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Abstract

This paper analyses the Contrastive Divergence algorithm for learning
statistical parameters. We relate the algorithm to the stochastic approxi-
mation literature. This enables us to specify conditions under which the
algorithm is guaranteed to converge to the optimal solution (with proba-
bility 1). This includes necessary and sufficient conditions for the solu-
tion to be unbiased.

1 Introduction

Many learning problems can be reduced to statistical inference of parameters. But inference
algorithms for this task tend to be very slow. Recently Hinton proposed a new algorithm
called contrastive divergences (CD) [1]. Computer simulations show that this algorithm
tends to converge, and to converge rapidly, although not always to the correct solution [2].
Theoretical analysis shows that CD can fail but does not give conditions which guarantee
convergence [3,4].

This paper relates CD to the stochastic approximation literature [5,6] and hence derives
elementary conditions which ensure convergence (with probability 1). We conjecture that
far stronger results can be obtained by applying more advanced techniques such as those
described by Younes [7]. We also give necessary and sufficient conditions for the solution
of CD to be unbiased.

Section (2) describes CD and shows that it is closely related to a class of stochastic ap-
proximation algorithms for which convergence results exist. In section (3) we state and
give a proof of a simple convergence theorem for stochastic approximation algorithms.
Section (4) applies the theorem to give sufficient conditions for convergence of CD.

2 Contrastive Divergence and its Relations

The task of statistical inference is to estimate the model parametersω∗ which minimize the
Kullback-Leibler divergenceD(P0(x)||P (x|ω)) between the empirical distribution func-



tion of the observed dataP0(x) andthe modelP (x|ω). It is assumed that the model distri-
bution is of the formP (x|ω) = e−E(x;ω)/Z(ω).

Estimating the model parameters is difficult. For example, it is natural to try performing
steepest descent onD(P0(x)||P (x|ω)). Thesteepest descent algorithmcan be expressed
as:

ωt+1 − ωt = γt{−
∑
x

P0(x)
∂E(x;ω)
∂ω

+
∑
x

P (x|ω)
∂E(x;ω)
∂ω

}, (1)

wherethe{γt} are constants.

Unfortunately steepest descent is usually computationally intractable because of the need to
compute the second term on the right hand side of equation (1). This is extremely difficult
because of the need to evaluate the normalization termZ(ω) of P (x|ω).

Moreover, steepest descent also risks getting stuck in a local minimum. There is, however,
an important exception if we can expressE(x;ω) in the special formE(x;ω) = ω · φ(x),
for some functionφ(x). In this caseD(P0(x)||P (x|ω)) is convex and so steepest descent
is guaranteed to converge to the global minimum. But the difficulty of evaluatingZ(ω)
remains.

The CD algorithm is formally similar to steepest descent. But it avoids the need to eval-
uateZ(ω). Instead it approximates the second term on the right hand side of the steepest
descent equation (1) by a stochastic term. This approximation is done by defining, for
eachω, a Markov Chain Monte Carlo (MCMC) transition kernelKω(x, y) whose invariant
distribution isP (x|ω) (i.e.

∑
x P (x|ω)Kω(x, y) = P (y|ω)).

Then theCD algorithmcan be expressed as:

ωt+1 − ωt = γt{−
∑
x

P0(x)
∂E(x;ω)
∂ω

+
∑
x

Qω(x)
∂E(x;ω)
∂ω

}, (2)

whereQω(x) is the empirical distribution function on the samples obtained by initializing
the chain at the data samplesP0(x) and running the Markov chain forward form steps (the
value ofm is a design choice).

We now observe that CD is similar to a class ofstochastic approximation algorithmswhich
also use MCMC methods to stochastically approximate the second term on the right hand
side of the steepest descent equation (1). These algorithms are reviewed in [7] and have
been used, for example, to learn probability distributions for modelling image texture [8].

