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Abstract

Clustering and prediction of sets of curves is an important problem in
many areas of science and engineering. It is often the case that curves
tend to be misaligned from each other in a continuous manner, either in
space (across the measurements) or in time. We develop a probabilistic
framework that allows for joint clustering and continuous alignment of
sets of curves in curve space (as opposed to a fixed-dimensional feature-
vector space). The proposed methodology integrates new probabilistic
alignment models with model-based curve clustering algorithms. The
probabilistic approach allows for the derivation of consistent EM learn-
ing algorithms for the joint clustering-alignment problem. Experimental
results are shown for alignment of human growth data, and joint cluster-
ing and alignment of gene expression time-course data.

1 Introduction

We introduce a novel methodology for the clustering and prediction of sets of smoothly
varying curves while jointly allowing for the learning of sets of continuous curve trans-
formations. Our approach is to formulate models for both the clustering and alignment
sub-problems and integrate them into a unified probabilistic framework that allows for the
derivation of consistent learning algorithms. The alignment sub-problem is handled with
the introduction of a novel curve alignment procedure employing model priors over the set
of possible alignments leading to the derivation of EM learning algorithms that formalize
the so-called Procrustes approach for curve data [1]. These alignment models are then
integrated into a finite mixture model setting in which the clustering is carried out. We
make use of both polynomial and spline regression mixture models to complete the joint
clustering-alignment framework.

The following simple illustrative example demonstrates the importance of jointly handling
the clustering-alignment problem as opposed to treating alignment and clustering sepa-
rately. Figure 1(a) shows a simulated set of curves which have been subjected to ran-
dom translations in time. The underlying generative model contains three clusters each
described by a cubic polynomial (not shown). Figure 1(b) shows the output of the pro-
posed joint EM algorithm introduced in this paper, where curves have been simultane-
ously aligned and clustered. The algorithm recovers the hidden labels and alignments near-
perfectly in this case. On the other hand, Figure 1(c) shows the result of first clustering
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Figure 1: Comparison of joint EM and sequential clustering-alignment: (a, top-left) un-
labelled simulated data with hidden alignments; (b, top-right) solution recovered by joint
EM; (c, bottom-left) partial solution after clustering first, and (d, bottom-right) final solu-
tion after aligning clustered data in (c).

the unaligned data in Figure 1(b), while Figure 1(d) shows the final result of aligning each
of the found clusters individually. The sequential approach results in significant misclas-
sification and incorrect alignment demonstrating that a two-stage approach can be quite
suboptimal when compared to a joint clustering-alignment methodology. (Similar results,
not shown, are obtained when the curves are first aligned and then clustered—see [2] for
full details.)

There has been little prior work on the specific problem of joint curve clustering and align-
ment, but there is related work in other areas. For example, clustering of gene-expression
time profiles with mixtures of splines was addressed in [3]. However, alignment was only
considered as a post-processing step to compare cluster results among related datasets. In
image analysis, the transformed mixture of Gaussians (TMG) model uses a probabilistic
framework and an EM algorithm to jointly learn clustering and alignment of image patches
subject to various forms of linear transformations [4]. However, this model only considers
sets of transformations in discrete pixel space, whereas we are focused on curve modelling
that allows for arbitrary continuous alignment in time and space. Another branch of work
in image analysis focuses on the problem of estimating correspondences of points across
images [5] (or vertices across graphs [6]), using EM or deterministic annealing algorithms.
The results we describe here differ primarily in that (a) we focus specifically on sets of
curves rather than image data (generally making the problem more tractable), (b) we fo-
cus on clustering and alignment rather than just alignment, (c) we allow continuous affine
transformations in time and measurement space, and (d) we have a fully generative prob-
abilistic framework allowing for (for example) the incorporation of informative priors on
transformations if such prior information exists.

In earlier related work we developed general techniques for curve clustering (e.g., [7])
and also proposed techniques for transformation-invariant curve clustering with discrete
time alignment and Gaussian mixture models for curves [8, 9]. In this paper we provide



a much more general framework that allows for continuous alignment in both time and
measurement space for a general class of “cluster shape” models, including polynomials
and splines.

2 Joint clustering and alignment

It is useful to represent curves as variable-length vectors. In this case, y i is a curve that
consists of a sequence of ni observations or measurements. The j-th measurement of y i
is denoted by yij and is usually taken to be univariate (the generalization to multivariate
observations is straightforward). The associated covariate of y i is written as xi in the same
manner. xi is often thought of as time so that xij gives the time at which yij was observed.

