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Abstract

Dominant sets are a new graph-theoretic concept that has proven to
be relevant in pairwise data clustering problems, such as image seg-
mentation. They generalize the notion of a maximal clique to edge-
weighted graphs and have intriguing, non-trivial connections to continu-
ous quadratic optimization and spectral-based grouping. We address the
problem of grouping out-of-sample examples after the clustering process
has taken place. This may serve either to drastically reduce the compu-
tational burden associated to the processing of very large data sets, or
to efficiently deal with dynamic situations whereby data sets need to be
updated continually. We show that the very notion of a dominant set of-
fers a simple and efficient way of doing this. Numerical experiments on
various grouping problems show the effectiveness of the approach.

1 Introduction

Proximity-based, or pairwise, data clustering techniques are gaining increasing popular-
ity over traditional central grouping techniques, which are centered around the notion of
“feature” (see, e.g., [3, 12, 13, 11]). In many application domains, in fact, the objects to
be clustered are not naturally representable in terms of a vector of features. On the other
hand, quite often it is possible to obtain a measure of the similarity/dissimilarity between
objects. Hence, it is natural to map (possibly implicitly) the data to be clustered to the
nodes of a weighted graph, with edge weights representing similarity or dissimilarity rela-
tions. Although such a representation lacks geometric notions such as scatter and centroid,
it is attractive as no feature selection is required and it keeps the algorithm generic and
independent from the actual data representation. Further, it allows one to use non-metric
similarities and it is applicable to problems that do not have a natural embedding to a uni-
form feature space, such as the grouping of structural or graph-based representations.

We have recently developed a new framework for pairwise data clustering based on a novel
graph-theoretic concept, that oflaminant set, which generalizes the notion of a maximal
clique to edge-weighted graphs [7, 9]. An intriguing connection between dominant sets
and the solutions of a (continuous) quadratic optimization problem makes them related in
a non-trivial way to spectral-based cluster notions, and allows one to use straightforward
dynamics from evolutionary game theory to determine them [14]. A nice feature of this
framework is that it naturally provides a principled measure of a cluster’s cohesiveness as
well as a measure of a vertex participation to its assigned group. It also allows one to obtain
“soft” partitions of the input data, by allowing a point to belong to more than one cluster.
The approach has proven to be a powerful one when applied to problems such as intensity,
color, and texture segmentation, or visual database organization, and is competitive with



spectral approaches such as normalized cut [7, 8, 9].

However, a typical problem associated to pairwise grouping algorithms in general, and
hence to the dominant set framework in particular, is the scaling behavior with the number
of data. On a dataset containing examples, the number of potential comparisons scales
with O(N?), thereby hindering their applicability to problems involving very large data
sets, such as high-resolution imagery and spatio-temporal data. Moreover, in applications
such as document classification or visual database organization, one is confronted with
a dynamic environment which continually supplies the algorithm with newly produced
data that have to be grouped. In such situations, the trivial approach of recomputing the
complete cluster structure upon the arrival of any new item is clearly unfeasible.

Motivated by the previous arguments, in this paper we address the problem of efficiently
assigning out-of-sample, unseen data to one or more previously determined clusters. This
may serve either to substantially reduce the computational burden associated to the process-
ing of very large (though static) data sets, by extrapolating the complete grouping solution
from a small number of samples, or to deal with dynamic situations whereby data sets need
to be updated continually. There is no straightforward way of accomplishing this within
the pairwise grouping paradigm, short of recomputing the complete cluster structure. Re-
cent sophisticated attempts to deal with this problem use optimal embeddings [11] and the
Nystrom method [1, 2]. By contrast, we shall see that the very notion of a dominant set,
thanks to its clear combinatorial properties, offers a simple and efficient solution to this
problem. The basic idea consists of computing, for any new example, a quantity which
measures the degree of cluster membership, and we provide simple approximations which
allow us to do this in linear time and space, with respect to the cluster size. Our classifi-
cation schema inherits the main features of the dominant set formulation, i.e., the ability
of yielding a soft classification of the input data and of providing principled measures for
cluster membership and cohesiveness.

