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Abstract

We consider the situation in semi-supervised learning, where the “label
sampling” mechanism stochastically depends on the true response (as
well as potentially on the features). We suggest a method of moments
for estimating this stochastic dependence using the unlabeled data. This
is potentially useful for two distinct purposes: a. As an input to a super-
vised learning procedure which can be used to “de-bias” its results using
labeled data only and b. As a potentially interesting learning task in it-
self. We present several examples to illustrate the practical usefulness of
our method.

1 Introduction

In semi-supervised learning, we assume we have a sample(xi, yi, si)n
i=1, of i.i.d. draws

from a joint distribution on(X,Y, S), where:1

• xi ∈ Rp are p-vectors of features.

• yi is a label, or response (yi ∈ R for regression,yi ∈ {0, 1} for 2-class classifica-
tion).

• si ∈ {0, 1} is a “labeling indicator”, that isyi is observed if and only ifsi = 1,
while xi is observed for alli.

In this paper we consider the interesting case of semi-supervised learning, where the prob-
ability of observing the response depends on the data through the true response, as well as

1Our notation here differs somewhat from many semi-supervised learning papers, where the un-
labeled part of the sample is separated from the labeled part and sometimes called “test set”.



potentiallythrough the features. Our goal is to model thisunknowndependence:

l(x, y) = Pr(S = 1|x, y) (1)

Note that the dependence ony (which is unobserved whenS = 0) prevents us from using
standard supervised modeling approaches to learnl. We show here that we can use the
whole data-set (labeled+unlabeled data) to obtain estimates of this probability distribution
within a parametric family of distributions, without needing to “impute” the unobserved
responses.2

We believe this setup is of significant practical interest. Here are a couple of examples of
realistic situations:
1. The problem of learning from positive examples and unlabeled data is of significant
interest in document topic learning [4, 6, 8]. Consider a generalization of that problem,
where we observe a sample of positive and negative examples and unlabeled data, but we
believe that the positive and negative labels are supplied with different probabilities (in
the document learning example, positive examples are typically more likely to be labeled
than negative ones, which are much more abundant). These probabilities may also not be
uniform within each class, and depend on the features as well. Our methods allow us to
infer these labeling probabilities by utilizing the unlabeled data.
2. Consider a satisfaction survey, where clients of a company are requested to report their
level of satisfaction, but they can choose whether or not they do so. It is reasonable to
assume that their willingness to report their satisfaction depends on their actual satisfaction
level. Using our methods, we can infer the dependence of the reporting probability on
the actual satisfaction by utilizing the unlabeled data, i.e., the customers who declined to
respond.

Being able to infer the labeling mechanism is important for two distinct reasons. First,
it may be useful for “de-biasing” the results of supervised learning, which uses only the
labeled examples. The generic approach for achieving this is to use “inverse sampling”
weights (i.e. weigh labeled examples by1/l(x, y)). The us of this for maximum likeli-
hood estimation is well established in the literature as a method for correcting sampling
bias (of which semi-supervised learning is an example) [10]. We can also use the learned
mechanism to post-adjust the probabilities from a probability estimation methods such as
logistic regression to attain “unbiasedness” and consistency [11]. Second, understanding
the labeling mechanism may be an interesting and useful learning task in itself. Consider,
for example, the “satisfaction survey” scenario described above. Understanding the way in
which satisfaction affects the customers’ willingness to respond to the survey can be used
to get a better picture of overall satisfaction and to design better future surveys, regardless
of any supervised learning task which models the actual satisfaction.

Our approach is described in section 2, and is based on a method of moments. Observe
that for every function of the featuresg(x), we can get an unbiased estimate of its mean
as 1

n

∑n
i=1 g(xi). We show that if we know the underlying label sampling mechanism

l(x, y) we can get a different unbiased estimate ofEg(x), which uses only the labeled
examples, weighted by1/l(x, y). We suggest inferring theunknownfunction l(x, y) by
requiring that we get identical estimates ofEg(x) using both approaches. We illustrate our
method’s implementation on the California Housing data-set in section 3. In section 4 we
review related work in the machine learning and statistics literature, and we conclude with
a discussion in section 5.

2The importance of this is that we are required to hypothesize and fit aconditionalprobability
model forl(x, y) only, as opposed to the full probability model for(S, X, Y ) required for, say, EM.