Regression mixture models can be effectively used to cluster this type of curve data [10].
In the standard setup, yi is modelled using a normal (Gaussian) regression model in which
yi = Xiβ+εi, where β is a (p+1)×1 coefficient vector, εi is a zero-mean Gaussian noise
variable, and Xi is the regression matrix. The form of Xi depends on the type of regression
model employed. For polynomial regression, X i is often associated with the standard
Vandermonde matrix; and for spline regression, X i takes the form of a spline-basis matrix
(see, e.g., [7] for more details). The mixture model is completed by repeating this model
over K clusters and indexing the parameters by k so that, for example, y i = Xiβk + εi

gives the regression model for y i under the k-th cluster.

B-splines [11] are particularly efficient for computational purposes due to the block-
diagonal basis matrices that result. Using B-splines, the curve point y ij can be represented
as the linear combination yij = B′

ij c, in which the vector Bij gives the vector of B-spline
basis functions evaluated at xij , and c gives the spline coefficient vector [2]. The full curve
yi can then be written compactly as yi = Bi c in which the spline basis matrix takes the
form Bi = [Bi1 · · ·Bini ]

′. Spline regression models can be easily integrated into the re-
gression mixture model framework by equating the regression matrix X i with the spline
basis matrix Bi. In what follows, we use the more general notation X i in favor of the more
specific Bi.

2.1 Joint model definition

The joint clustering-alignment model definition is based on a regression mixture model
that has been augmented with up to four individual random transformation parameters or
variables (ai, bi, ci, di). The ai and bi allow for scaling and translation in time, while the c i

and di allow for scaling and translation in measurement space. The model definition takes
the form

yi = ci�aixi − bi�βk + di + εi, (1)

in which �aixi − bi� represents the regression matrix Xi (either spline or polynomial)
evaluated at the transformed time aixi − bi. Below we use the matrix X i to denote �aixi −
bi� when parsimony is required. It is assumed that ε i is a zero-mean Gaussian vector with
covariance σ2

kI.

The conditional density

pk(yi|ai, bi, ci, di) = N (yi|ci�aixi − bi�βk + di, σ
2
kI) (2)

gives the probability density of yi when all the transformation parameters (as well as cluster
membership) are known. (Note that the density on the left is implicitly conditioned on an
appropriate set of parameters—this is always assumed in what follows.) In general, the val-
ues for the transformation parameters are unknown. Treating this as a standard hidden-data
problem, it is useful to think of each of the transformation parameters as random variables
that are curve-specific but with “population-level” prior probability distributions. In this



way, the transformation parameters and the model parameters can be learned simultane-
ously in an efficient manner using EM.

2.2 Transformation priors

Priors are attached to each of the transformation variables in such a way that the identity
transformation is the most likely transformation. A useful prior for this is the Gaussian den-
sity N (µ, σ2) with mean µ and variance σ2. The time transformation priors are specified
as

ai ∼ N (1, r2
k), bi ∼ N (0, s2

k), (3)
and the measurement space priors are given as

ci ∼ N (1, u2
k) , di ∼ N (0, v2

k). (4)
Note that the identity transformation is indeed the most likely. All of the variance param-
eters are cluster-specific in general; however, any subset of these parameters can be “tied”
across clusters if desired in a specific application. Note that these priors technically allow
for negative scaling in time and in measurement space. In practice this is typically not a
problem, though one can easily specify other priors (e.g., log-normal) to strictly disallow
this possibility. It should be noted that each of the prior variance parameters are learned
from the data in the ensuing EM algorithm. We do not make use of hyperpriors for these
prior parameters; however, it is straightforward to extend the method to allow hyperpriors
if desired.

2.3 Full probability model

The joint density of yi and the set of transformation variables Φi = {ai, bi, ci, di} can be
written succinctly as

pk(yi, Φi) = pk(yi|Φi)pk(Φi), (5)
where pk(Φi) = N (ai|1, r2

k)N (bi|0, s2
k)N (ci|1, u2

k)N (di|0, v2
k). The space transforma-

tion parameters can be integrated-out of (5) resulting in the marginal of y i conditioned only
on the time transformation parameters. This conditional marginal takes the form

pk(yi|ai, bi) =
∫ ∫

pk(yi, ci, di|ai, bi) dci, ddi

= N (yi|X iβk,Uik + Vk − σ2
kI), (6)

