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Abstract
We propose an algorithm that uses Gaussian process regression to learn
common hidden structure shared between corresponding sets of het-
erogenous observations. The observation spaces are linked via a single,
reduced-dimensionality latent variable space. We present results from
two datasets demonstrating the algorithms’s ability to synthesize novel
data from learned correspondences. We first show that the method can
learn the nonlinear mapping between corresponding views of objects,
filling in missing data as needed to synthesize novel views. We then
show that the method can learn a mapping between human degrees of
freedom and robotic degrees of freedom for a humanoid robot, allowing
robotic imitation of human poses from motion capture data.

1 Introduction
Finding common structure between two or more concepts lies at the heart of analogical rea-
soning. Structural commonalities can often be used to interpolate novel data in one space
given observations in another space. For example, predicting a 3D object’s appearance
given corresponding poses of another, related object relies on learning a parameterization
common to both objects. Another domain where finding common structure is crucial is
imitation learning, also called “learning by watching” [11, 12, 6]. In imitation learning,
one agent, such as a robot, learns to perform a task by observing another agent, for exam-
ple, a human instructor. In this paper, we propose an efficient framework for discovering
parameterizations shared between multiple observation spaces using Gaussian processes.

Gaussian processes (GPs) are powerful models for classification and regression that sub-
sume numerous classes of function approximators, such as single hidden-layer neural net-
works and RBF networks [8, 15, 9]. Recently, Lawrence proposed the Gaussian process
latent variable model (GPLVM) [4] as a new technique for nonlinear dimensionality re-
duction and data visualization [13, 10]. An extension of this model, the scaled GPLVM
(SGPLVM), has been used successfully for dimensionality reduction on human motion
capture data for motion synthesis and visualization [1].

In this paper, we propose a generalization of the GPLVM model that can handle multiple
observation spaces, where each set of observations is parameterized by a different set of
kernel parameters. Observations are linked via a single, reduced-dimensionality latent vari-
able space. Our framework can be viewed as a nonlinear extension to canonical correlation



analysis (CCA), a framework for learning correspondences between sets of observations.
Our goal is to find correspondences on testing data, given a limited set of corresponding
training data from two observation spaces. Such an algorithm can be used in a variety of
applications, such as inferring a novel view of an object given a corresponding view of
a different object and estimating the kinematic parameters for a humanoid robot given a
human pose.

Several properties motivate our use of GPs. First, finding latent representations for corre-
lated, high-dimensional sets of observations requires non-linear mappings, so linear CCA
is not viable. Second, GPs reduce the number of free parameters in the regression model,
such as number of basis units needed, relative to alternative regression models such as
neural networks. Third, the probabilistic nature of GPs facilitates learning from multiple
sources with potentially different variances. Fourth, probabilistic models provide an esti-
mate of uncertainty in classification or interpolating between data; this is especially useful
in applications such as robotic imitation where estimates of uncertainty can be used to de-
cide whether a robot should attempt a particular pose or not. GPs can also generate samples
of novel data, unlike many nonlinear dimensionality reduction methods [10, 13].

Fig. 1(a) shows the graphical model for learning shared structure using Gaussian processes.
A latent spaceX maps to two (or more) observation spacesY, Z using nonlinear kernels,
and “inverse” Gaussian processes map back from observations to latent coordinates. Syn-
thesis employs a map from latent coordinates to observations, while recognition employs
an inverse mapping. We demonstrate our approach on two datasets. The first is an image
dataset containing corresponding views of two different objects. The challenge is to predict
corresponding views of the second object given novel views of the first based on a limited
training set of corresponding object views. The second dataset consists of human poses de-
rived from motion capture data and corresponding kinematic poses from a humanoid robot.
The challenge is to estimate the kinematic parameters for robot pose, given a potentially
novel pose from human motion capture, thereby allowing robotic imitation of human poses.
Our results indicate that the model generalizes well when only limited training correspon-
dences are available, and that the model remains robust when testing data is noisy.

2 Latent Structure Model

The goal of our model is to find a shared latent variable parameterization in a spaceX that
relates corresponding pairs of observations from two (or more) different spacesY, Z. The
observation spaces might be very dissimilar, despite the observations sharing a common
structure or parameterization. For example, a robot’s joint space may have very different
degrees of freedom than a human’s joint space, although they may both be made to assume
similar poses. The latent variable space then characterizes the common pose space.

