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Abstract

Gaussian processes are usually parameterised in terms of their covari-
ance functions. However, this makes it difficult to deal with multiple
outputs, because ensuring that the covariance matrix is positive definite
is problematic. An alternative formulation is to treat Gaussian processes
as white noise sources convolved with smoothing kernels, and to param-
eterise the kernel instead. Using this, we extend Gaussian processes to
handle multiple, coupled outputs.

1 Introduction

Gaussian process regression has many desirable properties, such as ease of obtaining and
expressing uncertainty in predictions, the ability to capture a wide variety of behaviour
through a simple parameterisation, and a natural Bayesian interpretation [15, 4, 9]. Be-
cause of this they have been suggested as replacements for supervised neural networks in
non-linear regression [8, 18], extended to handle classification tasks [11, 17, 6], and used
in a variety of other ways (e.g. [16, 14]). A Gaussian process (GP), as a set of jointly
Gaussian random variables, is completely characterised by a covariance matrix with en-
tries determined by a covariance function. Traditionally, such models have been specified
by parameterising the covariance function (i.e. a function specifying the covariance of
output values given any two input vectors). In general this needs to be a positive definite
function to ensure positive definiteness of the covariance matrix.

Most GP implementations model only a single output variable. Attempts to handle multiple
outputs generally involve using an independent model for each output - a method known
as multi-kriging [18] - but such models cannot capture the structure in outputs that covary.
As an example, consider the two tightly coupled outputs shown at the top of Figure 2, in
which one output is simply a shifted version of the other. Here we have detailed knowledge
of output 1, but sampling of output 2 is sparse. A model that treats the outputs as indepen-
dent cannot exploit their obvious similarity - intuitively, we should make predictions about
output 2 using what we learn from both output 1 and 2.

Joint predictions are possible (e.g. co-kriging [3]) but are problematic in that it is not clear
how covariance functions should be defined [5]. Although there are many known positive
definite autocovariance functions (e.g. Gaussians and many others [1, 9]), it is difficult to
define cross-covariance functions that result in positive definite covariance matrices. Con-
trast this to neural network modelling, where the handling of multiple outputs is routine.



An alternative to directly parameterising covariance functions is to treat GPs as the outputs
of stable linear filters. For a linear filter, the output in response to an input x(t) is
y(t) = h(t) ? x(t) =

∫ ∞

−∞
h(t − τ)x(τ)dτ , where h(t) defines the impulse response of

the filter and ? denotes convolution. Provided the linear filter is stable and x(t) is Gaussian
white noise, the output process y(t) is necessarily a Gaussian process. It is also possible
to characterise p-dimensional stable linear filters, with M -inputs and N -outputs, by a set
of M × N impulse responses. In general, the resulting N outputs are dependent Gaussian
processes. Now we can model multiple dependent outputs by parameterising the set of
impulse responses for a multiple output linear filter, and inferring the parameter values from
data that we observe. Instead of specifying and parameterising positive definite covariance
functions, we now specify and parameterise impulse responses. The only restriction is that
the filter be linear and stable, and this is achieved by requiring the impulse responses to be
absolutely integrable.

Constructing GPs by stimulating linear filters with Gaussian noise is equivalent to con-
structing GPs through kernel convolutions. A Gaussian process V (s) can be constructed
over a region S by convolving a continuous white noise process X(s) with a smoothing
kernel h(s), V (s) = h(s) ? X(s) for s ∈ S, [7]. To this can be added a second white
noise source, representing measurement uncertainty, and together this gives a model for ob-
servations Y . This view of GPs is shown in graphical form in Figure 1(a). The convolution
approach has been used to formulate flexible nonstationary covariance functions [13, 12].
Furthermore, this idea can be extended to model multiple dependent output processes by
assuming a single common latent process [7]. For example, two dependent processes V1(s)
and V2(s) are constructed from a shared dependence on X(s) for s ∈ S0, as follows

V1(s) =

∫

S0∪S1

h1(s − λ)X(λ)dλ and V2(s) =

∫

S0∪S2

h2(s − λ)X(λ)dλ

where S = S0 ∪S1 ∪S2 is a union of disjoint subspaces. V1(s) is dependent on X(s), s ∈
S1 but not X(s), s ∈ S2. Similarly, V2(s) is dependent on X(s), s ∈ S2 but not X(s), s ∈
S1. This allows V1(s) and V2(s) to possess independent components.

