
Markov Networks for Detecting

Overlapping Elements in Sequence Data

Joseph Bockhorst
Dept. of Computer Sciences

University of Wisconsin
Madison, WI 53706
joebock@cs.wisc.edu

Mark Craven
Dept. of Biostatistics and Medical Informatics

University of Wisconsin
Madison, WI 53706

craven@biostat.wisc.edu

Abstract

Many sequential prediction tasks involve locating instances of pat-
terns in sequences. Generative probabilistic language models, such
as hidden Markov models (HMMs), have been successfully applied
to many of these tasks. A limitation of these models however, is
that they cannot naturally handle cases in which pattern instances
overlap in arbitrary ways. We present an alternative approach,
based on conditional Markov networks, that can naturally repre-
sent arbitrarily overlapping elements. We show how to efficiently
train and perform inference with these models. Experimental re-
sults from a genomics domain show that our models are more accu-
rate at locating instances of overlapping patterns than are baseline
models based on HMMs.

1 Introduction

Hidden Markov models (HMMs) and related probabilistic sequence models have
been among the most accurate methods used for sequence-based prediction tasks
in genomics, natural language processing and other problem domains. One key
limitation of these models, however, is that they cannot represent general overlaps
among sequence elements in a concise and natural manner. We present a novel
approach to modeling and predicting overlapping sequence elements that is based on
undirected Markov networks. Our work is motivated by the task of predicting DNA
sequence elements involved in the regulation of gene expression in bacteria. Like
HMM-based methods, our approach is able to represent and exploit relationships
among different sequence elements of interest. In contrast to HMMs, however, our
approach can naturally represent sequence elements that overlap in arbitrary ways.

We describe and evaluate our approach in the context of predicting a bacterial
genome’s genes and regulatory “signals” (together its regulatory elements). Part
of the process of understanding a given genome is to assemble a “parts list”, often
using computational methods, of its regulatory elements. Predictions, in this case,
entail specifying the start and end coordinates of subsequences of interest. It is
common in bacterial genomes for these important sequence elements to overlap.



prom1 prom2 prom3
gene1 gene 2

term1

prom termgene

START END
(a) (b)

Figure 1: (a) Example arrangement of two genes, three promoters and one terminator in
a DNA sequence. (b) Topology of an HMM for predicting these elements. Large circles
represent element-specific sub-models and small gray circles represent inter-element sub-
models, one for each allowed pair of adjacent elements. Due to the overlapping elements,
there is no path through the HMM consistent with the configuration in (a).

Our approach to predicting overlapping sequence elements, which is based on dis-
criminatively trained undirected graphical models called conditional Markov net-
works [5, 10] (also called conditional random fields), uses two key steps to make a
set of predictions. In the first step, candidate elements are generated by having a set
of models independently make predictions. In the second step, a Markov network
is constructed to decide which candidate predictions to accept.

Consider the task of predicting gene, promoter, and terminator elements encoded in
bacterial DNA. Figure 1(a) shows an example arrangement of these elements in a
DNA sequence. Genes are DNA sequences that encode information for constructing
proteins. Promoters and terminators are DNA sequences that regulate transcrip-
tion, the first step in the synthesis of a protein from a gene. Transcription begins
at a promoter, proceeds downstream (left-to-right in Figure 1(a)), and ends at a
terminator. Regulatory elements often overlap each other, for example prom2 and
prom3 or gene1 and prom2 in Figure 1.

One technique for predicting these elements is first to train a probabilistic sequence
model for each element type (e.g. [2, 9]) and then to “scan” an input sequence
with each model in turn. Although this approach can predict overlapping elements,
it is limited since it ignores inter-element dependencies. Other methods, based on
HMMs (e.g. [11, 1]), explicitly consider these dependencies. Figure 1(b) shows an
example topology of such an HMM. Given an input sequence, this HMM defines a
probability distribution over parses, partitionings of the sequence into subsequences
corresponding to elements and the regions between them. These models are not nat-
urally suited to representing overlapping elements. For the case shown in Figure 1(a)
for example, even if the subsequences for gene1 and prom2 match their respective
sub-models very well, since both elements cannot be in the same parse there is a
competition between predictions of gene1 and prom2. One could expand the state
set to include states for specific overlap situations however, the number of states in-
creases exponentially with the number of overlap configurations. Alternatively, one
could use the factorized state representation of factorial HMMs [4]. These models,
however, assume a fixed number of loosely connected processes evolving in parallel,
which is not a good match to our genomics domain.

