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Abstract 

We describe an algorithm for support vector machines (SVM) that 
can be parallelized efficiently and scales to very large problems with 
hundreds of thousands of training vectors. Instead of analyzing the 
whole training set in one optimization step, the data are split into 
subsets and optimized separately with multiple SVMs. The partial 
results are combined and filtered again in a ‘Cascade’ of SVMs, until 
the global optimum is reached. The Cascade SVM can be spread over 
multiple processors with minimal communication overhead and 
requires far less memory, since the kernel matrices are much smaller 
than for a regular SVM. Convergence to the global optimum is 
guaranteed with multiple passes through the Cascade, but already a 
single pass provides good generalization. A single pass is 5x – 10x 
faster than a regular SVM for problems of 100,000 vectors when 
implemented on a single processor. Parallel implementations on a 
cluster of 16 processors were tested with over 1 million vectors 
(2-class problems), converging in a day or two, while a regular SVM 
never converged in over a week. 

1 Introduction 
Support Vector Machines [1] are powerful classification and regression tools, but 
their compute and storage requirements increase rapidly with the number of training 
vectors, putting many problems of practical interest out of their reach. The core of an 
SVM is a quadratic programming problem (QP), separating support vectors from the 
rest of the training data. General-purpose QP solvers tend to scale with the cube of the 
number of training vectors (O(k3)). Specialized algorithms, typically based on 
gradient descent methods, achieve impressive gains in efficiency, but still become 
impractically slow for problem sizes on the order of 100,000 training vectors (2-class 
problems).  

One approach for accelerating the QP is based on ‘chunking’ [2][3][4], where subsets 
of the training data are optimized iteratively, until the global optimum is reached. 
‘Sequential Minimal Optimization’ (SMO) [5], which reduces the chunk size to 2 
vectors, is the most popular of these algorithms. Eliminating non-support vectors 



 

early during the optimization process is another strategy that provides substantial 
savings in computation. Efficient SVM implementations incorporate steps known as 
‘shrinking’ for identifying non-support vectors early [4][6][7]. In combination with 
caching of the kernel data, such techniques reduce the computation requirements by 
orders of magnitude. Another approach, named ‘digesting’ optimizes subsets closer to 
completion before adding new data [8], saving considerable amounts of storage. 

Improving compute-speed through parallelization is difficult due to dependencies 
between the computation steps. Parallelizations have been proposed by splitting the 
problem into smaller subsets and training a network to assign samples to different 
subsets [9]. Variations of the standard SVM algorithm, such as the Proximal SVM 
have been developed that are better suited for parallelization [10], but how widely 
they are applicable, in particular to high-dimensional problems, remains to be seen. A 
parallelization scheme was proposed where the kernel matrix is approximated by a 
block-diagonal [11]. A technique called variable projection method [12] looks 
promising for improving the parallelization of the optimization loop.  

In order to break through the limits of today’s SVM implementations we developed a 
distributed architecture, where smaller optimizations are solved independently and 
can be spread over multiple processors, yet the ensemble is guaranteed to converge to 
the globally optimal solution.  

2 The Cascade SVM 
As mentioned above, eliminating non-support vectors early from the optimization 
proved to be an effective strategy for accelerating SVMs. Using this concept we 
developed a filtering process that can be parallelized efficiently. After evaluating 
multiple techniques, such as projections onto subspaces (in feature space) or 
clustering techniques, we opted to use SVMs as filters. This makes it straightforward 
to drive partial solutions towards the global optimum, while alternative techniques 
may optimize criteria that are not directly relevant for finding the global solution. 
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 Figure 1: Schematic of a binary Cascade architecture. The data are split into 
subsets and each one is evaluated individually for support vectors in the first 
layer. The results are combined two-by-two and entered as training sets for the 
next layer. The resulting support vectors are tested for global convergence by 
feeding the result of the last layer into the first layer, together with the 
non-support vectors. TD: Training data, SVi: Support vectors produced by 
optimization i. 

We initialize the problem with a number of independent, smaller optimizations and 
combine the partial results in later stages in a hierarchical fashion, as shown in Figure 
1. Splitting the data and combining the results can be done in many different ways. 



 

Figure 1 merely represents one possible architecture, a binary Cascade that proved to 
be efficient in many tests. It is guaranteed to advance the optimization function in 
every layer, requires only modest communication from one layer to the next, and 
converges to a good solution quickly.  