In this paper, we model multiple outputs somewhat differently to [7]. Instead of assuming
a single latent process defined over a union of subspaces, we assume multiple latent pro-
cesses, each defined over <p. Some outputs may be dependent through a shared reliance
on common latent processes, and some outputs may possess unique, independent features
through a connection to a latent process that affects no other output.

2 Two Dependent Outputs

Consider two outputs Y1(s) and Y2(s) over a region <p, where s ∈ <p. We have N1 obser-
vations of output 1 and N2 observations of output 2, giving us data D1 = {s1,i , y1,i}

N1

i=1

and D2 = {s2,i , y2,i}
N2

i=1
. We wish to learn a model from the combined data D =

{D1,D2} in order to predict Y1(s
′) or Y2(s

′), for s′ ∈ <p. As shown in Figure 1(b),
we can model each output as the linear sum of three stationary Gaussian processes. One of
these (V ) arises from a noise source unique to that output, under convolution with a kernel
h. A second (U ) is similar, but arises from a separate noise source X0 that influences both
outputs (although via different kernels, k). The third is additive noise as before.

Thus we have Yi(s) = Ui(s)+Vi(s)+Wi(s), where Wi(s) is a stationary Gaussian white
noise process with variance, σ2

i , X0(s), X1(s) and X2(s) are independent stationary Gaus-
sian white noise processes, U1(s), U2(s), V1(s) and V2(s) are Gaussian processes given by
Ui(s) = ki(s) ? X0(s) and Vi(s) = hi(s) ? Xi(s).



Figure 1: (a) Gaussian process prior for a single output. The output Y is the sum of two
Gaussian white noise processes, one of which has been convolved (?) with a kernel (h).
(b) The model for two dependent outputs Y1 and Y2. All of X0, X1, X2 and the “noise”
contributions are independent Gaussian white noise sources. Notice that if X0 is forced to
zero Y1 and Y2 become independent processes as in (a) - we use this as a control model.

The k1, k2, h1, h2 are parameterised Gaussian kernels where k1(s) = v1 exp
(

− 1

2
sT A1s

)

,
k2(s) = v2 exp

(

− 1

2
(s − µ)T A2(s − µ)

)

, and hi(s) = wi exp
(

− 1

2
sT Bis

)

. Note that
k2(s) is offset from zero by µ to allow modelling of outputs that are coupled and translated
relative to one another.

We wish to derive the set of functions CY
ij (d) that define the autocovariance (i = j) and

cross-covariance (i 6= j) between the outputs i and j, for a given separation d between
arbitrary inputs sa and sb. By solving a convolution integral, CY

ij (d) can be expressed in a
closed form [2], and is fully determined by the parameters of the Gaussian kernels and the
noise variances σ2

1 and σ2
2 as follows:

CY
11(d) = CU

11(d) + CV
11(d) + δabσ

2

1 CY
12(d) = CU

12(d)

CY
22(d) = CU

22(d) + CV
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2

2 CY
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21(d)

where

CU
ii (d) =

π
p
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i

√

|Ai|
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−
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4
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with Σ = A1(A1 + A2)
−1A2 = A2(A1 + A2)

−1A1.

Given CY
ij (d) then, we can construct the covariance matrices C11,C12,C21, and C22 as

follows

Cij =







CY
ij (si,1 − sj,1) · · · CY

ij (si,1 − sj,Nj
)

...
. . .