A typical algorithm of this type introduces a state vectorSt(x) which is initialized by
settingSt=0(x) = P0(x). ThenSt(x) andωt are updated sequentially as follows.St(x)
is obtained by sampling with the transition kernelKωt(x, y) usingSt−1(x) as the initial
state for the chain. Thenωt+1 is computed by replacing the second term in equation (1) by
the expectation with respect toSt(x). From this perspective, we can obtain CD by having
a state vectorSt(x) (= Qω(x)) which gets re-initialized toP0(x) at each time step.

This stochastic approximation algorithm, and its many variants, have been extensively s-
tudied and convergence results have been obtained (see [7]). The convergence results are
based on stochastic approximation theorems [6] whose history starts with the analysis of
the Robbins-Monro algorithm [5]. Precise conditions can be specified which guarantee
convergence in probability. In particular, Kushner [9] has proven convergence to global
optima. Within the NIPS community, Orr and Leen [10] have studied the ability of these
algorithms to escape from local minima by basin hopping.



3 Stochastic Approximation Algorithms and Convergence

Thegeneral stochastic approximation algorithm is of the form:

ωt+1 = ωt − γtS(ωt, Nt), (3)

whereNt is a random variable sampled from a distributionPn(N), γt is the damping
coefficient, andS(., .) is an arbitrary function.

We now state a theorem which gives sufficient conditions to ensure that the stochastic
approximation algorithm (3) converges to a (solution) stateω∗. The theorem is chosen
because of the simplicity of its proof and we point out that a large variety of alternative
results are available, see [6,7,9] and the references they cite.

The theorem involves three basic concepts. The first is a functionL(ω) = (1/2)|ω − ω∗|2
which is a measure of the distance of the current stateω from the solution stateω∗ (in
the next section we will requireω∗ = arg minωD(P0(x)||P (x|ω))). The second is the
expected value

∑
N Pn(N)S(ω,N) of the update term in the stochastic approximation

algorithm (3). The third is the expected squared magnitude〈|S(ω,N)|2〉 of the update
term.

The theorem states that the algorithm will converge provided three conditions are satisfied.
These conditions are fairly intuitive. The first condition requires that the expected update∑
N Pn(N)S(ω,N) has a large component towards the solutionω∗ (i.e. in the direction

of the negative gradient ofL(ω)). The second condition requires that the expected squared
magnitude〈|S(ω,N)|2〉 is bounded, so that the “noise” in the update is not too large. The
third condition requires that the damping coefficientsγt decrease with timet, so that the
algorithm eventually settles down into a fixed state. This condition is satisfied by setting
γt = 1/t, ∀t (which is the fastest fall off rate consistent with the SAC theorem).

We now state the theorem and briefly sketch the proof which is based on martingale theory
(for an introduction, see [11]).

Stochastic Approximation Convergence (SAC) Theorem.Consider the stochastic ap-
proximation algorithm, equation (3), and letL(ω) = (1/2)|ω − ω∗|2. Then the algorithm
will converge toω∗ with probability 1 provided: (1)−∇L(ω) ·

∑
N Pn(N)S(ω,N) ≥

K1L(ω) for some constantK1, (2) 〈|S(ω,N)|2〉t ≤ K2(1 + L(ω)), whereK2 is some
constant and the expectation〈.〉t is taken with respect to all the data prior to timet, and
(3)
∑∞
t=1 γt =∞ and

∑∞
t=1 γ

2
t <∞.

Proof.The proof [12] is a consequence of the supermartingale convergence theorem [11].
This theorem states that ifXt, Yt, Zt are positive random variables obeying

∑∞
t=0 Yt ≤ ∞

with probability one and〈Xt+1〉 ≤ Xt+Yt−Zt, ∀t, thenXt converges with probability 1
and

∑∞
t=0 Zt <∞. To apply the theorem, setXt = (1/2)|ωt−ω∗|2, setYt = (1/2)K2γ

2
t

andZt = −Xt(K2γ
2
t −K1γt) (Zt is positive for sufficiently larget). Conditions 1 and 2

imply thatXt can only converge to 0. The result follows after some algebra.

