied:

Responsibility updates

rik ← Lik/(
∑

j:j 6=k aijLij)

Availability updates

akk ←
∏

j:j 6=k(1 + rjk) − 1
aki ← 1/( 1

rkk

∏
j:j 6=k,j 6=i(1 + rjk)−1 + 1−

∏
j:j 6=k,j 6=i(1 + rjk)−1)

The first update rule is quite similar to the update used in EM, except the likelihoods used
to normalize the responsibilities are modulated by the availabilities of the competing ex-
emplars. In this rule, the responsibility of a training casexi as its own cluster center,rii,
is high if no other exemplars are highly available toxi and ifxi has high probability under
the Bayesian prior,Lii.

The second update rule also has an intuitive explanation. The availability of a training
casexk as its own exemplar,akk, is high if at least one other training case places high
responsibility onxk being an exemplar. The availability ofxk as a exemplar forxi, aki

is high if the self-responsibilityrkk is high (1/rkk−1 approaches−1), but is decreased if
other training cases compete in usingxk as an exemplar (the term1/rkk−1 is scaled down
if rjk is large for some other training casexj).

Messages may be propagated in parallel or sequentially. In our implementation, each candi-
date exemplar absorbs and emits affinities in parallel, and the centers are ordered according
to the sum of their likelihoods,i.e.

∑
i Lik. Direct implementation of the above propaga-

tion rules gives anN2-time algorithm, but affinities need only be propagated betweeni and
k if Lik > 0. In practice, likelihoods below some threshold can be set to zero, leading to a
sparse graph on which affinities are propagated.

Affinity propagation accounts for a Bayesian prior pdf on the exemplars and is able to
automatically search over the appropriate number of exemplars. (Note that the number of
exemplars is not pre-specified in the above updates.) In applications where a particular
number of clusters is desired, the update rule for the responsibilities (in particular, the self-
responsibilitiesrkk, which determine the availabilities of the exemplars) can be modified,
as described in the next section. Later, we describe applications whereK is pre-specified
and whereK is automatically selected by affinity propagation.

The affinity propagation update rules can be derived as an instance of the sum-product



Figure 1: Affinity propagation can be viewed as belief propagation in this factor graph.

(“loopy BP”) algorithm in a graphical model. Usingsi to denote the index of the exemplar
for xi, the product of the likelihoods of the training cases and the priors on the exemplars
is

∏N
i=1 Lisi

. (If si = i, xi is an exemplar witha priori pdf Lii.) The set of hidden
variabless1, . . . , sN completely specifies the mixture model, but not all configurations of
these variables are allowed:si = k (xi in clusterxk) impliessk = k (xk is an exemplar)
andsk = k (xk is an exemplar) impliessi = k for somei 6= k (some other training case is
in clusterxk). The global indicator function for the satisfaction of these constraints can be
written

∏N
k=1 fk(s1, . . . , sN ), wherefk is the constraint for candidate clusterxk:

fk(s1, . . . , sN ) =


0 if sk = k andsi 6= k for all i 6= k

0 if sk 6= k andsi = k for somei 6= k

1 otherwise.

Thus, the joint distribution of the mixture model and data factorizes as follows:

P =
N∏

i=1

Lisi

N∏
k=1

fk(s1, . . . , sN ).

The factor graph [10] in Fig. 1 describes this factorization. Each black box corresponds to
a term in the factorization, and it is connected to the variables on which the term depends.

While exact inference in this factor graph is NP-hard, approximate inference algorithms can
be used to infer thes variables. It is straightforward to show that the updates for affinity
propagation correspond to the message updates for the sum-product algorithm or loopy
belief propagation (see [10] for a tutorial). The responsibilities correspond to messages
sent from thes’s to thef ’s, while the availabilities correspond to messages sent from the
f ’s to thes’s. If the goal is to findK exemplars, an additional constraintg(s1, . . . , sN ) =
[K =

∑N
k=1[sk = k]] can be included, where[ ] indicates Iverson’s notation ([true]=1

and [false] = 0). Messages can be propagated through this function in linear time, by
implementing it as a Markov chain that accumulates exemplar counts.

Max-product affinity propagation. Max-product affinity propagation can be derived
as an instance of the max-product algorithm, instead of the sum-product algorithm. The
update equations for the affinities are modified and maximizations are used instead of
summations. An advantage of max-product affinity propagation is that the algorithm is
invariant to multiplicative constants in thelog-likelihoods.

4 Image segmentation
A sensible model-based approach to image segmentation is to imagine that each patch in
the image originates from one of a small number of prototype texture patches. The main
difficulty is that in addition to standard additive or multiplicative pixel-level noise, another
prevailing form of noise is due to transformations of the image features, and in particular
translations.

