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Abstract

We propose a probabilistic, generative account of configural learning
phenomena in classical conditioning. Configural learning experiments
probe how animals discriminate and generalize between patterns of si-
multaneously presented stimuli (such as tones and lights) that are dif-
ferentially predictive of reinforcement. Previous models of these issues
have been successful more on a phenomenological than an explanatory
level: they reproduce experimental findings but, lacking formal founda-
tions, provide scant basis for understanding why animals behave as they
do. We present a theory that clarifies seemingly arbitrary aspects of pre-
vious models while also capturing a broader set of data. Key patterns
of data, e.g. concerning animals’ readiness to distinguish patterns with
varying degrees of overlap, are shown to follow from statistical inference.

1 Introduction

Classical conditioning experiments probe how organisms learn to predict significant events
such as the receipt of food or shock. While there is a history of detailed quantitative theo-
ries about these experiments, only recently has there been a sustained attempt to understand
them in terms of sound statistical prediction [1]. A statistical foundation helps to identify
key theoretical issues (such as uncertainty) underlying these experiments, to explain oth-
erwise puzzling results, and to connect these behavioral theories with theories of neural
computation, which are also increasingly framed in statistical terms.

A cluster of issues that has received great experimental and theoretical attention in condi-
tioning — but not yet from a statistically grounded perspective — concerns discrimination
and generalization between patterns of sensory input. Historically, these issues arose in the
context of nonlinear discriminations, such as the XOR problem (in which, e.g., a light and
a tone each predict shock when presented alone, but not together). While animals can learn
such a discrimination, the seminal model of Rescorla and Wagner [2] cannot, since it as-
sumes that the prediction is linear in the stimuli. Traditionally, this problem was solved by
introducing extra discriminative features to the model’s input (known as “configural units,”
since they detect conjunctions of stimuli such as tone plus light), rendering the augmented
problem linearly solvable [3]. On this foundation rests a wealth of work probing how ani-



mals learn and predict given compounds of stimuli. Here, we reinterpret these issues from
a Bayesian perspective.

Previous work posits an informal division (or perhaps a spectrum) between “elemental”
and “configural” approaches to stimulus patterns, distinguished by whether a compound’s
association with reinforcement is derived from its individual stimuli (lights, tones), or rests
collectively in the full compound (light and tone together). The prototypical elemental
model is the original Rescorla–Wagner model, without configural units, in which the ag-
gregate prediction is linear in the elements. The standard configural model is that of Pearce
[4], in which responding to a compound is determined by previous experience with that
and other similar compounds, through a process of generalization and weighted averaging.
Both theories match an impressive range of experimental data, but each is refuted by some
experiments that the other captures. It is not clear how to move beyond this stalemate.
Because the theories lack formal foundations, their details — particularly those on which
they differ — are ad-hoc and poorly understood. For instance, what circumstances justify
the introduction of a new configural unit, and what should be the form of generalization
between compounds?

Here we leverage our Bayesian theory of conditioning [5] to shed new light on these issues.
Our model differs from traditional ones in a number of ways. Notably, analogizing condi-
tioning to classification, we take a generative rather than a discriminative approach. That
is, we assume animals are modeling their complete sensory experience (lights, tones, and
shocks) rather than only the chance of shock conditioned on lights and tones. We assume
that stimuli are correlated with each other, and with reinforcement, through shared latent
variables. Because a latent variable can trigger multiple events, these causes play a role
akin to configural units in previous theories, but offer stronger normative guidance. Ques-
tions about generalization (what is the probability that a latent variable is active given a
particular constellation of inputs) are seen as standard statistical inference; questions about
model structure (how many “configural units” should there be and with what constellations
of stimuli are they associated) are answerable using Bayesian model averaging, which we
have suggested animals can approximate [5]. Such inferences also determine whether an
animal’s experience on a trial is best explained by multiple causes interacting additively, in
the style of Rescorla–Wagner, or by a single cause triggering multiple events like one of
Pearce’s configural units. This allows our theory to capture patterns of data that seem to
favor each of its predecessors.