Numerical experiments show that the strategy of first grouping a small number of data
items and then classifying the out-of-sample instances using our prediction rule is clearly
successful as we are able to obtain essentially the same results as the dense problem in
much less time. We also present results on high-resolution image segmentation problems,
a task where the dominant set framework would otherwise be computationally impractical.

2 Dominant Setsand Their Continuous Characterization

We represent the data to be clustered as an undirected edge-weighted (similarity) graph
with no self-loopsG = (V, E,w), whereV = {1,...,n} is the vertex setf C V x

V is the edge set, andt : £ — R is the (positive) weight function. Vertices i¥
correspond to data points, edges represent neighborhood relationships, and edge-weights
reflect similarity between pairs of linked vertices. As customary, we represent the graph
G with the corresponding weighted adjacency (or similarity) matrix, which isithen
nonnegative, symmetric matrit = (a;;) defined as:

_Jow(i,g), (i) el
Y= 0, otherwise.

Let S C V be a non-empty subset of vertices and V. The (average) weighted degree
of s w.r.t. S is defined as:

. 1
awdegg (i) = Kl Z ajj 1)
jeS
where|S| denotes the cardinality &f. Moreover, ifj ¢ S we definegs (4, j) = a;; —

awdegg (i) which is a measure of the similarity between noglesd:, with respect to the
average similarity between nodand its neighbors it$.
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Figure 1:An example edge-weighted graph. Note that » 3 43 (1) < 0 and this reflects the fact
that vertex 1 is loosely coupled to vertices 2, 3 and 4. Conversgly; 7 s} (5) > 0 and this reflects
the fact that vertex 5 is tightly coupled with vertices 6, 7, and 8.

Let.S C V be a non-empty subset of vertices ard S. Theweight of ¢ w.r.t. S'is

1, if [S]=1
ws (i) = Z bs\fiy (J4,) wa\ iy (), otherwise @
JeS\{i}
while thetotal weight of S is defined as:
W(S)=> wasli). ®3)

i€S
Intuitively, wgs (i) gives us a measure of the overall similarity between veitard the

vertices ofS'\ {i} with respect to the overall similarity among the vertice$in{:}, with
positive values indicating high internal coherency (see Fig. 1).

A non-empty subset of verticeés C V' such thatV (T") > 0 for any non-emptyl’ C S, is
said to bedominant if:

1. wg (i) >0, forallie S
2. wsugiy (1) <0, foralli ¢ S.

The two previous conditions correspond to the two main properties of a cluster: the
first regards internal homogeneity, whereas the second regards external inhomogeneity.
The above definition represents our formalization of the concept of a cluster in an edge-
weighted graph.

Now, consider the following quadratic program, which is a generalization of the so-called
Motzkin-Straus program [5] (here and in the sequel a dot denotes the standard scalar prod-
uct between vectors):

maximize  f(x) =x- Ax @)

subjectto x € A,
where

A,={xeR" : z; >0foralli € Vande -x =1}

is the standard simplex of 'R ande is a vector of appropriate length consisting of unit
entries (hence - x = ), x;). Thesupport of a vectorx € A,, is defined as the set of
indices corresponding to its positive components, that(is) = {i € V' : z; > 0}. The
following theorem, proved in [7], establishes an intriguing connection between dominant
sets and local solutions of program (4).

Theorem 1 If S isa dominant subset of vertices, then its (weighted) characteristics vector
x%, which isthe vector of A,, defined as
o5 =] wisy, €S (5)
! 0, otherwise

isa strict local solution of program (4). Conversely, if x isa strict local solution of pro-
gram (4) then its support S = o (x) isa dominant set, provided that wg ;3 (4) # 0 for all
i¢S.



The condition thatvsy ;) (i) # 0foralli ¢ S = o(x) is a technicality due to the presence
of “spurious” solutions in (4) which is, at any rate, a non-generic situation.