Like HMMs, our method, called CMN-OP (conditional Markov networks for over-
lapping patterns), employs element-specific sub-models and probabilistic constraints
on neighboring elements qualitatively expressed in a graph. The key difference be-
tween CMN-OP and HMMs is the probability distributions they define for an input
sequence. While, as mentioned above, an HMM defines a probability distribution
over partitions of the sequence, a CMN-OP defines a probability distribution over
all possible joint arrangements of elements in an input sequence. Figure 2 illustrates
this distinction.



2 3 4 5 6 7 81

2 3 4 5 6 7 81

2 3 4 5 6 7 81 2 3 4 5 6 7 81

sample space

(a) HMM (b) CMN−OP

end position

1

2

3

4

5

6

7

8

st
ar

t p
os

iti
on

predicted labels sample spacepredicted signals

Figure 2: An illustration of the difference in the sample spaces on which probability
distributions over labelings are defined by (a) HMMs and (b) CMN-OP models. The left
side of (a) shows a sequence of length eight for which an HMM has predicted that an
element of interest occupies two subsequences, [1:3] and [6:7]. The darker subsequences,
[4:5] and [8:8], represent sequence regions between predicted elements. The right side of
(a) shows the corresponding event in the sample space of the HMM, which associates one
label with each position. The left side of (b) shows four predicted elements made by a
CMN-OP model. The right side of (b) illustrates the corresponding event in the CMN-OP
sample space. Each square corresponds to a subsequence, and an event in this sample
space assigns a (possibly empty) label to each sub-sequence.

2 Models

A conditional Markov network [5, 10] (CMN) defines the conditional probability
distribution Pr(Y|X) where X is a set of observable input random variables and Y
is a set of output random variables. As with standard Markov networks, a CMN
consists of a qualitative graphical component G = (V,E) with vertex set V and
edge set E that encodes a set of conditional independence assertions along with a
quantitative component in the form of a set of potentials Φ over the cliques of G.
In CMNs, V = X ∪ Y. We denote an assignment of values to the set of random
variables U with u. Each clique, q = (Xq,Yq), in the clique set Q(G) has a potential
function φq(xq,yq) ∈ Φ that assigns a non-negative number to each of the joint
settings of (Xq,Yq). A CMN (G, Φ) defines the conditional probability distribution
Pr(y|x) = 1

Z(x)

∏

q∈Q(G) φq(xq,yq) where Z(x) =
∑

y′

∏

q∈Q(G) φq(xq,y
′
q) is the

x dependent normalization factor called the partition function. One benefit of
CMNs for classification tasks is that they are typically discriminatively trained by
maximizing a function based on the conditional likelihood Pr(Y|X) over a training
set rather than the joint likelihood Pr(Y,X).

A common representation for the potentials φq(yq,xq) is with a log-linear model:
φq(yq,xq) = exp{

∑

b wb
qf

b
q (yq,xq)} = exp{wT

q · fq(yq,xq)}. Here wb
q is the weight

of feature f b
q and wq and fq are column vectors of q’s weights and features.

Now we show how we use CMNs to predict elements in observation sequences.
Given a sequence x of length L, our task is to identify the types and locations of
all instances of patterns in P = {P1, ..., PN} that are present in x where P is a set
of pattern types. In the genomics domain x is a DNA sequence and P is a set of
regulatory elements such as {gene, promoter, terminator}.