Our theory is meant to shed light on the normative reasons why animals behave as they do,
rather than on how they might carry out computations like those we describe. In practice,
the inferences we discuss can be computed only approximately, and we intend no claim that
animals are using the same approximations to them as we are. More mechanistic models,
such as Pearce’s, can broadly be viewed as plausible implementations for approximating
some aspects of our more general framework.

2 Theories of Learning with Compound Stimuli

Classical conditioning experiments probe animals’ anticipation of a reinforcerR such as
food or footshock, given the presentation of initially neutral stimuli such as lights and tones.
Expectation is assessed via reflexive conditioned responses such as salivation or freezing,
which are thought to reveal animals’ predictions of reinforcement. By studying responding
as a function of the pattern of previous reinforcer / stimulus pairings, the experiments assess
learning. To describe a conditioning task abstractly, we use capital letters for the stimuli
and+ and− to indicate whether they are reinforced. For instance, the XOR task can be
written asA+, B+, AB−, whereAB− denotes simultaneous presentation of both stimuli
unreinforced. Typically, each type of trial is delivered repeatedly, and the development of
responding is assessed.



We now describe the treatment of compound stimuli in the models of Rescorla and Wagner
[2] and Pearce [4]. In both models, the set of stimuli present on a trial is converted into
an input vectorx. The strength of the conditioned response is modeled as proportional to
a prediction of reinforcementv = x · w, the dot product between the input and a weight
vector. Finally, one or more weights are updated proportionally to the mismatchr − v
between observed and predicted reinforcement.

For both theories,x includes an element (or “unit”) corresponding to each individual stim-
ulus.1 In Pearce’s model, and in augmented “added elements” versions of the Rescorla–
Wagner model [3], additional “configural” units are also included, corresponding to con-
junctions of stimuli. In particular, it is assumed that a unique configural unit is added for
each stimulus compound observed, such asABC. Note that this assumption is both ar-
bitrary (e.g. we might very well include elements for subcompounds such asAB) and
unrealistic (given the profusion of uncontrolled stimuli simultaneously present in a real
experiment).

The theories differ as to how they apportion activation overx and learning overw. In the
Rescorla–Wagner model, the input vector is binary:xi = 1 if the ith stimulus (or an exactly
matching compound) is present,0 otherwise. For learning, the weight corresponding to
each active input is updated. The Pearce model instead spreads graded activation overx,
based on a measure of similarity between the observed stimulus compound (or element)
and the compounds represented by the model’s configural units. In particular, if we denote
the number of stimulus elements present in an observed stimulus patterna assize(a), and
in the pattern represented by theith configural unit assize(i), then the activation of unit
i by patterna is given byxi = size(overlap(a, i))2/(size(a) · size(i)). The learning
phase updates only the weight corresponding to the configural unit that exactly matches
the observed stimulus configuration.

As neither scheme has much formal basis, there seems to be notheoretical reason to prefer
one over the other, nor over any other ad-hoc recipe for apportioning representation and
learning.Empirical considerations also provide ambivalent guidance, as we discuss next.

3 Data on Learning with Compound Stimuli

Both the elemental and configural models reproduce a number of well known experimental
phenomena. Here we review several basic patterns of results. Notably, each theory has
a set of experiments that seems to support it over the other. Later, we will show that our
normative theory accounts for all of these results.

Overshadowing When a pair of stimuliAB+ is reinforced together, then tested sepa-
rately, responding to either individual stimulus is often attenuated compared to a control in
which the stimulus is trained alone (A+). Both models reproduce overshadowing, though
Rescorla–Wagner incorrectly predicts that it takes at least twoAB+ pairings to materialize.

Summation The converse of overshadowing is summation: when two stimuli are indi-
vidually reinforced, then tested together, there is often a greater response to the pair than to
either element alone. In a recent variation by Rescorla [6], animals were trained on a pair
of compoundsAB+ andCD+, then responses were measured to the trained compounds,
the individual elementsA, B, etc., and the novel transfer compoundsAD andBC. The
strongest response was elicited by the trained compounds. The transfer compounds elicited
a moderate response, and the individual stimuli produced the weakest responding.

1In Pearce’s presentation of his model, these units are added only after elements are observed
alone. We include them initially, which does not affect the model’s behavior, to stress similarity with
the Rescorla-Wagner model.