In the architecture of Figure 1 sets of support vectors from two SVMs are combined 
and the optimization proceeds by finding the support vectors in each of the combined 
subsets. This continues until only one set of vectors is left. Often a single pass through 
this Cascade produces satisfactory accuracy, but if the global optimum has to be 
reached, the result of the last layer is fed back into the first layer. Each of the SVMs in 
the first layer receives all the support vectors of the last layer as inputs and tests its 
fraction of the input vectors, if any of them have to be incorporated into the 
optimization. If this is not the case for all SVMs of the input layer, the Cascade has 
converged to the global optimum, otherwise it proceeds with another pass through the 
network. 

In this architecture a single SVM never has to deal with the whole training set. If the 
filters in the first few layers are efficient in extracting the support vectors then the 
largest optimization, the one of the last layer, has to handle only a few more vectors 
than the number of actual support vectors. Therefore, in problems where the support 
vectors are a small subset of the training vectors - which is usually the case - each of 
the sub-problems is much smaller than the whole problem (compare section 4). 

2 .1  Nota t ion  (2 - c la ss ,  ma ximum ma rg in)  

We discuss here the 2-class classification problem, solved in dual formulation. The 
Cascade does not depend on details of the optimization algorithm and alternative 
formulations or regression algorithms map equally well onto this architecture. The 
2-class problem is the most difficult one to parallelize because there is no natural split 
into sub-problems. Multi-class problems can always be separated into 2-class 
problems. 

Let us consider a set of l training examples (xi; yi); where d
i Rx ∈  represents a 

d-dimensional pattern and 1±=iy  the class label. K(xi,xj) is the matrix of kernel values 

between patterns and α i the Lagrange coefficients to be determined by the 
optimization. The SVM solution for this problem consists in maximizing the 
following quadratic optimization function (dual formulation): 
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2 .2  Formal  proo f  o f  convergence  

The main issue is whether a Cascade architecture will actually converge to the global 
optimum. The following theorems show that this is the case for a wide range of 
conditions. Let S denote a subset of the training set Ω, W(S) is the optimal objective 
function over S (equation 1), and let SSSv ⊂)( be the subset of S for which the 

optimal α are non-zero (support vectors of S). It is obvious that: 
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)())(()(, Ω≤=Ω⊂∀ WSSvWSWS  

Let us consider a family F of sets of training examples for which we can independently 
compute the SVM solution. The set FS ∈* that achieves the greatest W(S) will be 
called the best set in family F. We will write W(F) as a shorthand for W(S*), that is: 
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∈
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We are interested in defining a sequence of families Ft such that W(Ft) converges to 
the optimum. Two results are relevant for proving convergence. 

Theorem 1: Let us consider two families F and G of subsets of Ω. If a set GT ∈  

contains the support vectors of the best set FSF ∈* , then ).()( FWGW ≥  

Proof: Since TSSv F ⊂)( * , we have ).())(()( ** TWSSvWSW FF ≤= Therefore, 

)()()()( * GWTWSWFW F ≤≤=       � 

Theorem 2: Let us consider two families F and G of subsets of Ω. Assume that every 

set GT ∈  contains the support vectors of the best set FSF ∈* . 

).()()()( * TWSWFWGWIf GTF ∈=⇒= U  

Proof: Theorem 1 implies that )()( FWGW ≥ . Consider a vector α* solution of the 

SVM problem restricted to the support vectors )( *
FSSv . For all GT ∈ , we have 

))(()( *
FSSvWTW ≥ because )( *

FSSv  is a subset of T. We also have 

)).(()()()()( **
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FSSvWTW = . This 

implies that α* is also a solution of the SVM on set T. Therefore α* satisfies all the 
KKT conditions corresponding to all sets GT ∈ . This implies that α* also satisfies the 
KKT conditions for the union of all sets in G.     � 

Definition 1. A Cascade is a sequence (Ft) of families of subsets of Ω satisfying: 
i) For all t > 1, a set tFT ∈ contains the support vectors of the best set in Ft-1. 

ii) For all t, there is a k > t such that: 

• All sets kFT ∈ contain the support vectors of the best set in Fk-1. 

• The union of all sets in Fk is equal to Ω. 

Theorem 3: A Cascade (Ft) converges to the SVM solution of Ω in finite 

time, namely:  )()(,, ** Ω=>∀∃ WFWttt t  

Proof: Assumption i) of Definition 1 plus theorem 1 imply that the sequence W(Ft) is 
monotonically increasing. Since this sequence is bounded by W(Ω), it converges to 
some value )(* Ω≤ WW . The sequence W(Ft) takes its values in the finite set of the 
W(S) for all Ω⊂S . Therefore there is a l > 0 such that *)(, WFWlt t =>∀ . This 

observation, assertion ii) of definition 1, plus theorem 2 imply that there is a k > l such 
that )()( Ω=WFW k

. Since W(Ft) is monotonically increasing, )()( Ω= WFW k
 for all t > k. 