4 CD and SAC

The CD algorithm can be expressed as a stochastic approximation algorithm by setting:

S(ωt, Nt) = −
∑
x

P0(x)
∂E(x;ω)
∂ω

+
∑
x

Qω(x)
∂E(x;ω)
∂ω

, (4)



where the random variableNt correspondsto the MCMC sampling used to obtainQω(x).

We can now apply the SAC to give three conditions which guarantee convergence of the CD
algorithm. The third condition can be satisfied by settingγt = 1/t, ∀t. We can satisfy the
second condition by requiring that the gradient ofE(x;ω) with respect toω is bounded,
see equation (4). We conjecture that weaker conditions, such as requiring only that the
gradient ofE(x;ω) be bounded by a function linear inω, can be obtained using the more
sophisticated martingale analysis described in [7].

It remains to understand the first condition and to determine whether the solution is unbi-
ased. These require studying theexpected CD update:∑

Nt

Pn(Nt)S(ωt, Nt) = −
∑
x

P0(x)
∂E(x;ω)
∂ω

+
∑
y,x

P0(y)Km
ω (y, x)

∂E(x;ω)
∂ω

, (5)

which is derived using the fact that the expected value ofQω(x) is
∑
y P0(y)Km

ω (y, x)
(where the superscriptm indicates running the transition kernelm times).

We now re-express this expected CD update in two different ways, Results 1 and 2, which
give alternative ways of understanding it. We then proceed to Results 3 and 4 which give
conditions for convergence and unbiasedness of CD.

But we must first introduce some background material from Markov Chain theory [13].

We choose the transition kernelKω(x, y) to satisfy detailed balance so that
P (x|ω)Kω(x, y) = P (y|ω)Kω(y, x). Detailed balance is obeyed by many MCMC algo-
rithms and, in particular, is always satisfied by Metropolis-Hasting algorithms. It implies
thatP (x|ω) is the invariant kernel ofKω(x, y) so that

∑
x P (x|ω)Kω(x, y) = P (y|ω) (all

transition kernels satisfy
∑
yKω(x, y) = 1, ∀x).

Detailed balance implies that the matrixQω(x, y) = P (x|ω)1/2Kω(x, y)P (y|ω)−1/2 is
symmetric and hence has orthogonal eigenvectors and eigenvalues{eµω(x), λµω}. The eigen-
values are ordered by magnitude (largest to smallest). The first eigenvalue isλ1 = 1 (so
|λµ| < 1, µ ≥ 2). By standard linear algebra, we can writeQω(x, y) in terms of its
eigenvectors and eigenvaluesQω(x, y) =

∑
µ λ

µ
ωe
µ
ω(x)eµω(y), which implies that we can

express the transition kernel appliedm times by:

Km
ω (x, y) =

∑
µ

{λµω}m{P (x|ω)}−1/2eµω(x){P (y|ω)}1/2eµω(y) =
∑
µ

{λµω}muµω(x)vµω(y),

(6)

where the{vµω(x)} and{uµω(x)} are theleft and right eigenvectorsof the transition kernel
Kω(x, y). They are defined by:

vµω(x) = eµω(x){P (x|ω)}1/2, uµω(x) = eµω(x){P (x|ω)}−1/2, ∀µ, (7)

and it can be verified that
∑
x v

µ
ω(x)Kω(x, y) = λµωv

µ
ω(y), ∀µ and

∑
yKω(x, y)uµω(y) =

λµωu
µ
ω(x), ∀µ. In addition, the left and right eigenvectors are mutually orthonormal so that∑

x v
µ
ω(x)uνω(x) = δµν , whereδµν is the Kronecker delta function. This implies that we

can express any functionf(x) in equivalent expansions,

f(x) =
∑
µ

{
∑
y

f(y)uµω(y)}vµω(x), f(x) =
∑
µ

{
∑
y

f(y)vµω(y)}uµω(x). (8)



Moreover, the first left and right eigenvectors can be calculated explicitly to give:

v1
ω(x) = P (x|ω), u1

ω(x) ∝ 1, λ1
ω = 1, (9)

which follows becauseP (x|ω) is the (unique) invariant distribution of the transition kernel
Kω(x, y) and hence is the first left eigenvector.