The added elements Rescorla–Wagner model predicts this result due to the linear summa-
tion of the influences of all the units (A throughD, AB, andCD — note that the added
configural units are crucial). However, because of the normalization term in the generaliza-
tion rule, Pearce’s model often predicts no summation. Here it predicts equal responding
to the individual stimuli and to the transfer compounds. There is controversy as to whether
the model can realistically be reconciled with summation effects [4, 7], but on the whole,
these phenomena seem more parsimoniously explained with an elemental account.

Overlap A large number of experiments (see [4] for a review) demonstrate that the more
elements shared by two compounds, the longer it takes animals to learn to discriminate
between them. Though this may seem intuitive, elemental theories predict the opposite.
In one example, Redhead and Pearce [8] presented subjects with the patternsA+, BC+
reinforced andABC− unreinforced. Differential responding betweenA andABC was
achieved in fewer trials than that betweenBC andABC.

Pearce’s configural theory predicts this result because the extra overlap betweenBC and
ABC (compared toA vs. ABC) causes each compound to activate the other’s configural
unit more strongly. Thus, larger weights are required to produce a differentiated prediction.
Rescorla–Wagner predicts the opposite result, because compounds with more elements, e.g.
BC, accumulate more learning on each trial.

4 A latent variable model of stimulus generalization

In this section we present agenerative model of how stimuli and reinforcers are jointly
delivered. We will show how the model may be used to estimate the conditional proba-
bility of reinforcement (the quantity we assume drives animals’ responding) given some
pattern of observed stimuli. The theory is based on the one we presented in [5], and casts
conditioning as inference over a set of sigmoid belief networks. Our goal here is to use this
formalism to explain configural learning phenomena.

4.1 A Sigmoid Belief Network Model of Conditioning

Consider a vector of random variablesS representing stimuli on a trial, with thejth stimu-
lus present whenSj = 1 and absent whenSj = 0. One element ofS is distinguished as the
reinforcerR; the remainder (lights and tones) is denoted asStim. We encode the correla-
tions between all stimuli (including the reinforcer) through common connections to a vector
of latent variables, orcauses, x wherexi ∈ {0, 1}. According to the generative process,
on each trial the state of the latent variables is determined by independent Bernoulli draws
(each latent variable has a weight determining its chance of activation [5]). The probability
of stimulusj being present is then determined by its relationship to the latent variables:

P (Sj | m,wm,x) = (1 + exp(−(w(j)
m )T

x − wbias))
−1, (1)

where the weight vectorw(j)
m encodes the connection strengths betweenx andSj for the

model structurem. The bias weightwbias is fixed at−6, ensuring that spontaneous events
are rare. Some examples of the type of network structure under consideration are shown as
graphical models in Figure 1(c)–(d) and Figure 2(c)–(e).

We assume animals learn about the model structure itself, analogous to the experience-
dependent introduction of configural units in previous theories. In our theory, animals
use experience to infer which network structures (from a set of candidates) and weights
likely produced the observed stimuli and reinforcers. These in turn determine predictions
of future reinforcement. Details of this inference are laid out below.



4.2 Generalization: inference over latent variables

Generalization between observed stimulus patterns is a key aspect of previous models. We
now describe how generalization arises in our theory.

Given a particular belief net structurem, weightswm, and previous conditioning experi-
enceD, the probability of reinforcementR given observed stimuliStim can be computed
by integrating over the possible settingsx of the latent variables:

P (R | Stim, m,wm,D) =
∑
x

P (R | m,wm,x)P (x | Stim, m,wm,D) (2)

The first term is given by Equation 1. By Bayes’ rule, the second term weighs particular
settings of the hidden causes proportionally to the likelihood that they would give rise to the
observed stimuli. This process is a counterpart to Pearce’s generalization rule for configural
units. Unlike Pearce’s rule, inference overx considers settings of the individual causesxi

jointly (allowing for explaining away effects) and incorporates prior probabilities over each
cause’s activation. Nevertheless, the new rule broadly resembles its predecessor in that a
cause is judged likely to be active (and contributes to predictingR) if the constellation of
stimuli it predicts is similar to what is observed.