As stated in theorem 3, a layered Cascade architecture is guaranteed to converge to the 
global optimum if we keep the best set of support vectors produced in one layer, and 
use it in at least one of the subsets in the next layer. This is the case in the binary 
Cascade shown in Figure 1. However, not all layers meet assertion ii) of Definition 1. 
The union of sets in a layer is not equal to the whole training set, except in the first 
layer. By introducing the feedback loop that enters the result of the last layer into the 
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first one, combined with all non-support vectors, we fulfill all assertions of Definition 
1. We can test for global convergence in layer 1 and do a fast filtering in the 
subsequent layers. 

2 .3   In terpre ta t ion  o f  the  SVM  f i l t er ing  process  

An intuitive picture of the filtering process is provided in Figure 2. If a subset Ω⊂S  
is chosen randomly from the training set, it will most likely not contain all support 
vectors of Ω and its support vectors may not be support vectors of the whole problem. 
However, if there is not a serious bias in a subset, support vectors of S are likely to 
contain some support vectors of the whole problem. Stated differently, it is plausible 
that ‘interior’ points in a subset are going to be ‘interior’ points in the whole set. 
Therefore, a non-support vector of a subset has a good chance of being a non-support 
vector of the whole set and we can eliminate it from further analysis. 

 

Figure 2:  A toy problem illustrating the filtering process.  Two disjoint subsets 
are selected from the training data and each of them is optimized individually (left, 
center; the data selected for the optimizations are the solid elements).  The support 
vectors in each of the subsets are marked with frames. They are combined for the 
final optimization (right), resulting in a classification boundary (solid curve) close 
to the one for the whole problem (dashed curve). 

3 Distributed Optimization 

                
Figure 3: A Cascade with two input sets D1, D2. Wi, Gi and Qi are objective 
function, gradient, and kernel matrix, respectively, of SVMi (in vector notation); ei 
is a vector with all 1. Gradients of SVM1 and SVM2 are merged (Extend) as 
indicated in (6) and are entered into SVM3. Support vectors of SVM3 are used to 
test D1, D2 for violations of the KKT conditions. Violators are combined with the 
support vectors for the next iteration. 

 
Section 2 shows that a distributed architecture like the Cascade indeed converges to the 
global solution, but no indication is provided how efficient this approach is. For a good 
performance we try to advance the optimization as much as possible in each stage. This 
depends on how the data are split initially, how partial results are merged and how well an 
optimization can start from the partial results provided by the previous stage. We focus on 
gradient-ascent algorithms here, and discuss how to handle merging efficiently. 

(5) 

;

;
2

1

ii
T
ii

i
T

iii
T
ii

eQG

eQW

rrr

rrrr

+−=

+−=

α

ααα



 

3 .1  M erg ing  subse t s  

For this discussion we look at a Cascade with two layers (Figure 3). When merging the 
two results of SVM1 and SVM2, we can initialize the optimization of SVM3 to 
different starting points. In the general case the merged set starts with the following 
optimization function and gradient: 
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We consider two possible initializations: 
Case 1: 0; 2111

rrr == ααα SVMof ;  

Case 2: 
222111 ; SVMofSVMof αααα rrr == . 

Since each of the subsets fulfills the KKT conditions, each of these cases represents a 
feasible starting point with: 0=∑ ii yα . 

Intuitively one would probably assume that case 2 is the preferred one since we start 
from a point that is optimal in the two spaces defined by the vectors D1 and D2. If Q12 
is 0 (Q21 is then also 0 since the kernel matrix is symmetric), the two spaces are 
orthogonal (in feature space) and the sum of the two solutions is the solution of the 
whole problem. Therefore, case 2 is indeed the best choice for initialization, because 
it represents the final solution. If, on the other hand, the two subsets are identical, then 
an initialization with case 1 is optimal, since this represents now the solution of the 
whole problem. In general, we are probably somewhere between these two cases and 
therefore it is not obvious, which case is best.  

While the theorems of section 2 guarantee the convergence to the global optimum, 
they do not provide any indication how fast this going to happen. Empirically we find 
that the Cascade converges quickly to the global solution, as is indicated in the 
examples below. All the problems we tested converge in 2 to 5 passes. 