2 The method

Let g(x) be any function of our features. We construct two different unbiased estimates of
Eg(x), one based on alln data points and one based on labeled examples only, assuming
P (S = 1|x, y) is known. Then, our method uses the equality in expectation of the two
estimates to inferP (S = 1|x, y). Specifically, considerg(x) and also:

f(x, y, s) =
{

g(x)
p(S=1|x,y) if s = 1 (y observed)
0 otherwise

(2)

Then:

Theorem 1 AssumeP (S = 1|x, y) > 0 , ∀x, y. Then:

E(g(X)) = E(f(X, Y, S))
.

Proof:

E(f(X, Y, S)) =
∫

X,Y,S

f(x, y, s)dP (x, y, s) =

=
∫

X

g(x)
∫

Y

P (S = 1|x, y)
P (S = 1|x, y)

dP (y|x)dP (x) =

=
∫

X

g(x)dP (x) = Eg(X) ¤

The empirical interpretation of this expectation result is:

1
n

n∑

i=1

f(xi, yi, si) =
1
n

∑

i:si=1

g(xi)
P (S = 1|xi, yi)

≈ Eg(x) ≈ 1
n

n∑

i=1

g(xi) (3)

which can be interpreted as relating an estimate ofEg(x) based on the complete data on
the right, to the one based on labeled data only, which requires weighting that is inversely
proportional to the probability of labeling, to compensate for ignoring the unlabeled data.

(3) is the fundamental result we use for our purpose, leading to a “method of moments”
approach to estimatingl(x, y) = P (S = 1|x, y), as follows:

• Assume thatl(x, y) = pθ(x, y) , θ ∈ Rk belongs to a parametric family withk
parameters.

• Selectk different functionsg1(x), ..., gk(x), and definef1, ..., fk correspondingly
according to (2).

• Demand equality of the leftmost and rightmost sums in (3) for each ofg1, ..., gk,
and solve the resultingk equations to get an estimate ofθ.

Many practical and theoretical considerations arise when we consider what “good” choices
of the representative functionsg1(x), ..., gk(x) may be. Qualitatively we would like to
accomplish the standard desirable properties of inverse problems: uniqueness, stability and
robustness. We want the resulting equations to have a unique “correct” solution. We want
our functions to have low variance so the inaccuracy in (3) is minimal, and we want them
to be “different” from each other to get a stable solution in thek-dimensional space. It is of
course much more difficult to give concrete quantitative criteria for selecting the functions
in practical situations. What we can do in practice is evaluate how stable the results we get
are. We return to this topics in more detail in section 5.



A second set of considerations in selecting these functions is the computational one: can we
even solve the resulting inverse problems with a reasonable computational effort? In gen-
eral, solving systems of more than one nonlinear equation is a very hard problem. We also
need to consider the possibility of non-unique solutions. These questions are sometimes
inter-related with the choice ofgk(x).

Suppose we wish to solve a set of non-linear equations forθ:

hk(θ) =
∑
si=1

gk(xi)
pθ(xi, yi)

−
∑

i

gk(xi) = 0, k = 1, . . . ,K (4)

The solution of (4) is similar to

arg min h(θ) = arg min
∑
m

hk(θ)2 (5)

Notice that every solution to (4) minimizes (5), but there may be local minima of (5) that
are not solutions to (4). Hence simply applying a Newton-Raphson method to (5) is not
a good idea: if we have a sufficiently good initial guess about the solution, the Newton-
Raphson method converges quadratically fast; however, it can also fail to converge, if the
root does not exist nearby. In practice, we can combine the Newton-Raphson method with
a line search strategy that makes sureh(θ) is reduced at each iteration (the Newton step is
always a descent direction ofh(θ)). While this method can still occasionally fail by landing
on a local minimum ofh(θ), this is quite rare in practice [1]. The remedy is usually to try
a new starting point. Other global algorithms based on the so calledmodel-trust region
approach are also used in practice. These methods have a reputation for robustness even
when starting far from the desired zero or minimum [2].

In some cases we can employ simpler methods, since the equations we get can be manip-
ulated algebraically to give more “friendly” formulations. We show two examples in the
next sub-section.

2.1 Examples of simplified calculations

We consider two situations where we can use algebra to simplify the solution of the equa-
tions our method gives. The first is the obvious application to two-class classification,
where the label sampling mechanism depends on the class label only. Our method then
reduces to the one suggested by [11]. The second is a more involved regression scenario,
with a logistic dependence between the sampling probability and the actual label.