We now have sufficient background to state and prove our first result.

Result 1. The expected CD update corresponds to replacing the update term∑
x P (x|ω)∂E(x;ω)

∂ω in the steepest descent equation (1) by:∑
x

∂E(x;ω)
∂ω

P (x|ω) +
∑
µ=2

{λµω}m{
∑
y

P0(y)uµω(y)}{
∑
x

vµω(x)
∂E(x;ω)
∂ω

}, (10)

where {vµω(x), uµω(x)} are the left and right eigenvectors ofKω(x, y) with eigenvalues
{λµ}.

Proof.
The expected CD update replaces

∑
x P (x|ω)∂E(x;ω)

∂ω by
∑
y,x P0(y)Km

ω (y, x)∂E(x;ω)
∂ω ,

seeequation (5). We use the eigenvector expansion of the transition kernel, equation (6),
to express this as

∑
y,x,µ P0(y){λµω}muµω(y)vµω(x)∂E(x;ω)

∂ω . The result follows using the
specific forms of the first eigenvectors, see equation (9).

Result 1 demonstrates that the expected update of CD is similar to the steepest descent
rule, see equations (1,10), but with an additional term

∑
µ=2{λµω}m{

∑
y P0(y)uµω(y)}

{
∑
x v

µ
ω(x)∂E(x;ω)

∂ω } whichwill be small provided the magnitudes of the eigenvalues{λµω}
are small forµ ≥ 2 (or if the transition kernel can be chosen so that

∑
y P0(y)uµω is small

for µ ≥ 2).

We now give a second form for the expected update rule. To do this, we define a new
variableg(x;ω). This is chosen so that

∑
x P (x|ω)g(x;ω) = 0, ∀ω and the extrema of

the Kullback-Leibler divergence occurs when
∑
x P0(x)g(x;ω) = 0.

Result 2.Let g(x;ω) = ∂E(x;ω)
∂ω −

∑
x P (x|ω)∂E(x;ω)

∂ω , then
∑
x P (x|ω)g(x;ω) = 0, the

extrema of the Kullback-Leibler divergence occur when
∑
x P0(x)g(x;ω) = 0, and the

expected update rule can be written as:

ωt+1 = ωt − γt{
∑
x

P0(x)g(x;ω)−
∑
y,x

P0(y)Km
ω (y, x)g(x;ω)}. (11)

Proof. The first result follows directly. The second follows because
∑
x P0(x)g(x;ω) =∑

x P0(x)∂E(x;ω)
∂ω −

∑
x P (x|ω)∂E(x;ω)

∂ω . To get the third we substitute the definition of
g(x;ω) into the expected update equation (5). The result follows using the standard prop-
erty of transition kernels that

∑
yK

m
ω (x, y) = 1, ∀x.

We now use Results 1 and 2 to understand the fixed points of the CD algorithm and deter-
mine whether it is biased.

Result 3. The fixed pointsω∗ of the CD algorithm are true (unbiased) extrema
of the KL divergence (i.e.

∑
x P0(x)g(x;ω∗) = 0) if, and only if, we also have∑

y,x P0(y)Km
ω∗(y, x)g(x;ω∗) = 0. A sufficient condition is thatP0(y) and g(x;ω) lie



in orthogonal eigenspaces ofKω∗(y, x). This includes the (known) special case when
there existsω∗ such thatP (x|ω∗) = P0(x) (see [2]).