4 Experimental  results  
We implemented the Cascade architecture for a single processor as well as for a 
cluster of processors and tested it extensively with several problems; the largest are: 
MNIST1,  FOREST2, NORB3 (all are converted to 2-class problems). One of the main 
advantages of the Cascade architecture is that it requires far less memory than a single 
SVM, because the size of the kernel matrix scales with the square of the active set. 
This effect is illustrated in Figure 4. It has to be emphasized that both cases, single 
SVM and Cascade, use shrinking, but shrinking alone does not solve the problem of 
exorbitant sizes of the kernel matrix.  

A good indication of the Cascade’s inherent efficiency is obtained by counting the 
number of kernel evaluations required for one pass. As shown in Table 1, a 9-layer 
Cascade requires only about 30% as many kernel evaluations as a single SVM for 

                                                           
1 MNIST: handwritten digits, d=784 (28x28 pixels); training: 60,000; testing: 10,000; 
classes: odd digits - even digits;  http://yann.lecun.com/exdb/mnist. 
2 FOREST: d=54; class 2 versus rest; training: 560,000; testing: 58,100 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/covtype.info. 
3 NORB: images, d=9,216 ; trainingr=48,600; testing=48,600; monocular; merged class 0 
and 1 versus the rest. http://www.cs.nyu.edu/~ylclab/data/norb-v1.0 
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100,000 training vectors. How many kernel evaluations actually have to be computed 
depends on the caching strategy and the memory size. 

Number of Iterations

one SVM

Cascade SVM

6,000

4,000

2,000

Active set size

 

Figure 4: The size of the active set as a function of the number of iterations for a 
problem with 30,000 training vectors. The upper curve represents a single SVM, 
while the lower one shows the active set size for a 4-layer Cascade. 

As indicated in Table 1, this parameter, and with it the compute times, are reduced 
even more. Therefore, even a simulation on a single processor can produce a speed-up 
of 5x to 10x or more, depending on the available memory size. For practical purposes 
often a single pass through the Cascade produces sufficient accuracy (compare Figure 
5). This offers a particularly simple way for solving problems of a size that would 
otherwise be out of reach for SVMs. 

Number of Layers 1 2 3 4 5 6 7 8 9 
K-eval request x109 106 89 77 68 61 55 48 42 38 

K-eval x109 33 12 4.5 3.9 2.7 2.4 1.9 1.6 1.4 

Table 1: Number of Kernel evaluations (requests and actual, with a cache size of 
800MB) for different numbers of layers in the Cascade (single pass). The number 
of Kernel evaluations is reduced as the number of Cascade layers increases. Then, 
larger amounts of the problems fit in the cache, reducing the actual Kernel 
computations even more. Problem: FOREST, 100K vectors. 

Iteration Training 
time 

Max # training 
vect. per machine 

# Support 
Vectors 

W Acc. 

0 21.6h 72,658 54,647 167427 99.08% 
1 22.2h 67,876 61,084 174560 99.14% 
2 0.8h 61,217 61,102 174564 99.13% 

Table 2: Training times for a large data set with 1,016,736 vectors (MNIST was 
expanded by warping the handwritten digits). A Cascade with 5 layers is executed 
on a Linux cluster with 16 machines (AMD 1800, dual processors, 2GB RAM per 
machine). The solution converges in 3 iterations. Shown are also the maximum 
number of training vectors on one machine and the number of support vectors in 
the last stage. W: optimization function; Acc: accuracy on test set. Kernel: RBF, 
gamma=1; C=50. 

Table 2 shows how a problem with over one million vectors is solved in about a day 
(single pass) with a generalization performance equivalent to the fully converged 
solution. While the full training set contains over 1M vectors, one processor never 
handles more than 73k vectors in the optimization and 130k for the convergence test. 
The Cascade provides several advantages over a single SVM because it can reduce 
compute- as well as storage-requirements. The main limitation is that the last layer 
consists of one single optimization and its size has a lower limit given by the number 
of support vectors. This is why the acceleration saturates at a relatively small number 



 

of layers. Yet this is not a hard limit since a single optimization can be distributed over 
multiple processors as well, and we are working on efficient implementations of such 
algorithms. 
 

 
Figure 5: Speed-up for a parallel implementation of the Cascades with 1 to 5 
layers (1 to 16 SVMs, each running on a separate processor), relative to a single 
SVM: single pass (left), fully converged (middle) (MNIST, NORB: 3 iterations, 
FOREST: 5 iterations). On the right is the generalization performance of a 5-layer 
Cascade, measured after each iteration.  For MNIST and NORB, the accuracy after 
one pass is the same as after full convergence (3 iterations). For FOREST, the 
accuracy improves from 90.6% after a single pass to 91.6% after convergence (5 
iterations). Training set sizes: MNIST: 60k, NORB: 48k, FOREST: 186k. 
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