...
CY

ij (si,Ni
− sj,1) · · · CY

ij (si,Ni
− sj,Nj

)






(1)



Together these define the positive definite symmetric covariance matrix C for the combined
output data D:

C =

[

C11 C12

C21 C22

]

(2)

We define a set of hyperparameters Θ that parameterise
{v1, v2, w1, w2, A1, A2, B1, B2, µ, σ1, σ2}. Now, we can calculate the likelihood

L = −
1

2
log

∣

∣C
∣

∣ −
1

2
yT C−1y −

N1 + N2

2
log 2π

where yT = [y1,1 · · · y1,N1
y2,1 · · · y2,N2

]

and C is a function of Θ and D.

Learning a model now corresponds to either maximising the likelihood L, or maximising
the posterior probability P (Θ | D). Alternatively, we can simulate the predictive distribu-
tion for y by taking samples from the joint P (y,Θ | D), using Markov Chain Monte Carlo
methods [10].

The predictive distribution at a point s′ on output i given Θ and D is Gaussian with mean
ŷ′ and variance σ2

ŷ′ given by

ŷ′ = kT C−1y

and σ2

ŷ′ = κ − kT C−1k

where κ = CY
ii (0) = v2

i + w2

i + σ2

i

and k =
[

CY
i1(s

′ − s1,1) . . . CY
i1(s

′ − s1,N1
) CY

i2(s
′ − s2,1) . . . CY

i2(s
′ − s2,N2

)
]T

2.1 Example 1 - Strongly dependent outputs over 1d input space

Consider two outputs, observed over a 1d input space. Let Ai = exp(fi), Bi = exp(gi),
and σi = exp(βi). Our hyperparameters are Θ = {v1, v2, w1, w2, f1, f2, g1, g2, µ, β1, β2}
where each element of Θ is a scalar. As in [2] we set Gaussian priors over Θ.

We generated N = 48 data points by taking N1 = 32 samples from output 1 and N2 = 16
samples from output 2. The samples from output 1 were linearly spaced in the interval
[−1, 1] and those from output 2 were uniformly spaced in the region [−1,−0.15]∪[0.65, 1].
All samples were taken under additive Gaussian noise, σ = 0.025. To build our model, we
maximised P (Θ|D) ∝ P (D |Θ)P (Θ) using a multistart conjugate gradient algorithm,
with 5 starts, sampling from P (Θ) for initial conditions.

The resulting dependent model is shown in Figure 2 along with an independent (control)
model with no coupling (see Figure 1). Observe that the dependent model has learned the
coupling and translation between the outputs, and has filled in output 2 where samples are
missing. The control model cannot achieve such infilling as it is consists of two independent
Gaussian processes.

2.2 Example 2 - Strongly dependent outputs over 2d input space

Consider two outputs, observed over a 2d input space. Let

Ai =
1

α2
i

I Bi =
1

τ2
i

I where I is the identity matrix.

Furthermore, let σi = exp(βi). In this toy example, we set µ = 0, so our hyperparameters
become Θ = {v1, v2, w1, w2, α1, α2, τ1, τ2β1, β2} where each element of Θ is a scalar.
Again, we set Gaussian priors over Θ.
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Figure 2: Strongly dependent outputs where output 2 is simply a translated version of out-
put 1, with independent Gaussian noise, σ = 0.025. The solid lines represent the model,
the dotted lines are the true function, and the dots are samples. The shaded regions repre-
sent 1σ error bars for the model prediction. (top) Independent model of the two outputs.
(bottom) Dependent model.

We generated 117 data points by taking 81 samples from output 1 and 36 samples from out-
put 2. Both sets of samples formed uniform lattices over the region [−0.9, 0.9]⊗[−0.9, 0.9]
and were taken with additive Gaussian noise, σ = 0.025. To build our model, we max-
imised P (Θ|D) as before.