with Uik = u2
kX iβkβ′

kX ′
i + σ2

kI and Vk = v2
k11′ + σ2

kI. The unconditional (though,
still cluster-dependent) marginal for y i cannot be computed analytically since ai, bi cannot
be analytically integrated-out. Instead, we use numerical Monte Carlo integration for this
task. The resulting unconditional marginal for y i can be approximated by

pk(yi) =
∫ ∫

pk(yi|ai, bi)pk(ai)pk(bi) dai dbi

≈ 1
M

∑
m

pk(yi|a(m)
i , b

(m)
i ), (7)

where the M Monte Carlo samples are taken according to

a
(m)
i ∼ N (1, r2

k), and b
(m)
i ∼ N (0, s2

k), for m = 1, . . . , M. (8)
A mixture results when cluster membership is unknown:

p(yi) =
∑

k

αkpk(yi). (9)

The log-likelihood of all n curves Y = {y i} follows directly from this approximation and
takes the form

log p(Y ) ≈
∑

i

log
∑
mk

αkpk(yi|a(m)
i , b

(m)
i ) − n log M. (10)



2.4 EM algorithm

We derive an EM algorithm that simultaneously allows the learning of both the model
parameters and the transformation variables Φ with time-complexity that is linear in the
total number of data points N =

∑
i ni. First, let zi give the cluster membership for curve

yi. Now, regard the transformation variables {Φ i} as well as the cluster memberships {zi}
as being hidden. The complete-data log-likelihood function is defined as the joint log-
likelihood of Y and the hidden data {Φ i, zi}. This can be written as the sum over all n
curves of the log of the product of αzi and the cluster-dependent joint density in (5). This
function takes the form

Lc =
∑

i

log αzipzi(yi|Φi) pzi(Φi). (11)

In the E-step, the posterior p(Φi, zi|yi) is calculated and then used to take the posterior
expectation of Equation (11). This expectation is then used in the M-step to calculate the
re-estimation equations for updating the model parameters {β k, σ2

k, r2
k, s2

k, u2
k, v2

k}.

2.5 E-step

The posterior p(Φi, zi|yi) can be factorized as pzi(Φ|yi)p(zi|yi). The second factor is
the membership probability wik that yi was generated by cluster k. It can be rewritten as
p(zi = k|yi) ∝ pk(yi) and evaluated using Equation (7). The first factor requires a bit
more work. Further factoring reveals that pzi(Φ|yi) = pzi(ci, di|ai, bi,yi)pzi(ai, bi|yi).
The new first factor pzi(ci, di|ai, bi,yi) can be solved for exactly by noting that it is propor-
tional to a bivariate normal distribution for each z i [2]. The new second factor pzi(ai, bi|yi)
cannot, in general, be solved for analytically, so instead we use an approximation.

The fact that posterior densities tend towards highly peaked Gaussian densities has been
widely noted (e.g, [12]) and leads to the normal approximation of posterior densities.
To make the approximation here, the vector (â ik, b̂ik) representing the multi-dimensional

mode of pk(ai, bi|yi), the covariance matrix V
(k)
aibi

for (âik, b̂ik), and the separate variances
Vaik

, Vbik
must be found. These can readily be estimated using a Nelder-Mead optimiza-

tion method. Experiments have shown this approximation works well across a variety of
experimental and real-world data sets [2].

The above calculations of the posterior p(Φ i, zi|yi) allow the posterior expectation of the
complete-data log-likelihood in Equation (11) to be solved for. This expectation results
in the so-called Q-function which is maximized in the M-step. Although the derivation
is quite complex, the Q-function can be calculated exactly for polynomial regression [2];
for spline regression, the basis functions do not afford an exact formula for the solution of
the Q-function. However, in the spline case, removal of a few problematic variance terms
gives an efficient approximation (the interested reader is referred to [2] for more details).

2.6 M-step

The M-step is straightforward since most of the hard work is done in the E-step. The Q-
function is maximized over the set of parameters {β k, σ2

k, r2
k, s2

k, u2
k, v2

k} for 1 ≤ k ≤ K .
The derived solutions are as follows:

r̂2
k =

1∑
i wik

∑
i

wik

[
â2

ik + Vaik

]
, ŝ2

k =
1∑
i wik

∑
i

wik

[
b̂2
ik + Vbik

]
,

û2
k =

1∑
i wik

∑
i

wik

[
ĉ2
ik + Vcik

]
, v̂2

k =
1∑
i wik

∑
i

wik

[
d̂2

ik + Vdik

]
,
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Figure 2: Curves measuring the height acceleration for 39 boys; (left) smoothed versions
of raw observations, (right) automatically aligned curves.