Pair-wise affinity-based techniques and in particular spectral clustering has been employed
with some success [4, 9], with the main disadvantage being that without an underlying



Figure 2: Segmentation of non-aligned gray-scale characters. Patches clustered by affinity
propagation andK-medoids are colored according to classification (centers shown below
solutions). Affinity propagation achieves a near-best score compared to 1000 runs ofK-
medoids.

model there is no sound basis for selecting good class representatives. Having a model with
class representatives enables efficient synthesis (generation) of patches, and classification
of test patches – requiring onlyK comparisons (to class centers) rather thanN comparisons
(to training cases).

We present results for segmenting two image types. First, as a toy example, we segment
an image containing many noisy examples of the letters ‘N’ ‘I’ ‘P’ and ‘S’ (see Fig. 2).
The original image is gray-scale with resolution216 × 240 and intensities ranging from0
(background color, white) to1 (foreground color, black). Each training casexi is a24×24
image patch andxm

i is themth pixel in the patch. To account for translations, we include a
hidden 2-D translation variableT . The match between patchxi and patchxk is measured
by

∑
m xm

i ·fm(xk, T ), wheref(xk, T ) is the patch obtained by applying a 2-D translation
T plus cropping to patchxk. fm is themth pixel in the translated, cropped patch. This
metric is used in the likelihood function:

Lik ∝
∑
T

p(T )eβ(Σmxm
i ·fm(xk,T ))/x̄i ≈ eβ maxT (Σmxm

i ·fm(xk,T ))/x̄i ,

wherex̄i = 1
242

∑
m xm

i is used to normalize the match by the amount of ink inxi. β
controls how strictlyxi should matchxk to have high likelihood. Max-product affinity
propagation is independent of the choice ofβ, and for sum-product affinity propagation we
quite arbitrarily choseβ = 1. The exemplar priorsLkk were set tomediani,k 6=iLik.

We cut the image in Fig. 2 into a9×10 grid of non-overlapping24×24 patches, computed
the pair-wise likelihoods, and clustered them intoK = 4 classes using the greedy EM
algorithm (randomly chosen initial exemplars) and affinity propagation. (Max-product and
sum-product affinity propagation yielded identical results.) We then took a much larger set
of overlapping patches, classified them into the 4 categories, and then colored each pixel in
the image according to the most frequent class for the pixel. The results are shown in Fig. 2.
While affinity propagation is deterministic, the EM algorithm depends on initialization. So,
we ran the EM algorithm 1000 times and in Fig. 2 we plot the cumulative distribution of
the log P scores obtained by EM. The score for affinity propagation is also shown, and
achieves near-best performance (98th percentile).

We next analyzed the more natural192 × 192 image shown in Fig. 3. Since there is no
natural background color, we use mean-squared pixel differences in HSV color space to
measure similarity between the24× 24 patches:

Lik ∝ e−β minT Σm∈W(xm
i −fm(xk,T ))2 ,

whereW is the set of indices corresponding to a16 × 16 window centered in the patch
and fm(xk, T ) is the same as above. As before, we arbitrarily setβ = 1 andLkk to
mediani,k 6=iLik.



Figure 3: Segmentation results for several methods applied to a natural image. For methods
other than affinity propagation, many parameter settings were tried and the best segmenta-
tion selected. The histograms show the percentile in score achieved by affinity propagation
compared to 1000 runs of greedy EM, for different random training sets.

We cut the image in Fig. 3 into an8 × 8 grid of non-overlapping24 × 24 patches and
clustered them intoK = 6 classes using affinity propagation (both forms), greedy EM
in our model, spectral clustering (using a normalizedL-matrix based on a set of29 × 29
overlapping patches), and mixtures of Gaussians2. For greedy EM, the affinity propagation
algorithms, and mixtures of Gaussians, we then choose all possible24 × 24 overlapping
patches and calculated the likelihoods of them given each of the6 cluster centers, classify-
ing each patch according to its maximum likelihood.

Fig. 3 shows the segmentations for the various methods, where the central pixel of each
patch is colored according to its class. Again, affinity propagation achieves a solution that
is near-best compared to one thousand runs of greedy EM.

5 Learning mixtures of gene models
Currently, an important problem in genomics research is the discovery of genes and gene
variants that are expressed as messenger RNAs (mRNAs) in normal tissues. In a recent
study [11], we used DNA-based techniques to identify 837,251 possible exons (“putative
exons”) in the mouse genome. For each putative exon, we used an Agilent microarray
probe to measure the amount of corresponding mRNA that was present in each of 12 mouse
tissues. Each 12-D vector, called an “expression profile”, can be viewed as a feature vector
indicating the putative exon’s function. By grouping together feature vectors for nearby
probes, we can detect genes and variations of genes. Here, we compare affinity propagation
with hierarchical clustering, which was previously used to find gene structures [12].

Fig. 4a shows a normalized subset of the data and gives three examples of groups of nearby

2For spectral clustering, we triedβ = 0.5, 1 and2, and for each of these tried clustering using 6, 8,
10, 12 and 14 eigenvectors. We then visually picked the best segmentation (β= 1, 10 eigenvectors).
The eigenvector features were clustered using EM in a mixture of Gaussians and out of 10 trials,
the solution with highest likelihood was selected. For mixtures of Gaussians applied directly to the
image patches, we picked the model with highest likelihood in 10 trials.