A match m of a pattern to x specifies a subsequence xi:j and a pattern type Pk ∈ P.
We denote the set of all matches of pattern types in P to x with M(P,x). We call a
subset C = (m1,m2, ...,mM ) of M(P,x) a configuration. Matches in C are allowed



PROM GENE TERM

START END

X

1
Y

2
Y Y

L+1

(a) (b)

Figure 3: (a) The structure of the CMN-OP induced for the sequence x of length L. The
a

th pattern match Ya is conditionally independent of its non-neighbors given its neighbors
X, Ya−1 and Ya+1. (b) The interaction graph we use in the regulatory element prediction
task. Vertices are the pattern types along with START and END. Edges connect pattern
types that may be adjacent. Edges from START connect to pattern types that may be
the first matches Edges into END come from pattern types that may be the last matches.

to overlap however, we assume that no two matches in C have the same start index1.
Thus, the maximum size of a configuration C is L, and the elements of C may be
ordered by start position such that ma ≤ ma+1. Our models define a conditional
probability distribution over configurations given an input sequence x.

Given a sequence x of length L, the output random variables of our models are
Y = (Y1, Y2, ..., YL, YL+1). We represent a configuration C = (m1,m2, ...,mM )
with Y in the following way. If a is less than or equal to the configuration size
M , we assign Ya to the ath match in C (Ya = ma), otherwise we set Ya equal to a
special value null. Note that YL+1 will always be null; it is included for notational
convenience. Our models define the conditional distribution Pr(Y|X).

Our models assume that a pattern match is independent of other matches given
its neighbors. That is, Ya is independent of Ya′ for a′ < a − 1 or a′ > a + 1
given X, Ya−1 and Ya+1. This is analogous to the HMM assumption that the next
state depends only on the current state. The conditional Markov network structure
associated with this assumption is shown in Figure 3(a). The cliques in this graph
are {Ya, Ya+1,X} for 1 ≤ a ≤ L. We denote the clique {Ya, Ya+1,X} with qa.

We define the clique potential of qa for a 6= 1 as the product of a pattern match
term g(ya,x) and a pattern interaction term h(ya, ya+1,x). The functions g() and
h() are shared among all cliques so φqa

(ya, ya+1,x) = g(ya,x) × h(ya, ya+1,x) for
2 ≤ a ≤ L. The first clique q1 includes an additional start placement term α(y1,x)
that scores the type and position of the first match y1. To ensure that real matches
come before any null settings and that additional null settings do not affect
Pr(y|x), we require that g(null,x) = 1, h(null,null, x) = 1 and h(null,ya,
x) = 0 for all x and ya 6= null. The pattern match term measures the agreement
between the matched subsequence and the pattern type associated with ya. In
the genomics domain our representation of the sequence match term is based on
regulatory element specific HMMs. The pattern interaction term measures the
compatibility between the types and spacing (or overlap) of adjacent matches.

A Conditional Markov Network for Overlapping Patterns (CMN-OP) = (g, h, α)
specifies a pattern match function g, pattern interaction function h and
start placement function α that define the conditional distribution Pr(y|x) =

1
Z(x)

∏L
a=1 φa(qa,x) = α(y1)

Z(x)

∏L
a=1 g(ya,x)h(ya, ya+1,x) where Z(x) is the normal-

izing partition function. Using the log-linear representation for g() and h() we have

Pr(y|x) = α(y1)
Z(x) exp{

∑L
a=1 wT

g · fg(ya,x) + wT
h · fh(ya, ya+1,x)}. Here wg, fg, wh

and fh are g() and h()’s weights and features.

1We only need to require configurations to be ordered sets. We make this slightly more
stringent assumption to simplify the description of the model.



2.1 Representation

Our representation of the pattern match function g() is based on HMMs. We
construct an HMM with parameters Θk for each pattern type Pk along with a single
background HMM with parameters ΘB . The pattern match score of ya 6= null

with subsequence xi:j and pattern type Pk is the odds Pr(xi:j |Θk)/Pr(xi:j |ΘB).
We have a feature fk

g (ya,x) for each pattern type Pk whose value is the logarithm
of the odds if the pattern associated with ya is Pk and zero otherwise. Currently,
the weights wg are not trained and are fixed at 1. So, wT

g · fg(ya,x) = fk
g (ya,x) =

log(Pr(xi:j |Θk)/Pr(xi:j |ΘB)) where Pk is the pattern of ya.