By virtue of this result, we can find a dominant set by localizing a local solution of pro-
gram (4) with an appropriate continuous optimization technique, such as replicator dynam-
ics from evolutionary game theory [14], and then picking up its support. Note that the
components of the weighted characteristic vectors give us a natural measure of the par-
ticipation of the corresponding vertices in the cluster, whereas the value of the objective
function measures the cohesiveness of the class. In order to get a partition of the input data
into coherent groups, a simple approach is to iteratively finding a dominant set and then
removing it from the graph, until all vertices have been grouped (see [9] for a hierarchical
extension of this framework). On the other hand, by finding all dominant sets, i.e., local so-
lutions of (4), of the original graph, one can obtain a “soft” partition of the dataset, whereby
clusters are allowed to overlap. Finally, note that spectral clustering approaches such as,
e.g., [10, 12, 13] lead to similar, though intrinsically different, optimization problems.

3 Predicting Cluster Membership for Out-of-Sample Data

Suppose we are given a sétof n unlabeled items and let = (V, E,w) denote the
corresponding similarity graph. After determining the dominant sets (i.e., the clusters)
for these original data, we are next supplied with aléebf £ new data items, together

with all kn pairwise affinities between the old and the new data, and are asked to assign
each of them to one or possibly more previously determined clusters. We shall denote by
G = (V,E, ), with V = V UV, the similarity graph built upon all the +  data. Note

that in our approach we do not need t@e} affinities between the new points, which is a
nice feature as in most applicatiohss typically very large. Technically; is asupergraph

of G, namely a graph having C V, E C E andw(i, j) = (i, j) for all (i, j) € E.

Let S C V be a subset of vertices which is dominant in the original gr&phnd let
ieV \ V anew data point. As pointed out in the previous section, the sign;of;, (7)
provides an indication as to whetheis tightly or loosely coupled with the vertices M

(the conditionwg ;3 (i) = 0 corresponds to a non-generic boundary situation that does
not arise in practice and will therefore be ignorédccordingly, it is natural to propose
the following rule for predicting cluster membership of unseen data:

if wsugqy () > 0, then assign verteito clusters' . (6)

Note that, according to this rule, the same point can be assigned to more than one class,
thereby yielding a soft partition of the input data. To get a hard partition one can use the
cluster membership approximation measures we shall discuss below. Note that it may also
happen for some instanéehat no clustelS satisfies rule (6), in which case the point gets
unclassified (or assigned to an “outlier” group). This should be interpreted as an indication
that either the point is too noisy or that the cluster formation process was inaccurate. In our
experience, however, this situation arises rarely.

A potential problem with the previous rule is its computational complexity. In fact, a direct
application of formula (2) to compute s,y (¢) is clearly infeasible due to its recursive
nature. On the other hand, using a characterization given in [7, Lemma 1] would also be
expensive since it would involve the computation of a determinant. The next result allows
us to compute the sign ofs ;) (7) in linear time and space, with respect to the siz€ of

Proposition 1 Let G = (V, E, w) be an edge-weighted (similarity) graph, A = (a;;) its
weighted adjacency matrix, and S C V' a dominant set of G' with characteristic vector

'Observe thatvs (i) depends only on the the weights on the edges of the subgraph induged by
Hence, no ambiguity arises as to whether (:) is computed oz or onG.



x%. Let G = (V, E, @) be a supergraph of G with weighted adjacency matrix A = (a.;).
€

Then, for all i € V' \ V, we have:

Wsu{i} (’L) >0 & Z dhixf > f(XS) (7
hesS

Proof. From Theorem 1x° is a strict local solution of program (4) and hence it satisfies
the Karush-Kuhn-Tucker (KKT) equality conditions, i.e., the first-order necessary equality
conditions for local optimality [4]. Now, let, = |V| be the cardinality of’” and letx® be
the (i-dimensional) characteristic vector §fin G, which is obtained by padding® with
zeros. It is immediate to see that satisfies the KKT equality conditions for the problem
of maximizing f (%) = % - A%, subject tok € A;. Hence, from Lemma 2 of [7] we have
foralli e V\ V:

wsugiy (7) . s

—ran = 2 _(ani —anj)zy (8)