(a) (b)

Figure 4: (a) A normalized subset of 837,251 tissue expression profiles – mRNA level
versus tissue – for putative exons from the mouse genome (most profiles are much noisier
than these). (b) The true exon detection rate (in known genes) versus the false discovery
rate, for affinity propagation and hierarchical clustering.

feature vectors that are similar enough to provide evidence of gene units. The actual data
is generally much noisier, and includes multiplicative noise (exon probe sensitivity can
vary by two orders of magnitude), correlated additive noise (a probe can cross-hybridize in
a tissue-independent manner to background mRNA sources), and spurious additive noise
(due to a noisy measurement procedure and biological effects such as alternative splicing).
To account for noise, false putative exons, and the distance between exons in the same
gene, we used the following likelihood function:

Lij = λe−λ|i−j|
(
q ·p0(xi) + (1−q)

∫
p(y, z, σ)

e−
1

2σ2 Σ12
m=1(x

m
i −(y·xm

j +z))2

√
2πσ2

12 dydzdσ
)

≈ λe−λ|i−j|
(
q ·p0(xi) + (1−q) max

y,z,σ
p(y, z, σ)

e−
1

2σ2 Σ12
m=1(x

m
i −(y·xm

j +z))2

√
2πσ2

12

)
,

wherexm
i is the expression level for themth tissue in theith probe (in genomic order).

We found that in this application, the maximum is a sufficiently good approximation to
the integral. The distribution over the distance between probes in the same gene|i − j|
is assumed to be geometric with parameterλ. p0(xi) is a background distribution that
accounts for false putative exons andq is the probability of a false putative exon within a
gene. We assumedy, z andσ are independent and uniformly distributed3. The Bayesian
prior probability thatxk is an exemplar is set toθ · p0(xk), whereθ is a control knob used
to vary the sensitivity of the system.

Because of the termλe−λ|i−j| and the additional assumption that genes on the same strand
do not overlap, it is not necessary to propagate affinities between all837, 2512 pairs of
training cases. We assumeLij = 0 for |i − j| > 100, in which case it is not necessary
to propagate affinities betweenxi andxj . The assumption that genes do not overlap im-
plies that ifsi = k, thensj = k for j ∈ {min(i, k), . . . ,max(i, k)}. It turns out that
this constraint causes the dependence structure in the update equations for the affinities to
reduce to a chain, so affinities need only be propagated forward and backward along the
genome. After affinity propagation is used to automatically select the number of mixture

3Based on the experimental procedure and a set of previously-annotated genes (RefSeq), we es-
timatedλ = 0.05, q = 0.7, y ∈ [.025, 40], z ∈ [−µ, µ] (whereµ = maxi,m xm

i ), σ ∈ (0, µ]. We
used a mixture of Gaussians forp0(xi), which was learned from the entire training set.



components and identify the mixture centers and the probes that belong to them (genes),
each probexi is labeled as an exon or a non-exon depending on which of the two terms in
the above likelihood function (q · p0(xi) or the large term to its right) is larger.

Fig. 4b shows the fraction of exons in known genes detected by affinity propagation
versus the false detection rate. The curve is obtained by varying the sensitivity parameter,
θ. The false detection rate was estimated by randomly permuting the order of the
probes in the training set, and applying affinity propagation. Even for quite low false
discovery rates, affinity propagation identifies over one third of the known exons. Using
a variety of metrics, including the above metric, we also used hierarchical clustering
to detect exons. The performance of hierarchical clustering using the metric with
highest sensitivity is also shown. Affinity propagation has significantly higher sensitiv-
ity, e.g., achieving a five-fold increase in true detection rate at a false detection rate of 0.4%.

6 Computational efficiency
The following table compares the MATLAB execution times of our implementations of
the methods we compared on the problems we studied. For methods that first compute
a likelihood or affinity matrix, we give the timing of this computation first. Techniques
denoted by “*” were run many times to obtain the shown results, but the given time is for
a single run.

Affinity Prop K-medoids* SpecClust* MOG EM* HierarchClust
NIPS 12.9s + 2.0 s 12.9s + .2 s - - -
Dog 12.0s + 1.5 s 12.0s + 0.1 s 12.0s + 29 s 3.3s -

Genes 16m + 43 m - - - 16m + 28 m

7 Summary
An advantage of affinity propagation is that the update rules are deterministic, quite simple,
and can be derived as an instance of the sum-product algorithm in a factor graph. Using
challenging applications, we showed that affinity propagation obtains better solutions (in
terms of percentile log-likelihood, visual quality of image segmentation and sensitivity-
to-specificity) than other techniques, includingK-medoids, spectral clustering, Gaussian
mixture modeling and hierarchical clustering.

To our knowledge, affinity propagation is the first algorithm to combine advantages of
pair-wise clustering methods that make use of bottom-up evidence and model-based
methods that seek to fit top-down global models to the data.
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