4.3 Learning to discriminate: inference over models

We treat the model weightswm and the model structurem as uncertain quantities subject
to standard Bayesian inference. We assume that, given a model structure, the weights are
mutually independenta priori and each distributed according to a Laplace distribution.2

Conditioning on the dataD produces a posterior distribution over the weights, over which
we integrate to predictR:

P (R | Stim, m,D) =

∫
P (R | Stim, m,wm,D)P (wm | m,D)dwm (3)

Uncertainty over model structure is handled analogously. Integrating over posterior model
uncertainty we arrive at the prediction of reinforcement:

P (R | Stim,D) =
∑
m

P (R | Stim, m,D)P (m | D), (4)

whereP (m | D) ∝ P (D | m)P (m) and the marginal likelihoodP (D | m) is computed
similarly to equation 3, by integration over the weights. The prior over models,P (m) is
expressed as a distribution overnx, the number of latent variables, and overli, the number
of links between the stimuli and each latent variable:P (m) = P (nx)

∏nx

i=1 P (li). We
assume thatP (nx) and eachP (li) are given by geometric distributions (param. = 0.1),
renormalized to sum to unity over the maximum of 5 latents and 5 stimuli. This prior
reflects a bias against complex models. The marginal likelihood term also favors simplicity,
due to theautomatic Occam’s razor (see [5]). For our simulations, we approximately
evaluated Equation 4 using reversible-jump Markov Chain Monte Carlo (see [5] for details).

Progressively conditioning on experience to resolve prior uncertainty in the weights and
model structure produces a gradual change in predictions akin to the incremental learning
rules of previous models. The extent to which a particular model structurem participates
in predictingR in Equation 4 is, by Bayes’ rule, proportional to its prior probability,P (m),
and to the extent that it explains the data,P (D | m). Thus a prior preference for simpler
models competes against better data fidelity for more complex models. As data accumulate,

2The Laplace distribution is given byf(y) = 1

2b
e−|y−µ|/b. In our simulationsµ = 0 andb = 2.

As a prior, it encodes a bias for sparsity consistent with a preference for simpler model structures.
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Figure 1: Results of MCMC simulation. (a) Overshadowing (AB+): the predicted probability of
reinforcement in response to presentations of the elementA, the compoundAB, and an individually
trained control element (A+). (b) Summation experiment (AB+, CD+): the predicted probability
of reinforcement in response to separate presentations of the trained compounds (AB, CD), the
transfer compounds (AD, BC) and the elements (A, B, etc.). (c) Depiction of the MAP model
structure after overshadowing training. (d) The MAP model structure afterAB+ CD+ training.

the balance shifts toward the latter, and predictions become more accurate. Analogously,
weights are smalla priori but can grow with experience.

Together with the generalization effects discussed above, these inference effects explain
why animals can learn more readily to discriminate stimulus compounds that have less
overlap. Key to the discrimination is inferring that different compounds are produced by
separate latent variables; the more the compounds overlap, the more accurately will the
data be approximated by a model with a single latent variable (preferreda priori), which
biases the complexity-fidelity tradeoff toward simplicity and retards acquisition.

5 Results

Overshadowing Overshadowing exemplifies our account of between-compound gener-
alization; our model’s performance is illustrated in Figure 1(a). After 5AB+ pairings,
the network with highest posterior probability, depicted in (c), contains one latent vari-
able correlated with both stimuli and the reinforcer. Consistent with experimental results,
testing onA produces attenuated responding. This is because predicting whetherA is rein-
forced requires balancing the relative probabilities of two unlikely events: that the stimulus
occurred spontaneously (withx1 inactive), versus that it was caused byx1 being active,
but thatB uncharacteristically failed to occur (this probability measuresgeneralization be-
tween the patternsA andAB). Overall, this tradeoff decreases the chance thatx1 is active,
suppressing the prediction of reinforcement relative to the control treatment, whereA is
reinforced in isolation (A+). Unlike the Rescorla–Wagner model, ours correctly predicts
that overshadowing can occur after even a singleAB+ presentation.