Our representation of the pattern interaction function h() consists of two compo-
nents: (i) a directed graph I called the interaction graph that contains a vertex
for each pattern type in P along with special vertices START and END and (ii)
a set of weighted features for each edge in I. The interaction graph encodes qual-
itative domain knowledge about allowable orderings of pattern types. The value
of h(ya, ya+1,x) = wT

h · fh(ya, ya+1,x) is non-zero only if there is an edge in I
from the pattern type associated with ya to the pattern type associated with ya+1.
Thus, any configuration with non-zero probability corresponds to a path through
I. Figure 3(b) shows the interaction graph we use to predict bacterial regulatory
elements. It asserts that between the start positions of two genes there may be no
element starts, a single terminator start or zero or more promoter starts with the
requirement that all promoters start after the start of the terminator. Note that
in CMN-OP models, the interaction graph indicates legal orderings over the start
position of matches not over complete matches as in an HMM.

Each of the pattern interaction features f ∈ fh is associated with an edge in the
interaction graph I. Each edge e in I has single bias feature f b

e and a set of distance
features fD

e . The value of f b
e (ya, ya+1,x) is 1 if the pattern types connected by e

correspond to the types associated with ya and ya+1 and 0 otherwise. The distance
features for edge e provide a discretized representation of the distance between (or
amount of overlap of) two adjacent matches of types consistent with e. We associate
each distance feature f r

e ∈ fD
e with a range r. The value of f r

e (ya, ya+1,x) is 1 if
the (possibly negative) difference between the start position of ya+1 and the end
position of ya is in r, otherwise it is 0. The set of ranges for a given edge are non-
overlapping. So, h(ya, ya+1,x) = exp(wT

h · fh(ya, ya+1,x)) = exp(wb
e + wr

e) where e
is the edge for ya and ya+1, wb

e is the weight of the bias feature f b
e and wr

e is the
weight of the single distance feature f r

e whose range contains the spacing between
the matches of ya and ya+1.

3 Inference and Training

Given a trained model with weights w and an input sequence x, the inference task
is to determine properties of the distribution Pr(y|x). Since the cliques of a CMN-
OP form a chain we could perform exact inference with the belief propagation (BP)
algorithm [8]. The number of joint settings in one clique grows O(L4), however,
giving BP a running time of O(L5) and which is impractical for longer sequences.
The exact inference procedure we use, which is inspired the energy minimization
algorithm for pictorial structures [3], runs in O(L2) time.

Our inference procedure exploits two properties of our representation of the pattern
interaction function h(). First, we use the invariance of h(ya, ya+1, x) to the start
position of ya and the end position of ya+1. In this section, we make this explicit by
writing h(ya, ya+1, x) as h(k, k′, d) where k and k′ are the pattern types of ya and



ya+1 respectively and d is the distance between (or overlap of if negative) ya and
ya+1. The second property we use is the fact that the difference between h(k, k′, d)
and h(k, k′, d + 1) is non-zero only if d is the maximum value of the range of one of
the distance features f r

e ∈ fD
e associated with the edge e = k → k′

The inference procedure we use for our CMN-OP models consists of a forward
pass and a backward pass. Due to space limitations, we only describe the key
aspects of the forward pass. The forward pass fills an L × L × N matrix F
where we define F (i, j, k) to be the sum of the scores of all partial configura-
tions ỹ that end with y∗ where y∗ is the match of xi:j to Pk: F (i, j, k) ≡
g(y∗,x)

∑

ỹ α(y1,x)
∏

ya∈(ỹ\y∗) g(ya,x)h(ya, ya+1,x) Here ỹ = (y1, y2, ..., y
∗) and

\ denotes set difference.

F has a recursive formulation:

F (i, j, k) = gk(y∗,x)







αk(i) +
i−1
∑

i′=1

L
∑

j′=i′

N
∑

k′=1

F (i′, j′, k′)h(k′, k, i − j′)







.