Let Y,Z be matrices of observations (training data) drawn from spaces of dimensionality
DY , DZ respectively. Each row represents one data point. These observations are drawn so
that the first observationy1 corresponds to the observationz1, observationy2 corresponds
to observationz2, etc. up to the number of observationsN . Let X be a “latent space” of
dimensionalityDX � DY , DZ . We initialize a matrix of latent pointsX by averaging the
top DX principal components ofY,Z. As with the original GPLVM, we optimize over a
limited subset of training points (theactive set) to accelerate training, determined by the
informative vector machine (IVM) [5]. The SGPLVM assumes that a diagonal “scaling
matrix” W scales the variances of each dimensionk of theY matrix (a similar matrixV
scales each dimensionm of Z). The scaling matrix helps in domains where different output
dimensions (such as the degrees of freedom of a robot) can have vastly different variances.

We assume that each latent pointxi generates a pair of observationsyi, zi via a nonlinear
function parameterized by a kernel matrix. GPs parameterize the functionsfY : X 7→ Y
andfZ : X 7→ Z. The SGPLVM model uses an exponential (RBF) kernel, defining the



similarity between two data pointsx,x′ as:
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given hyperparameters for theY spaceθY = {αY , βY , γY }. δ represents the delta func-
tion. Following standard notation for GPs [8, 15, 9], the priorsP (θY ), P (θZ), P (X),
the likelihoodsP (Y), P (Z) for the Y,Z observation spaces, and the joint likelihood
PGP (X,Y,Z, θY , θZ) are given by:
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PGP (X,Y,Z, θY , θZ) = P (Y|θY ,X)P (Z|θZ ,X)P (θY )P (θZ)P (X) (6)

whereαZ , βZ , γZ are hyperparameters for theZ space, andwk, vm respectively denote the

diagonal entries for matricesW,V. Let Y,K
−1

Y respectively denote theY observations
from the active set (with meanµY subtracted out) and the kernel matrix for the active set.
The joint negative log likelihood of a latent pointx and observationsy, z is:
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The model learns a separate kernel for each observation space, but a single set of common
latent points. A conjugate gradient solver adjusts model parameters and latent coordinates
to maximize Eq. 6.

Given a trained SGPLVM, we would like to infer the parameters in one observation space
given parameters in the other (e.g., infer robot posez given human posey). We solve this
problem in two steps. First, we determine the most likely latent coordinatex given the
observationy usingargmaxx LX (x,y). In principle, one could findx at ∂LX

∂x = 0 using
gradient descent. However, to speed up recognition, we instead learn a separate “inverse”
Gaussian processf−1

Y : y 7→ x that maps back from the spaceY to the spaceX. Once
the correct latent coordinatex has been inferred for a giveny, the model uses the trained
SGPLVM to predict the corresponding observationz.



3 Results
We first demonstrate how the our model can be used to synthesize new views of an ob-
ject, character or scene from known views of another object, character or scene, given a
common latent variable model. For ease of visualization, we used 2D latent spaces for all
results shown here. The model was applied to image pairs depicting corresponding views
of 3D objects. Different views show the objects1 rotated at varying degrees out of the cam-
era plane. We downsampled the images to32× 32 grayscale pixels. For fitting images, the
scaling matricesW,V are of minimal importance (since we expect all pixels shoulda pri-

ori have the same variance). We also found empirically that usingfY (x) = YTK
−1

Y k(x)
instead of Eqn. 8 produced better renderings. We rescaled eachfY to use the full range of
pixel values[0 . . . 255], creating the images shown in the figures.

Fig. 1(b) shows how the model extrapolates to novel datasets given a limited set of train-
ing correspondences. We trained the model using 72 corresponding views of two different
objects, a coffee cup and a toy truck. Fixing the latent coordinates learned during training,
we then selected 8 views of a third object (a toy car). We selected latent points correspond-
ing to those views, and learned kernel parameters for the 8 images. Empirically, priors on
kernel parameters are critical for acceptable performance, particularly when only limited
data are available such as the 8 different poses for the toy car. In this case, we used the
kernel parameters learned for the cup and toy truck (based on 72 different poses) to impose
a Gaussian prior on the kernel parameters for the car (replacingP (θ) in Eqn. 4):

− log P (θcar) = − log PGP + (θcar − θµ)T Γ−1
θ (θcar − θµ) (14)

whereθcar, θµ,Γ−1
θ are respectively kernel parameters for the car, the mean kernel param-

eters for previously learned kernels (for the cup and truck), and inverse covariance matrix
for learned kernel parameters.θµ,Γ−1

θ in this case are derived from only two samples, but
nonetheless successfully constrain the kernel parameters for the car so the model functions
on the limited set of 8 example poses.