W(S) ,; J

for any j € S. Now, recall that the KKT equality conditions for program (4) imply
Shes anjry = x7 - AxS = f(x¥) for anyj € S [7]. Hence, the proposition follows
from the fact that, being dominant, W (.S) is positive. O

Given an out-of-sample vertéxand a class' such that rule (6) holds, we now provide an
approximation of the degree of participationiah S U {i} which, as pointed out in the
previous section, is given by the ratio betweeg (;, () andW(S U {i}). This can be

used, for example, to get a hard partition of the input data when an instance happens to be
assigned to more than one class. By equation (8), we have:

wsugiy (1) . W(S)
Wsonn 2w

for anyj € S. Since computing the exact value of the rafigS)/W (S U {i}) would
be computationally expensive, we now provide simple approximation formulas. Since
is dominant, it is reasonable to assume that all weights within it are close to each other.
Hence, we approximat& with a cliqgue having constant weight and impose that it has
the same cohesiveness valflec®) = x° - Ax® as the original dominant set. After some
algebra, we get
_ 15l s
which yieldsW(S) ~ |S|a!®I=1. ApproximatingW (S U {i}) with |S 4 1|a!®! in a similar
way, we get:

wW(s) _[Sla¥mt 1 S| -1
W(SU{i}) ~ |S+1alST — f(x5)[S]+1
which finally yields:
Wsu{i} (4) ~ |S] -1 <Zhes &hixﬁ B 1) )
W(sudip) [S[+1 f(x%) '
Using the above formula one can easily get, by normalization, an approximation of the
characteristic vectat® € A+ Of S, the extension of clustet obtained applying rule (6):
S=8U{ieV\V:wsup (i) >0}.
With an approximation ok at hand, it is also easy to compute an approximation of the
cohesiveness of the new clustgri.e., x5 - AxS. Indeed, assuming thatis dominant inG,
and recalling the KKT equality conditions for program (4) [7], we géks)l =x5. AxS
for all i € S. Itis therefore natural to approximate the cohesiveness a$ a weighted
average of th¢ Ax%);’s.
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Figure 2: Evaluating the quality of our approximations on a 150-point cluster. Average distance
between approximated and actual cluster membership (left) and cohesiveness (middle) as a function
of sampling rate. Right: average CPU time as a function of sampling rate.

4 Experimental Results

In an attempt to evaluate how the approximations given at the end of the previous sec-
tion actually compare to the solutions obtained on the dense problem, we conducted the
following preliminary experiment. We generated 150 points on the plane so as to form

a dominant set (we used a standard Gaussian kernel to obtain similarities), and extracted
random samples with increasing sampling rate, ranging from 1/15 to 1. For each sampling
rate 100 trials were made, for each of which we computed the Euclidean distance between
the approximated and the actual characteristic vector (i.e., cluster membership), as well
as the distance between the approximated and the actual cluster cohesiveness (that is, the
value of the objective functioif). Fig. 2 shows the average results obtained. As can be
seen, our approximations work remarkably well: with a sampling rate less than 10 % the
distance between the characteristic vectors is around 0.02 and this distance decreases lin-
early towards zero. As for the objective function, the results are even more impressive as
the distance from the exact value (i.e., 0.989) rapidly goes to zero starting from 0.00025,
at less than 10% rate. Also, note how the CPU time increases linearly as the sampling rate
approaches 100%.