The triple sum is over all possible adjacent previous matches. Due to the first
property of h just discussed, the value of the triple sum for setting F (i, j, k) and
F (i, j′, k) is the same for any j′. We cache the value of the triple sum in the L×N
matrix Fin where Fin(i, k) holds the value needed for setting F (i, j ′, k) for any j′.

We begin the forward pass with i = 1 and set the values of F (1, j, k) for all j and
k before incrementing i. After i is incremented, we use the second property of h to
update Fin in time O(N2B), which is independent of the sequence length L, where
B is the number of “bins” used in our discretized represenation of distance. The
overall time complexity of the forward pass is O(LN 2B + L2N). The first term is
for updating Fin and the second term is for the constant time setting of the O(L2N)
elements of F . If the sequence length L dominates N and B, as it does in the gene
regulation domain, the effective running time is O(L2).

Training involves estimating the weights w from a training set D. An element d of
D is a pair (xd, ŷd) where xd is a fully observable sequence and ŷd is a partially
observable configuration for xd. To help avoid overfitting we assume a zero-mean
Gaussian prior over the weights and optimize the log of the MAP objective function

following Taskar et al. [10]: L(w, D) =
∑

d∈D(log Pr(ŷd|xd)) −
wT ·w
2σ2 .

The value of the gradient ∇L(w, D) in the direction of weight w ∈ w is: ∂L(w,D)
∂w

=
∑

d∈D(E[Cw|xd, ŷd] − E[Cw|xd]) −
w
σ2 where Cw is a random variable representing

the number of times the binary feature of w is 1. The expectation is relative to
Pr(y|x) defined by the current setting of w. The value in the summation is the
difference in the expected number of times w is used given both x and ŷ to the
expected number of times w is used given just x. The last term is the shrinking
effect of the prior. With the gradient in hand, we can use any of a number of
optimization procedures to set w. We use the quasi-Newton method BFGS [6].

4 Empirical Evaluation

In this section we evaluate our Markov network approach by applying it to recognize
regulatory signals in the E. coli genome. Our hypothesis is that the CMN-OP
models will provide more accurate predictions than either of two baselines: (i)
predicting the signals independently, and (ii) predicting the signals using an HMM.

All three approaches we evaluate – the Markov networks and the two baselines –
employ two submodels [1]. The first submodel is an HMM that is used to predict



(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Promoters

CMN-OP
HMM

SCAN

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Terminators

CMN-OP
HMM

SCAN

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Overlapping Terminators

CMN-OP
HMM

SCAN

Figure 4: Precision-recall curves for the CMN-OP, HMM and SCAN models on (a) the
promoter localization task, (b) the terminator localization task and (c) the terminator
localization task for terminators known to overlap genes or promoters.

candidate promoters and the second submodel is a stochastic context free grammar
(SCFG) that is used to predict candidate terminators. The first baseline approach,
which we refer to as SCAN, involves “scanning” a promoter model and a terminator
model along each sequence being processed, and at each position producing a score
indicating the likelihood that a promoter or terminator starts at that position. With
this baseline, each prediction is made independently of all other predictions. The
second baseline is an HMM, similar to the one depicted in Figure 1(b). The HMM
that we use here, does not contain the gene submodel shown in Figure 1(b) because
the sequences we use in our experiments do not contain entire genes. We have the
HMM and CMN-OP models make terminator and promoter predictions for each
position in each test sequence. We do this using posterior decoding which involves
having a model compute the probability that a promoter (terminator) ends at a
specified position given that the model somehow explains the sequence.

The data set we use consists of 2,876 subsequences of the E. coli genome that
collectively contain 471 known promoters and 211 known terminators. Using ten-
fold cross-validation, we evaluate the three methods by considering how well each
method is able to localize predicted promoters and terminators in the test sequences.
Under this evaluation criterion, a correct prediction predicts a promoter (termina-
tor) within k bases of an actual promoter (terminator). We set k to 10 for promoters
and to 25 for terminators. For all methods, we plot precision-recall (PR) curves by
varying a threshold on the prediction confidences. Recall is defined as TP

TP+FN
, and

precision is defined as TP
TP+FP

, where TP is the number of true positive predictions,
FN is the number of false negatives, and FP is the number of false positives.