To test the model’s robustness to noise and missing data, we randomly selected 10 latent
coordinates corresponding to a subset of learned cup and truck image pairs. We then added
varying displacements to the latent coordinates and synthesized the correspondingnovel
views for all 3 observation spaces. Displacements varied from 0 to 0.45 (all 72 latent co-
ordinates lie on the interval [-0.70,-0.87] to [0.72,0.56]). The synthesized views are shown
in Fig. 1(b), with images for the cup and truck in the first two rows. Latent coordinates in
regions of low model likelihood generate images that appear blurry or noisy. More interest-
ingly, despite the small number of images used for the car, the model correctly matches the
orientation of the car to the synthesized images of the cup and truck. Thus, the model can
synthesize reasonable correspondences (given a latent point) even if the number of training
examples used to learn kernel parameters is small.

Fig. 2 illustrates the recognition performance of the “inverse” Gaussian process model as a
function of the amount of noise added to the inputs. Using the latent space and kernel pa-
rameters learned for Fig. 1, we present 72 views of the coffee cup with varying amounts of
additive, zero-mean white noise, and determine the fraction of the 72 poses correctly clas-
sified by the model. The model estimates the pose using 1-nearest-neighbor classification
of the latent coordinatesx learned during training:

argmax
x′

k (x,x′) (15)

The recognition performance degrades gracefully with increasing noise power. Fig. 2 also
plots sample images from one pose of the cup at several different noise levels. For two
of the noise levels, we show the “denoised” cup image selected using the nearest-neighbor

1http://www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html
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Figure 1:Pose synthesis for multiple objects using shared structure:(a) Graphical model for our
shared structure latent variable model. The latent spaceX maps to two (or more) observation spaces
Y, Z using a nonlinear kernel. “Inverse” Gaussian process kernels map back from observations to
latent coordinates. (b) The model learns pose correspondences for images of the coffee cup and
toy truck (Y andZ) by fitting kernel parameters and a 2-dimensional latent variable space. After
learning the latent coordinates for the cup and truck, we fit kernel parameters for a novel object (the
toy car). Unlike the cup and truck, where 72 pairs of views were used to fit kernel parameters and
latent coordinates, only 8 views were used to fit kernel parameters for the car. The model is robust
to noise in the latent coordinates; numbers above each column represent the amount of noise added
to the latent coordinates used to synthesize the images. Even at points where the model is uncertain
(indicated by the rightmost results in theY andZ rows), the learned kernel extrapolates the correct
view of the toy car (the “novel” row).

classification, and the corresponding reconstructed truck. This illustrates how even noisy
observations in one space can predict corresponding observations in the companion space.

Fig. 3 illustrates the ability of the model to synthesize novel views of one object given
a novel view of a different object. A limited set of corresponding poses (24 of 72 total)
of a cat figurine and a mug were used to train the GP model. The remaining 48 poses
of the mug were then used as testing data. For each snapshot of the mug, we inferred
a latent point using the “inverse” Gaussian process model and used the learned model to
synthesize what the cat figurine should look like in the same pose. A subset of these results
is presented in the rows on the left in Fig. 3: the “Test” rows show novel images of the mug,
the “Inferred” rows show the model’s best estimate for the cat figurine, and the “Actual”
rows show the ground truth. Although the images for some poses are blurry and the model
fails to synthesize the correct image for pose 44, the model nevertheless manages to capture
fine detail on most of the images.

The grayscale plot at upper right in Fig. 3 shows model certainty1/
[
σ2

Y (x) + σ2
Z(x)

]
,

with white where the model is highly certain and black where the model is highly uncer-
tain. Arrows indicate the path in latent space formed by the training images. The dashed
line indicates latent points inferred from testing images of the mug. Numbered latent co-
ordinates correspond to the synthesized images at left. The latent space shows structure:
latent points for similar poses are grouped together, and tend to move along a smooth curve
in latent space, with coordinates for the final pose lying close to coordinates for the first
pose (as desired for a cyclic image sequence). The bar graph at lower right compares model
certainty for the numbered latent coordinates; higher bars indicate greater model certainty.
The model appears particularly uncertain for blurry inferred images, such as 8, 14, and 26.