Next, we tested our algorithm over the Johns Hopkins University ionosphere d&tabase
which contains 351 labeled instances from two different classes. As in the previous exper-
iment, similarities were computed using a Gaussian kernel. Our goal was to test how the
solutions obtained on the sampled graph compare with those of the original, dense prob-
lem and to study how the performance of the algorithm scales w.r.t. the sampling rate. As
before, we used sampling rates from 1/15 to 1, and for each such value 100 random sam-
ples were extracted. After the grouping process, the out-of-sample instances were assigned
to one of the two classes found using rule (6). Then, for each example in the dataset a
“success” was recorded whenever the actual class label of the instance coincided with the
majority label of its assigned class. Fig. 3 shows the average results obtained. At around
40% rate the algorithm was already able to obtain a classification accuracy of about 73.4%,
which is even slightly higher that the one obtained on the dense (100% rate) problem, which
is 72.7%. Note that, as in the previous experiment, the algorithm appears to be robust with
respect to the choice of the sample data. For the sake of comparison we also ran normalized
cut on thewhole dataset, and it yielded a classification rat&2f%.

Finally, we applied our algorithm to the segmentation of brightness images. The image
to be segmented is represented as a graph where vertices correspond to pixels and edge-
weights reflect the “similarity” between vertex pairs. As customary, we defined a similarity
measure between pixels based on brightness proximity. Specifically, following [7], simi-
larity between pixels and j was measured by (i, j) = exp ((I(i) — I1(j))?/o?) where

o is a positive real number which affects the decreasing rate, @nd () is defined as

the (normalized) intensity value at node After drawing a set of pixels at random with
sampling ratep = 0.005, we iteratively found a dominant set in the sampled graph using
replicator dynamics [7, 14], we removed it from the graph. and we then employed rule (6)

2http: //www. i cs. uci . edu/ ~m ear n/ M.Surmary. ht m
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Figure 3:Results on the ionosphere database. Average classification rate (left) and CPU time (right)

as a function of sampling rate.

Figure 4: Segmentation results onld5 x 97 weather radar image. From left to right: original
image, the two regions found on the sampled image (sampling rate = 0.5%), and the two regions
obtained on the whole image (sampling rate = 100%).

to extend it with out-of-sample pixels.

Figure 4 shows the results obtained o1& x 97 weather radar image, used in [13, 7]

as an instance whereby edge-detection-based segmentation would perform poorly. Here,
and in the following experiment, the major components of the segmentations are drawn

on a blue background. The leftmost cluster is the one obtained after the first iteration of

the algorithm, and successive clusters are shown left to right. Note how the segmentation
obtained over the sparse image, sampled at 0.5% rate, is almost identical to that obtained
over the whole image. In both cases, the algorithms correctly discovered a background
and a foreground region. The approximation algorithm took a couple of seconds to return

the segmentation, i.e., 15 times faster than the one run over the entire image. Note that
our results are better than those obtained with normalized cut, as the latter provides an
over-segmented solution (see [13]).

Fig. 5 shows results on twés1 x 321 images taken from the Berkeley databds@n

these images the sampling process produced a sample with no moréOtitapixels,

and our current MATLAB implementation took only a few seconds to return a solution.
Running the grouping algorithm on the whole images (which contain moreltsgHh00

pixels) would simply be unfeasible. In both cases, our approximation algorithm partitioned
the images into meaningful and clean components. We also ran normalized cut on these
images (using the same sample rat®.6f%) and the results, obtained after a long tuning
process, confirm its well-known inherent tendency to over-segment the data (see Fig. 5).

5 Conclusions

We have provided a simple and efficient extension to the dominant-set clustering framework
to deal with the grouping of out-of-sample data. This makes the approach applicable to

very large grouping problems, such as high-resolution image segmentation, where it would
otherwise be impractical. Experiments show that the solutions extrapolated from the sparse
data are comparable with those of the dense problem, which in turn compare favorably with

spectral solutions such as normalized cut’s, and are obtained in much less time.

*htt p: // www. cs. ber kel ey. edu/ pr oj ect s/ vi si on/ gr oupi ng/ segbench



Figure 5:Segmentation results on twi@1 x 321 images. Left columns: original images. For each
image, the first line shows the major regions obtained with our approximation algorithm, while the
second line shows the results obtained with normalized cut.
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