Figures 4(a) and 4(b) show PR curves for the promoter and terminator localization
tasks, respectively. For both cases, the HMM and CMN-OP models are clearly
superior to the SCAN models. This result indicates the value of taking the regu-
larities of relationships among these signals into account when making predictions.
For the case of localizing terminators, the CMN-OP PR curve dominates the curve
for the HMMs. The difference is not so marked for promoter localization, however.
Although the CMN-OP curve is better at high recall levels, the HMM curve is
somewhat better at low recall levels. Overall, we conclude that these results show
the benefits of representing relationships among predicted signals (as is done in the
HMMs and CMN-OP models) and being able to represent and predict overlapping
signals. Figure 4(c) shows the PR curves specifically for a set of filtered test sets
in which each actual terminator overlaps either a gene or a promoter. These curves
indicate that the CMN-OP models have a particular advantage in these cases.



5 Conclusion

We have presented an approach, based on Markov networks, able to naturally rep-
resent and predict overlapping sequence elements. Our approach first generates a
set of candidate elements by having a set of models independently make predictions.
Then, we construct a Markov network to decide which candidate predictions to ac-
cept. We have empirically validated our approach by using it to recognize promoter
and terminator “signals” in a bacterial genome. Our experiments demonstrate that
our approach provides more accurate predictions than baseline HMM models.

Although we describe and evaluate our approach in the context of genomics, we
believe that it has other applications as well. Consider, for example, the task of
segmenting and indexing audio and video streams [7]. We might want to annotate
segments of a stream that correspond to specific types of events or to particular
individuals who appear or are speaking. Clearly, there might be overlapping events
and appearances of people, and moreover, there are likely to be dependencies among
events and appearances. Any problem with these two properties is a good candidate
for our Markov-network approach.

Acknowledgments

This research was supported in part by NSF grant IIS-0093016, and NIH grants
T15-LM07359-01 and R01-LM07050-01.

References

[1] J. Bockhorst, Y. Qiu, J. Glasner, M. Liu, F. Blattner, and M. Craven. Predicting
bacterial transcription units using sequence and expression data. Bioinformatics,
19(Suppl. 1):i34–i43, 2003.

[2] M. Ermolaeva, H. Khalak, O. White, H. Smith, and S. Salzberg. Prediction of tran-
scription terminators in bacterial genomes. J. of Molecular Biology, 301:27–33, 2000.

[3] P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial structures. In
Proc. of the 2000 IEEE Conf. on Computer Vision and Pattern Recognition, 66–75.

[4] Z. Ghahramani and M. I. Jordan. Factorial hidden markov models. Machine Learning,
29:245–273, 1997.

[5] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. of the 18th Internat. Conf.
on Machine Learning, pages 282–289, Williamstown, MA, 2001. Morgan Kaufmann.

[6] R. Malouf. A comparison of algorithms for maximum entropy parameter estimation.
Sixth workshop on computational language learning (CoNLL), 2002.

[7] National Institute of Standards and Technology. TREC video retrieval evaluation
(TRECVID), 2004. http://www-nlpir.nist.gov/projects/t01v/.

[8] J. Pearl. Probabalistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, San Mateo, CA, 1988.

[9] A. Pedersen, P. Baldi, S. Brunak, and Y. Chauvin. Characterization of prokaryotic
and eukaryotic promoters using hidden Markov models. In Proc. of the 4th Interna-
tional Conf. on Intelligent Systems for Molecular Biology, pages 182–191, St. Louis,
MO, 1996. AAAI Press.

[10] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational
data. In Proc. of the 18th International Conf. on Uncertainty in Artificial Intelligence,
Edmonton, Alberta, 2002. Morgan Kaufmann.

[11] T. Yada, Y. Totoki, T. Takagi, and K. Nakai. A novel bacterial gene-finding system
with improved accuracy in locating start codons. DNA Research, 8(3):97–106, 2001.