β̂k =

[∑
i

wik ĉ2
ikX̂

′
ikX̂ ik + Vxxi

]−1 [∑
i

wik ĉikX̂ ′
ik(yi − d̂ik) + V′

xiyi − V′
xcd1

]
,

and

σ̂2
k =

1∑
i wikni

∑
i

wik

[∥∥∥yi − ĉikX̂ ikβ − d̂ik

∥∥∥2

−2y′
iVxiβ̂k + β̂

′
kVxxiβ̂k + 2β̂

′
kVxcd1 + niVdik

]
,

where X̂ ik = �âikxi − b̂ik�, and Vxxi,Vxi,Vxcd are special “variance” matrices whose
components are functions of the posterior expectations of Φ calculated in the E-step (the
exact forms of these matrices can be found in [2]).

3 Experimental results and conclusions

The results of a simple demonstration of EM-based alignment (using splines and the learn-
ing algorithm of the previous section, but with no clustering) are shown in Figure 2. In the
left plot are a set of smoothed curves representing the acceleration of height for each of 39
boys whose heights were measured at 29 observation times over the ages of 1 to 18 [1]. No-
tice that the curves share a similar shape but seem to be misaligned in time due to individual
growth dynamics. The right plot shows the same acceleration curves after processing from
our spline alignment model using quartic splines with 8 uniformly spaced knots allowing
for a maximum time translation of 2 units. The x-axis in this plot can be seen as canonical
(or “average”) age. The aligned curves in the right plot of Figure 2 represent the average
behavior in a much clearer way. For example, it appears there is an interval of 2.5 years
from peak (age 12.5) to trough (age 15) that describes the average cycle that all boys go
through. The results demonstrate that it is common for important features of curves to be
randomly translated in time and that it is possible to use the data to recover these underlying
hidden transformations using our alignment models.

Next we briefly present an application of the joint clustering-alignment model to the prob-
lem of gene expression clustering. We analyze the alpha arrest data described in [13] that
captures gene expression levels at 7 minute intervals for two consecutive cell cycles (to-
taling 17 measurements per gene). Clustering is often used in gene expression analysis
to reveal groups of genes with similar profiles that may be physically related to the same
underlying biological process (e.g., [13]). It is well-known that time-delays play an impor-
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Figure 3: Three clusters for the time translation alignment model (left) and the non-
alignment model (right).

tant role in gene regulation, and thus, curves measured over time which represent the same
process may often be misaligned from each other. [14].

Since these gene expression data are already normalized, we did not allow for transfor-
mations in measurement space. We only allowed for translations in time since experts do
not expect scaling in time to be a factor in these data. For the curve model, cubic splines
with 6 uniformly spaced knots across the interval from −4 to 21 were chosen, allowing
for a maximum time translation of 4 units. Due to limited space, we present a single case
of comparison between a standard spline regression mixture model (SRM) and an SRM
that jointly allows for time translations. Ten random starts of EM were allowed for each
algorithm with the highest likelihood model selected for comparison for each algorithm. It
is common to assume that there are five distinct clusters of genes in these data; as such we
set K = 5 for each algorithm [13].

Three of the resulting clusters from the two methods are shown in Figure 3. The left
column of the figure shows the output from the joint clustering-alignment model, while
the right column shows the output from the standard cluster model. It is apparent that
the time-aligned clusters represent the mean behavior more accurately. The overall cluster
variance is much lower than in the non-aligned clustering. The results also demonstrate
the appearance of cluster-dependent alignment effects. Out-of-sample experiments (not
shown here) show that the joint model produces better predictive models than the standard
clustering method. Experimental results on a variety of other data sets are provided in [2],
including applications to clustering of cyclone trajectories.



4 Conclusions

We proposed a general probabilistic framework for joint clustering and alignment of sets
of curves. The experimental results indicate that the approach provides a new and use-
ful tool for curve analysis in the face of underlying hidden transformations. The re-
sulting EM-based learning algorithms have time-complexity that is linear in the number
of measurements—in contrast, many existing curve alignment algorithms themselves are
O(n2) (e.g., dynamic time warping) without regard to clustering. The incorporation of
splines gives the method an overall non-parametric freedom which leads to general appli-
cability.
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