First, consider a two-class classification scenario, where the sampling mechanism is inde-
pendent ofx:

P (S = 1|x, y) =
{

p1 if y = 1
p0 if y = 0

Then we need two functions ofx to “de-bias” our classes. One natural choice isg(x) = 1,
which implies we are simply trying to invert the sampling probabilities. Assume we use
one of the featuresg(x) = xj as our second function. Plugging these into (3) we get that
to findp0, p1 we should solve:

n =
#{yi = 1 observed}

p̂1
+

#{yi = 0 observed}
p̂0

∑

i

xij =

∑
si=1,yi=1 xij

p̂1
+

∑
si=1,yi=0 xij

p̂0

whichwe can solve analytically to get:

p̂1 =
r1n0 − r0n1

rn0 − r0n



p̂0 =
r1n0 − r0n1

r1n− rn1

wherenk = #{yi = k observed} , rk =
∑

si=1,yi=k xij , k = 0, 1

As a second, more involved, example, consider a regression situation (like the satisfaction
survey mentioned in the introduction), where we assume the probability of observing the
response has a linear-logistic dependence on the actual response (again we assume for sim-
plicity independence onx, although dependence onx poses no theoretical complications):

P (S = 1|x, y) =
exp(a + by)

1 + exp(a + by)
= logit−1(a + by) (6)

with a, b unknown parameters. Using the same twog functions as above gives us the
slightly less friendly set of equations:

n =
∑
si=1

1

logit−1(â + b̂yi)
∑

i

xij =
∑
si=1

xij

logit−1(â + b̂yi)

which with some algebra we can re-write as:

0 =
∑
si=1

exp(−b̂yi)(x̄0j − xij) (7)

exp(â)m0 =
∑
si=1

exp(−b̂yi) (8)

wherex̄0j is the empirical mean of the j’th feature over unlabeled examples andm0 is the
number of unlabeled examples. We do not have an analytic solution for these equations.
However, the decomposition they offer allows us to solve them by searching first overb to
solve (7), then plugging the result into (8) to get an estimate ofa. In the next section we
use this solution strategy on a real-data example.

3 Illustration on the California Housing data-set

To illustrate our method, we take a fully labeled regression data-set and hide some of the
labels based on a logistic transformation of the response, then examine the performance
of our method in recovering the sampling mechanism and improving resulting prediction
through de-biasing. We use the California Housing data-set [9], collected based on US
Census data. It contains 20640 observations aboutlog( median house price)throughout
California regions. The eight features are: median income, housing median age, total
rooms, total bedrooms, population, households, latitude and longitude.

We use3/4 of the data for modeling and leave1/4 aside for evaluation. Of the training
data, we hide some of the labels stochastically, based on the “label sampling” model:

P (S = 1|y) = logit−1(1.5(y − ȳ)− 0.5) (9)

this scheme results in having6027 labeled training examples,9372 training examples with
the labels removed and5241 test examples.

We use equations (7,8) to estimateâ, b̂ based on each one of the8 features. Figure
1 and Table 1 show the results of our analysis. In Figure 1 we display the value of∑

si=1 exp(−byi)(x̄0j − xj) for a range of possible values forb. We observe that all
features give us0 crossing around the correct value of1.5. In Table 1 we give details of the
8 models estimated by a search strategy as follows:
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Figure 1: Value of RHS of (7) (vertical axis) vs value ofb (horizontal axis) for the 8 different
features. The correct value isb = 1.5, and so we expect to observe “zero crossings” around that
value, which we indeed observe on all 8 graphs.

• Find b̂ by minimizing|∑si=1 exp(−byi)(x̄0j − xij)| over the rangeb ∈ [0, 3].

• Find â by pluggingb̂ from above into (8).

The table also shows the results of using these estimates to “de-bias” the prediction model,
i.e. once we havêa, b̂ we use them to calculatêP (S = 1|y) and use the inverse of these
estimated probabilities as weights in a least squares analysis of the labeled data. The table
compares the predictive performance of the resulting models on the1/4 evaluation set
(5241 observations) to that of the model built using labeled data only with no weighting
and that of the model built using the labeled data and the “correct” weighting based on
our knowledge of the truea, b. Most of the 8 features give reasonable estimates, and the
prediction models built using the resulting weighting schemes perform comparably to the
one built using the “correct” weights. They generally attain MSE about 20% smaller than
that of the non-weighted model built without regard to the label sampling mechanism.

The stability of the resulting estimates is related to the “reasonableness” of the selected
g(x) functions. To illustrate that, we also tried the functiong(x) = x3 · x4 · x5/(x1 · x2)
(still in combination with the identity function, so we can use (7,8)). The resulting estimates
wereb̂ = 3.03, â = 0.074. Clearly these numbers are way outside the reasonable range of
the results in Table 1. This is to be expected as this choice ofg(x) gives a function with
very long tails. Thus, a few “outliers” dominate the two estimates ofE(g(x)) in (3) which
we use to estimatea, b.