Fig. 4 shows an application of our framework to the problem of robotic imitation of human
actions. We trained our model on a dataset containing human poses (acquired with a Vicon
motion capture system) and corresponding poses of a Fujitsu HOAP-2 humanoid robot.
Note that the robot has 25 degrees-of-freedom which differ significantly from the degrees-
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Figure 2: Recognition using a Learned Latent Variable Space:After learning from 72 paired
correspondences between poses of a coffee cup and of a toy truck, the model is able to recognize dif-
ferent poses of the coffee cup in the presence of additive white noise. Fraction of images recognized
are plotted on the Y axis and standard deviation of white noise is plotted on the X axis. One pose
of the cup (of 72 total) is plotted for various noise levels (see text for details). “Denoised” images
obtained from nearest-neighbor classification and the corresponding images for theZ space (the toy
truck) are also shown.

of-freedom of the human skeleton used in motion capture. After training on 43 roughly
matching poses (only linear time scaling applied to align training poses), we tested the
model by presenting a set of 123 human motion capture poses (which includes the original
training set). Because the recognition modelf−1

Y : y 7→ x is not trained from samples from
the prior distribution of the data,P (x,y), we found it necessary to approximatek (x) for
the recognition model by rescalingk (x) for the testing points to lie on the same interval as
thek (x) values of the training points. We suspect that providing proper samples from the
prior will improve recognition performance. As illustrated in Fig. 4 (inset panels, human
and robot skeletons), the model was able to correctly infer appropriate robot kinematic
parameters given a range of novel human poses. These inferred parameters were used in
conjunction with a simple controller to instantiate the pose in the humanoid robot (see
photos in the inset panels).

4 Discussion
Our Gaussian process model provides a novel method for learning nonlinear relationships
between corresponding sets of data. Our results demonstrate the model’s utility for diverse
tasks such as image synthesis and robotic programming by demonstration. The GP model
is closely related to other kernel methods for solving CCA [3] and similar problems [2].

The problems addressed by our model can also be framed as a type of nonlinear CCA. Our
method differs from the latent variable method proposed in [14] by using Gaussian process
regression. Disadvantages of our method with respect to [14] include lack of global opti-
mality for the latent embedding; advantages include fewer independent parameters and the
ability to easily impose priors on the latent variable space (since GPLVM regression uses
conjugate gradient optimization instead of eigendecomposition). Empirically we found the
flexiblity of the GPLVM approach desirable for modeling a diversity of data sources.

Our framework learns mappings between each observation space and a latent space, rather
than mapping directly between the observation spaces. This makes visualization and inter-
action much easier. An intermediate mapping to a latent space is also more economical in
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Figure 3: Synthesis of novel views using a shared latent variable model:After training on 24
paired images of a mug with a cat figurine (out of 72 total paired images), we ask the model to infer
what the remaining 48 poses of the cat would look like given 48 novel views of the mug. The system
uses an inverse Gaussian process model to infer a 2D latent point for each of the 48 novel mug views,
then synthesizes a corresponding view of the cat figurine. At left we plot the novel testing mug
images given to the system (“test”), the synthesized cat images (“inferred”), and the actual views of
the cat figurine from the database (“actual”). At upper right we plot the model uncertainty in the
latent space. The 24 latent coordinates from the training data are plotted as arrows, while the 48
novel latent points are plotted as crosses on a dashed line. At lower right we show model certainty for
the cat figurine data (1/σ2Z(x)) for each testing latent pointx. Note the low certainty for the blurry
inferred images labeled 8, 14, and 26.

the limit of many correlated observation spaces. Rather than learning all pairwise relations
between observation spaces (requiring a number of parameters quadratic in the number of
observation spaces), our method learns one generative and one inverse mapping between
each observation space and the latent space (so the number of parameters grows linearly).

From a cognitive science perspective, such an approach is similar to the Active Intermodal
Mapping (AIM) hypothesis of imitation [6]. In AIM, an imitating agent maps its own
actions and its perceptions of others’ actions into a single, modality-independent space.
This modality-independent space is analogous to the latent variable space in our model.
Our model does not directly address the “correspondence problem” in imitation [7], where
correspondences between an agent and a teacher are established through some form of un-
supervised feature matching. However, it is reasonable to assume that imitation by a robot
of human activity could involve some initial, explicit correspondence matching based on
simultaneity. Turn-taking behavior is an integral part of human-human interaction. Thus,
to bootstrap its database of corresponding data points, a robot could invite a human to take
turns playing out motor sequences. Initially, the human would imitate the robot’s actions
and the robot could use this data to learn correspondences using our GP model; later, the
robot could check and if necessary, refine its learned model by attempting to imitate the
human’s actions.
Acknowledgements:This work was supported by NSF AICS grant no. 130705 and an ONR YIP
award/NSF Career award to RPNR. We thank the anonymous reviewers for their comments.
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