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Abstract 

Successful application of reinforcement learning algorithms often 
involves considerable hand-crafting of the necessary non-linear 
features to reduce the complexity of the value functions and hence 
to promote convergence of the algorithm. In contrast, the human 
brain readily and autonomously finds the complex features when 
provided with sufficient training. Recent work in machine learning 
and neurophysiology has demonstrated the role of the basal ganglia 
and the frontal cortex in mammalian reinforcement learning. This 
paper develops and explores new reinforcement learning 
algorithms inspired by neurological evidence that provides 
potential new approaches to the feature construction problem. The 
algorithms are compared and evaluated on the Acrobot task. 

1  Introduction 

Reinforcement learning algorithms often face the problem of finding useful complex 
non-linear features [1]. Reinforcement learning with non-linear function 
approximators like backpropagation networks attempt to address this problem, but 
in many cases have been demonstrated to be non-convergent [2]. The major 
challenge faced by these algorithms is that they must learn a value function instead 
of learning the policy, motivating an interest in algorithms directly modifying the 
policy [3].  

In parallel, recent work in neurophysiology shows that the basal ganglia can be 
modeled by an actor-critic version of temporal difference (TD) learning [4][5][6], a 
well-known reinforcement learning algorithm. However, the basal ganglia do not, 
by themselves, solve the problem of finding complex features. But the frontal 
cortex, which is known to play an important role in planning and decision-making, 
is tightly linked with the basal ganglia.  The nature or their interaction is still poorly 
understood, and is generating a growing interest in neurophysiology. 
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This paper presents new algorithms based on current neurophysiological evidence 
about brain functional organization. It tries to devise biologically plausible 
algorithms that may help overcome existing difficulties in machine reinforcement 
learning. The algorithms are tested and compared on the Acrobot task. They are also 
compared to TD using standard backpropagation as function approximator. 

2  Biological  Background 

The mammalian brain has multiple learning subsystems. Major learning components 
include the neocortex, the hippocampal formation (explicit memory storage system), 
the cerebellum (adaptive control system) and the basal ganglia (reinforcement 
learning, also known as instrumental conditioning). 

The cortex can be argued to be equipotent, meaning that, given the same input, any 
region can learn to perform the same computation. Nevertheless, the frontal lobe 
differs by receiving a particularly prominent innervation of a specific type of 
neurotransmitter, namely dopamine. The large frontal lobe in primates, and 
especially in humans, distinguishes them from lower mammals. Other regions of the 
cortex have been modeled using unsupervised learning methods such as ICA [7], but 
models of learning in the frontal cortex are only beginning to emerge. 

The frontal dopaminergic input arises in a part of the basal ganglia called ventral 
tegmental area (VTA) and the substantia nigra (SN). The signal generated by 
dopaminergic (DA) neurons resembles the effective reinforcement signal of 
temporal difference (TD) learning algorithms [5][8]. Another important part of the 
basal ganglia is the striatum. This structure is made of two parts, the matriosome 
and the striosome. Both receive input from the cortex (mostly frontal) and from the 
DA neurons, but the striosome projects principally to DA neurons in VTA and SN. 
The striosome is hypothesized to act as a reward predictor, allowing the DA signal 
to compute the difference between the expected and received reward. The 
matriosome projects back to the frontal lobe (for example, to the motor cortex). Its 
hypothesized role is therefore in action selection [4][5][6]. 

Although there have been several attempts to model the interactions between the 
frontal cortex and basal ganglia, little work has been done on learning in the frontal 
cortex. In [9], an adaptive learning system based on the cerebellum and the basal 
ganglia is proposed. In [10], a reinforcement learning model of the hippocampus is 
presented. In this paper, we do not attempt to model neurophysiological data per se, 
but rather to develop, from current neurophysiological knowledge, new and efficient 
biologically plausible reinforcement learning algorithms. 

3  The Model  

All models developed here follow the architecture depicted in Figure 1. The first 
layer (I) is the input layer, where activation represents the current state. The second 
layer, the hidden layer (H), is responsible for finding the non-linear features 
necessary to solve the task. Learning in this layer will vary from model to model. 
Both the input and the hidden layer feed the parallel actor-critic layers (A and V) 
which are the computational analogs of the striatal matriosome and striosome, 
respectively. They represent a linear actor-critic implementation of TD. 