4 Related work

The surge of interest in semi-supervised learning in recent years has been mainly in the
context of text classification ([4, 6, 8] are several examples of many). There is also a



Table 1: Summary of estimates of sampling mechanism using each of8 features

Feature b a Prediction MSE
medianincome 1.52 -0.519 0.1148
housingmedian age 1.18 -0.559 0.1164
total rooms 1.58 -0.508 0.1147
total bedrooms 1.64 -0.497 0.1146
population 1.7 -0.484 0.1146
households 1.63 -0.499 0.1146
latitude 1.55 -0.514 0.1147
longitude 1.33 -0.545 0.1155
(noweighting) N/A N/A 0.1354
(truesampling model) 1.5 -0.5 0.1148

wealthof statistical literature on missing data and biased sampling (e.g. [3, 7, 10]) where
methods have been developed that can be directly or indirectly applied to semi-supervised
learning. Here we briefly survey some of the interesting and popular approaches and relate
them to our method.

The EM approach to text classification is advocated by [8]. Some ad-hoc two-step variants
are surveyed by [6]. They consists of iterating between completing class labels and esti-
mating the classification model. The main caveat of all these methods is that they ignore
the sampling mechanism, and thus implicitly assume it cancels out in the likelihood func-
tion — i.e., that the sampling is random and thatl(x, y) is fixed. It is possible, in principle,
to remove this assumption, but that would significantly increase the complexity of the al-
gorithms, as it would require specifying a likelihood model for the sampling mechanism
and adding its parameters to the estimation procedure. The methods described by [7] and
discussed below take this approach.

The use of re-weighted loss to account for unknown sampling mechanisms is suggested
by [4, 11]. Although they differ significantly in the details, both of these can account for
label-dependent sampling in two-class classification. They do not offer solutions for other
modeling tasks or for feature-dependent sampling, which our approach covers.

In the missing data literature, [7] (chapter 15) and references therein offer several meth-
ods for handling “nonignorable nonresponse”. These are all based on assuming complete
probability models for(X, Y, S) and designing EM algorithms for the resulting problem.
An interesting example is thebivariate normal stochastic ensemblemodel, originally sug-
gested by [3]. In our notation, they assume that there is an additional fully unobserved
“response”zi, and thatyi is observed if and only ifzi > 0. They also assume thatyi, zi

are bivariate normal, depending on the featuresxi, that is:

(
yi

zi

)
∼ N

[(
xiβ1

xiβ2

)
,

(
σ2 ρσ2

ρσ2 1

)]

this leads to a complex, but manageable, EM algorithm for inferring the sampling mech-
anism and fitting the actual model at once. The main shortcoming of this approach, as
we see it, is in the need to specify a complete and realistic joint probability model engulf-
ing both the sampling mechanism and the response function. This precludes completely
the use of non-probabilistic methods for the response model part (like trees or kernel meth-
ods), and seems to involve significant computational complications if we stray from normal
distributions.



5 Discussion

The method we suggest in this paper allows for the separate and unbiased estimation of
label-sampling mechanisms, even when they stochastically depend on the partially unob-
served labels. We view this “de-coupling” of the sampling mechanism estimation from the
actual modeling task at hand as an important and potentially very useful tool, both because
it creates a new, interesting learning task and because the results of the sampling model can
be used to “de-bias”anyblack-box modeling tool for the supervised learning task through
inverse weighting (or sampling, if the chosen tool does not take weights).

Our method of moments suffers from the same problems all such methods (and inverse
problems in general) share, namely the uncertainty about the stability and validity of the
results. It is difficult to develop general theory for stable solutions to inverse problems.
What we can do in practice is attempt to validate the estimates we get. We have already
seen one approach for doing this in section 3, where we used multiple choices forg(x)
and compared the resulting estimates of the parameters determiningl(x, y). Even if we
had not known the true values ofa and b, the fact that we got similar estimates using
different features would reassure us that these estimates were reliable, and give us an idea
of their uncertainty. A second approach for evaluating the resulting estimates could be to
use bootstrap sampling, which can be used to calculate bootstrap confidence intervals of
the parameter estimates.

The computational issues also need to be tackled if our method is to be applicable for large
scale problems with complex sampling mechanisms. We have suggested a general method-
ology in section 2, and some ad-hoc solutions for special cases in section 2.1. However
we feel that a lot more can be done to develop efficient and widely applicable methods for
solving the moment equations.
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