Proof. The first part follows directly from equation (11) in Result 2. The second part can
be obtained by the eigenspace analysis in Result 1. SupposeP0(x) = P (x|ω∗). Recall that
v1
ω∗(x) = P (x|ω∗), and so

∑
y P0(y)uµωast(y) = 0, µ 6= 1. Moreover,

∑
x v

1
ω∗g(x;ω∗) =

0. HenceP0(x) andg(x;ω∗) lie in orthogonal eigenspaces ofKω∗(y, x).

Result 3 shows that whether CD converges to an unbiased estimate usually depends on the
specific form of the MCMC transition matrixKω(y, x). But there is an intuitive argument
why the bias term

∑
y,x P0(y)Km

ω∗(y, x)g(x;ω∗) may tend to be small at places where∑
x P0(x)g(x;ω∗) = 0. This is because for smallm,

∑
y P0(y)Km

ω∗(y, x) ≈ P0(x) which
satisfies

∑
x P0(x)g(x;ω∗) = 0. Moreover, for largem,

∑
y P0(y)Km

ω∗(y, x) ≈ P (x|ω∗)
and we also have

∑
x P (x|ω∗)g(x;ω∗) = 0.

Alternatively, using Result 1, the bias term
∑
y,x P0(y)Km

ω∗(y, x)g(x;ω∗) can be expressed

as
∑
µ=2{λ

µ
ω∗}m{

∑
y P0(y)uµω∗(y)}{

∑
x v

µ
ω∗(x)∂E(x;ω∗)

∂ω }. This will tend to be small
provided the eigenvalue moduli|λµω∗ | are small forµ ≥ 2 (i.e. the standard conditions for
a well defined Markov Chain). In general the bias term should decrease exponentially as
|λ2
ω∗ |m. Clearly it is also desirable to define the transition kernelsKω(x, y) so that the right

eigenvectors{uµω(y) : µ ≥ 2} are as orthogonal as possible to the observed dataP0(y).

The practicality of CD depends on whether we can find an MCMC sampler such that the
bias term

∑
y,x P0(y)Km

ω∗(y, x)g(x;ω∗) = 0 is small for mostω. If not, then the alterna-
tive stochastic algorithms may be preferable.

Finally we give convergence conditions for the CD algorithm.

Result 4CD will converge with probability 1 to stateω∗ providedγt = 1/t, ∂E∂ω is bounded,
and

(ω − ω∗) · {
∑
x

P0(x)g(x;ω)−
∑
y,x

P0(y)Km
ω (y, x)g(x;ω)} ≥ K1|ω − ω∗|2, (12)

for someK1.

Proof.This follows from the SAC theorem and Result 2. The boundedness of∂E
∂ω is required

to ensure that the “update noise” is bounded in order to satisfy the second condition of the
SAC theorem.

Results 3 and 4 can be combined to ensure that CD converges (with probability 1) to the
correct (unbiased) solution. This requires specifying thatω∗ in Result 4 also satisfies the
conditions

∑
x P0(x)g(x;ω∗) = 0 and

∑
y,x P0(y)Km

ω∗(y, x)g(x;ω∗) = 0.

5 Conclusion

The goal of this paper was to relate the Contrastive Divergence (CD) algorithm to the s-
tochastic approximation literature. This enables us to give convergence conditions which
ensure that CD will converge to the parametersω∗ that minimize the Kullback-Leibler di-
vergenceD(P0(x)||P (x|ω)). The analysis also gives necessary and sufficient conditions to
determine whether the solution is unbiased. For more recent results, see Carreira-Perpignan
and Hinton (in preparation).

The results in this paper are elementary and preliminary. We conjecture that far more



powerful results can be obtained by adapting the convergence theorems in the literature
[6,7,9]. In particular, Younes [7] gives convergence results when the gradient of the energy
∂E(x;ω)/∂ω is bounded by a term that is linear inω (and hence unbounded). He is also
able to analyze the asymptotic behaviour of these algorithms. But adapting his mathemati-
cal techniques to Contrastive Divergence is beyond the scope of this paper.

Finally, the analysis in this paper does not seem to capture many of the intuitions behind
Contrastive Divergence [1]. But we hope that the techniques described in this paper may
also stimulate research in this direction.
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