The neurological literature reports an uplink from V and the reward to DA neurons 
which sends back the effective reinforcement signal e (dashed lines) to A, V and H. 
The A action units usually feed into the motor cortex, which controls muscle 
activation. Here, A’s are considered to represent the possible actions. The basal 
ganglia receive input mainly from the frontal cortex and the dopaminergic signal 



 

(e). They also receive some input from parietal cortex (which, as opposed to the 
frontal cortex, does not receive DA input, and hence, may be unsupervised). H will 
represent frontal cortex when given e and non-frontal cortex when not. The weights   
W, v and U correspond to weights into the layers A, V and H respectively (e is not 
weighted).  

 
Figure 1: Architecture of the models. 

Let xt be the vector of the input layer activations based on the state of the 
environment at time t. Let f be the sigmoidal activation function of hidden units in 
H. Then yt  = [f(u1xt), …,f(unxt)]T, the vector of activations of the hidden layer at 
time t, and where ui is a row of the weight matrix U. Let zt = [xt

T yt
T]T be the state 

description formed by the layers I and H at time t.  

3 .1  Actor -cr i t i c  

The actor-critic model of the basal ganglia developed here is derived from [4]. It is 
very similar to the basal ganglia model in [5] which has been used to simulate 
neurophysiological data recorded while monkeys were learning a task [6]. All units 
are linear weighted sums of activity from the previous layers. The actor units 
behave under a winner-take-all rule. The winner’s activity settles to 1, and the 
others to 0. The initial weights are all equal and non-negative in order to obtain an 
initial optimist policy. Beginning with an overestimate of the expected reward leads 
every action to be negatively corrected, one after the other until the best one 
remains. This usually favors exploration. 

Then V(zt) = vTzt. Let bt  = Wzt be the vector of  activation of the actor layer before 
the winner take all processing. Let at = argmax(bt,i) be the winning action index at 
time t, and let the vector ct be the activation of the layer A after the winner take all  
processing such that ct,a = 1 if a = at, 0 otherwise. 

3 .1 .1  Formal  descr ip t ion  

TD learns a function V of the state that should converge to the expected total 
discounted reward. In order to do so, it updates V such that  

( ) ( )[ ]ttt zVrEzV γ+→−1  

where rt is the reward at time t and γ the discount factor. A simple way to achieve 
that is to transform the problem into an optimization problem where the goal is to 
minimize: 
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It is also useful at this point, to introduce the TD effective reinforcement signal, 
equivalent to the dopaminergic signal [5]: 

( ) ( )1−−+= tttt zVzVre γ  

Thus: 2
teE = . 

A learning rule for the weights v of V can then be devised by finding the gradient of 
E with respect to the weights v. Here, V is the weighted sum of the activity of I and 
H. Thus, the gradient is given by 

[ ]12 −−=
∂
∂

ttt zze
v
E γ  

Adding a learning rate and negating the gradient for minimization gives the update:  

[ ]ttt zzev γα −=∆ −1  

Developing a learning rule for the actor units and their weights W using a cost 
function is a bit more complex. One approach is to use the tri-hebbian rule 

T
ttt zceW 11 −−=∆ α  

Remark that only the row vector of weights of the winning action is modified. 

This rule was first introduced, but not simulated, in [4]. It associates the error e to 
the last selected action. If the reward is higher than expected (e > 0), than the action 
units activated by the previous state should be reinforced. Conversely, if it is less 
than expected (e < 0), than the winning actor unit activity should be reduced for that 
state. This is exactly what this tri-hebbian rule does. 

3 .1 .2  Bio log ica l  jus t i f i ca t ion  

[4] presented the first description of an actor-critic architecture based on data from 
the basal ganglia that resemble the one here. The major difference is that the V 
update rule did not use the complete gradient information.  

A similar version was also developed in [5], but with little mathematical 
justification for the update rule. The model presented here is simpler and the critic 
update rule is basically the same, but justified neurologically. Our model also has a 
more realistic actor update rule consistent with neurological knowledge of plasticity 
in the corticostriatal synapses [11] (H to V weights). The main purpose of the model 
presented in [5] was to simulate dopaminergic activity for which V is the most 
important factor, and in this respect, it was very successful [6]. 