The dependent model is shown in Figure 3 along with an independent control model. The
dependent model has filled in output 2 where samples are missing. Again, the control model
cannot achieve such in-filling as it is consists of two independent Gaussian processes.

3 Time Series Forecasting

Consider the observation of multiple time series, where some of the series lead or predict
the others. We simulated a set of three time series for 100 steps each (figure 4) where
series 3 was positively coupled to a lagged version of series 1 (lag = 0.5) and negatively
coupled to a lagged version of series 2 (lag = 0.6). Given the 300 observations, we built
a dependent GP model of the three time series and compared them with independent GP
models. The dependent GP model incorporated a prior belief that series 3 was coupled to
series 1 and 2, with the lags unknown. The independent GP model assumed no coupling
between its outputs, and consisted of three independent GP models. We queried the models
for forecasts of the future 10 values of series 3. It is clear from figure 4 that the dependent
GP model does a far better job at forecasting the dependent series 3. The independent
model becomes inaccurate after just a few time steps into the future. This inaccuracy is
expected as knowledge of series 1 and 2 is required to accurately predict series 3. The



Figure 3: Strongly dependent outputs where output 2 is simply a copy of output 1, with
independent Gaussian noise. (top) Independent model of the two outputs. (bottom) Depen-
dent model. Output 1 is modelled well by both models. Output 2 is modelled well only by
the dependent model

dependent GP model performs well as it has learned that series 3 is positively coupled to a
lagged version of series 1 and negatively coupled to a lagged version of series 2.

4 Multiple Outputs and Non-stationary Kernels

The convolution framework described here for constructing GPs can be extended to build
models capable of modelling N -outputs, each defined over a p-dimensional input space.
In general, we can define a model where we assume M -independent Gaussian white
noise processes X1(s) . . . XM (s), N -outputs U1(s) . . . UN (s), and M × N kernels
{{kmn(s)}M

m=1}
N
n=1 where s ∈ <p. The autocovariance (i = j) and cross-covariance

(i 6= j) functions between output processes i and j become

CU
ij (d) =

M
∑

m=1

∫

<p

kmi(s)kmj(s + d)ds (3)

and the matrix defined by equation 2 is extended in the obvious way.

The kernels used in (3) need not be Gaussian, and need not be spatially invariant, or station-
ary. We require kernels that are absolutely integrable,

∫ ∞

−∞
. . .

∫ ∞

−∞
|k(s)|dps < ∞. This

provides a large degree of flexibility, and is an easy condition to uphold. It would seem that
an absolutely integrable kernel would be easier to define and parameterise than a positive
definite function. On the other hand, we require a closed form of CY

ij (d) and this may not
be attainable for some non-Gaussian kernels.
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Figure 4: Three coupled time series, where series 1 and series 2 predict series 3. Forecast-
ing for series 3 begins after 100 time steps where t = 7.8. The dependent model forecast
is shown with a solid line, and the independent (control) forecast is shown with a broken
line. The dependent model does a far better job at forecasting the next 10 steps of series 3
(black dots).

5 Conclusion

We have shown how the Gaussian Process framework can be extended to multiple output
variables without assuming them to be independent. Multiple processes can be handled
by inferring convolution kernels instead of covariance functions. This makes it easy to
construct the required positive definite covariance matrices for covarying outputs.

One application of this work is to learn the spatial translations between outputs. However
the framework developed here is more general than this, as it can model data that arises
from multiple sources, only some of which are shared. Our examples show the infilling of
sparsely sampled regions that becomes possible in a model that permits coupling between
outputs. Another application is the forecasting of dependent time series. Our example
shows how learning couplings between multiple time series may aid in forecasting, partic-
ularly when the series to be forecast is dependent on previous or current values of other
series.

Dependent Gaussian processes should be particularly valuable in cases where one output
is expensive to sample, but covaries strongly with a second that is cheap. By inferring both
the coupling and the independent aspects of the data, the cheap observations can be used
as a proxy for the expensive ones.
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