Summation Figure 1(b) shows our model’s performance on Rescorla’sAB+ CD+ sum-
mation and transfer experiment [6], which is one of several summation experiments our
model explains. Compounds were reinforced 10 times. Consistent with experimental find-
ings, the model predicts greatest responding to the trained compounds (AB, CD), moder-
ate responding to transfer compounds (AD, BC), and least responding to the elements (A,
B, etc.). The maximuma posteriori (MAP) model structure (Figure 1(d)) mimics the train-
ing compounds, with one latent variable connected toA, B, andR and another connected
to C, D, andR. The results follow from a combination of generalization and additivity.
The training compounds activate one latent variable strongly; the transfer compounds acti-
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Figure 2: Summary of MCMC simulation results on theA+, BC+, ABC− experiment. The
estimated error due to MCMC sampling is small and not shown. (a) Learning curves showing the
predicted probability of reinforcement in response to separate presentations ofA, BC, andABC
as a function of number of trial blocks. (b) The average number of latent variables over the 10000
MCMC sample models. (c) - (e) Representations of MAP model structures after training with 4, 10,
and 20 trial blocks (edge widths represent mean weight strength).

vate both latents weakly (together additively influencing the probability of reinforcement);
the elements weakly activate only a single latent variable.

Overlap Figure 2(a) shows the model’s learning curves from the overlapping compound
experiment,A+, BC+, ABC−. Each trial block contains one trial of each type. The
model correctly predicts faster discrimination betweenA andABC than betweenBC and
ABC. This pattern results from progressive increase in the number of inferred latent vari-
ables (b). Early in training, probability density concentrates on small models with a single
latent variable correlating all stimuli and the reinforcer (c). After more trials, models with
two latent variables become more probable, one correlatingA andR and the other cor-
relatingB andC with bothA andR, attempting to capture bothBC+ andABC− trial
types. (d). With further training, the most likely models are those with three latents, each
encoding one trial type (e). Our theory captures many similar experiments demonstrating
the difficulty of discriminating overlapping compounds.

6 Discussion

The configural unit is an ad-hoc device that nonetheless plays a key role in previous exper-
imental and theoretical work in conditioning. Its inclusion in models like that of Rescorla–
Wagner invites a number of questions. Which configurations should be represented? How
should activation and learning be apportioned between them? These issues are contentious,
admitting no clear answer, precisely because of the arbitrary nature of the device. We
have shown how a latent variable correlated with a constellation of stimuli provides a well
founded counterpart to the configural unit, and how a range of experimental phenomena
concerning similarity and discrimination can be accounted for with the assumption that
animals are carrying out inference about these variables. While data exist that tend to fa-



vor each of the two major previous models of configural learning over the other, the new
model accounts for the full pattern, balancing the strengths of both theories. Our theory
also improves on its predecessors in other ways; for instance, because it includes learning
about stimulus interrelationships it can explain second-order conditioning [5], which is not
addressed by either the Pearce or the Rescorla–Wagner accounts.

Of course, many issues remain. A full account of summation phenomena, in particular, is
beyond the scope of the present model. We treat reinforcer delivery as binary and model
a limited, saturating, summation in probabilities. However, realistic summation almost
certainly concerns reinforcementmagnitudes as well (see, for example, [9]), and our model
would need to be augmented to address them. Because we have assumed that trials are IID,
the model cannot yet account for effects of trial ordering (e.g. the difference between partial
reinforcement and extinction). These could be addressed by incorporating dynamics into
the generative model, so that inference requires tracking the changing model parameters.
Also for future work is exploring how different priors might give rise to different behavior.
An advantage of Bayesian modeling is that because the free parameters are formulated as
priors, they represent concrete assertions about the world (e.g. how often particular kinds
of events occur), and can thus be constrained and even experimentally manipulated.

We have focused only on two previous models and only on animal behavioral experiments.
Issues of similarity and discrimination are also studied in the rather different setting of hu-
man category judgments, where Bayesian generative approaches have also proved useful
[10]. There is also a tradition of more neurophysiological models of thehippocampal sub-
strates of configural learning [11, 12]. Given the large body of theory and experiment on
these issues, this seems a promising direction for future work connecting our behavioral
theory with neurophysiological ones. In one of the hippocampal theories, Gluck and My-
ers [12] augment the Rescorla–Wagner model with an input representation learned by an
autoencoder. Since autoencoders perform probabilistic density modeling, this is probably
the most statistically minded of prior approaches to configural representation and has clear
parallels with our work.
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