3 .2  Hidden  Layer  

Because the reinforcement learning layer is linear, the hidden layer must learn the 
necessary non-linearity to solve the task. The rules below are attempts at 
neurologically plausible learning rules for the cortex, assuming it has no clear 
supervision signal other than the DA signal for the frontal cortex. All hidden units 
weight vectors are initialized randomly and scaled to norm 1 after each update.  

• Fixed random 

This is the baseline model to which the other algorithms will be compared. The 
hidden layer is composed of randomly generated hidden units that are not trained.  



 

• ICA 

In [7], the visual cortex was modeled by an ICA learning rule. If the non-frontal 
cortex is equipotent, then any region of the cortex could be successfully modeled 
using such a generic rule. The idea of combining unsupervised learning with 
reinforcement learning has already proven useful [1], but the unsupervised features 
were trained prior to the reinforcement training. On the other hand, [12] has shown 
that different systems of this sort could learn concurrently. Here, the ICA rule from 
[13] will be used as the hidden layer. This means that the hidden units are learning 
to reproduce the independent source signals at the origin of the observed mixed 
signal. 

• Adaptive ICA (e-ICA) 

If H represents the frontal cortex, then an interesting variation of ICA is to multiply 
its update term by the DA signal e. The size of e may act as an adaptive learning 
rate whose source is the reinforcement learning system critic. Also, if the reward is 
less than expected (e < 0), the features learned by the ICA unit may be more 
counterproductive than helpful, and e pushes the learning away from those features.   

• e-gradient method 

Another possible approach is to base the update rule on the derivative of the 
objective function E applied to the hidden layer weights U, but constraining the 
update rule to only use information available locally. Let f’ be the derivative of f, 
then the gradient of E with respect to U is approximated by: 

( ) ( )[ ]112 −−′−′=
∂
∂

ttiittiit
i

xxufvxxufve
u
E γ  

Negating the gradient for minimization, adding a learning rate and removing the 
non-local weight information, gives the weight update rule: 

( ) ( )[ ]ttittiti xxufxxufeu ′−′=∆ −− γα 11  

Using the value of the weights v would lead to a rule that use non-local information. 
The cortex is unlikely to have this and might consider all the weights in v to be 
equal to some constant.  

To avoid neurons all moving in the same direction uniformly, we encourage the 
units on the hidden layer to minimize their covariance. This can be achieved by 
adding an inhibitory neuron. Let qt be the average activity of the hidden units at 
time t, i.e., the inhibitory neuron activity. Let tq  be the moving exponential average 
of qt. Since  

 [ ] ( ) ( )( )2

,
,,2 ,cov1
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ji
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qVar −≅= ∑  

and ignoring the f’s non-linearity , the gradient of the Var[qt] with respect to the 
weights U is approximated by: 
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Combined with the previous equation, this results in a new update rule: 

( ) ( )[ ] [ ] tttttittiti xqqxxufxxufeu −+′−′=∆ −− αγα 11  



 

When allowing the discount factor to be different on the hidden layer, we found that 
γ = 0 gave much better results (e-gradient(0)). 

4  Simulat ions & Results  

All models of section 3 were run on the Acrobot task [8]. This task consists of a 
two-link pendulum with torque on the middle joint. The goal is to bring the tip of 
the second pole in a totally upright position. 

4 .1  The  task:  Acrobot  

The input was coded using 12 equidistant radial basis functions for each angle and 
13 equidistant radial basis functions for each angular velocity, for a total of 50 non-
negative inputs. This somewhat simulates the input from joint-angle receptors. A 
reward of 1 was given only when the final state was reached (in all other case, the 
reward of an action was 0). Only 3 actions were available (3 actor units), either -1, 0 
or 1 unit of torque. The details can be found in [8].   

50 networks with different random initialization where run for all models for 100 
episodes (an episode is the sequence of steps the network performs to achieve the 
goal from the start position). Episodes were limited to 10000 steps. A number of 
learning rate values were tried for each model (actor-critic layer learning rate, and 
hidden layer learning rate). The selected parameters were the ones for which the 
average number of steps per episode plus its standard deviation was the lowest. All 
hidden layer models got a learning rate of 0.1. 

4 .2  Resu l t s  

Figure 2 displays the learning curves of every model evaluated. Three variables 
were compared: overall learning performance (in number of steps to success per 
episode), final performance (number of steps on the last episode), and early learning 
performance (number of steps for the first episode). 
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Figure 2: Learning curves of the models.
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Figure 3: Average number of steps per 
episode with 95% confidence interval. 

4 .2 .1  Space  under  the  l earning  curve  

Figure 3 shows the average steps per episode for each model in decreasing order. 
All models needed fewer steps on average than baseline (which has no training at 
the hidden layer). In order to assess the performance of the models, an ANOVA 
analysis of the average number of steps per episode over the 100 episodes was 
performed. Scheffé post-hoc analysis revealed that the performance of every model 



 

was significantly different from every other, except for e-gradient and e-ICA (which 
are not significantly different from each other). 

4 .2 .2  Fina l  performance  

ANOVA analysis was also used to determine the final performance of the models, 
by comparing the number of steps on the last episode. Scheffé test results showed 
that all but e-ICA are significantly better than the baseline. Figure 4 shows the 
results on the last episode in increasing order. The curved lines on top show the 
homogeneous subsets. 
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Figure 4: Number of steps on the last 
episode with 95% confidence interval. 

Number of Steps on the First Episode

0

500

1000

1500

2000

2500

3000

e-Gradient(0) e-ICA e-Gradient Baseline ICA

Hidden Layer

S
te

ps
 p

er
 E

pi
so

de

 
Figure 5: Number of steps on the first 
episode with 95% confidence interval. 

4.2.3 Ear ly  l earn ing  

Figure 2 shows that the models also differed in their initial learning. To assess how 
different those curves are, an ANOVA was run on the number of steps on the very 
first episode. Under this measure, e-gradient(0) and e-ICA were significantly faster 
than the baseline and ICA was significantly slower (Figure 5). 

It makes sense for ICA to be slower at the beginning, since it first has to stabilize 
for the RL system to be able to learn from its input. Until the ICA has stabilized, the 
RL system has moving inputs, and hence cannot learn effectively. Interestingly, 
e-ICA was protected against this effect, having a start-up significantly faster than 
the baseline. This implies that the e signal could control the ICA learning to move 
synergistically with the reinforcement learning system. 

4 .3  Externa l  compar i son  

Acrobot was also run using standard backpropagation with TD and ε-Greedy policy. 
In this setup, a neural network of 50 inputs, 50 hidden sigmoidal units, and 1 linear 
output was used as function approximator for V. The network had cross-connections 
and its weights were initialized as in section 3 such that both architectures closely 
matched in terms of power. In this method, the RHS of the TD equation is used as a 
constant target value for the LHS. A single gradient was applied to minimize the 
squared error after the result of each action. Although not different from the 
baseline on the first episode, it was significantly worst on overall and final 
performance, unable to constantly improve. This is a common problem when using 
backprop networks in RL without handcrafting the necessary complex features. We 
also tried SARSA (using one network per action), but results were worst than TD. 

The best result we found in the literature on the exact same task are from [8]. They 
used SARSA(λ) with a linear combination of tiles. Tile coding discretized the input 
space into small hyper-cubes and few overlapping tilings were used. From available 
reports, their first trial could be slower than e-gradient(0) but they could reach better 



 

final performance after more than 100 episodes with a final average of 75 steps 
(after 500 episodes). On the other hand, their function had about 75000 weights 
while all our models used 2900 weights. 

5  Discussion 

In this paper we explored a new family of biologically plausible reinforcement 
learning algorithms inspired by models of the basal ganglia and the cortex. They use 
a linear actor-critic model of the basal ganglia and were extended with a variety of 
unsupervised and partially supervised learning algorithms inspired by brain 
structures. The results showed that pure unsupervised learning was slowing down 
learning and that a simple quasi-local rule at the hidden layer greatly improved 
performance. Results also demonstrated the advantage of such a simple system over 
the use of function approximators such as backpropagation. Empirical results 
indicate a strong potential for some of the combinations presented here. It remains 
to test them on further tasks, and to compare them to more reinforcement learning 
algorithms. Possible loops from the actor units to the hidden layer are also to be 
considered. 
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